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Mean field equation for vortex filament systems

-derivation, dual variational structure,
existence of the solution-

[RARER EHEH (Ken SAWADA)
Meteorological College

1 Introduction

Mean field equations for the point vortex systems was first introduced by Onsager to
investigate the large-scale long-lived vortex structures in two dimensional turbulence.
The mean field equations are derived by applying the equilibrium statistical mechanics
to the system, which is described by a Hamiltonian system, and then taking the mean filed
limit called high-energy scaling limit. Several different mean field equations are obtained
according to the condition for the circulation of the vortices, though, these equations
have a form of an elliptic partial differential equation with an exponential nonlinearity
and a non-local term, mathematically.

Let © C R? be a bounded domain with a smooth boundary 990, z; € Q and o; € R

be position and circulation of the each point vortex i = 1,--- , P, respectively. Then the
Hamiltonian Hy = Hn(z;,- -+ ,zy) which describes the motion of the system is defined
by

TR L
)2 )
=3 Z _IZ 0;05G(2i, ) + 3 ;(az) R(z;).
In the mono circulation case in which every vortex has the same circulation, mean
field equations is given by
v
—Av= A inQ .
Joevdz (1)
v=0 in 01,

see [1]. Here, v = v(z) and X\ > 0 are related to the stream function and the inverse
temperature, respectively. It is known that (1) has a variational functional

J(v) = % V)3 - )\log/ e’dr v € Hy(Q),
0

and the classical solution to (1) exists for A € [0,87) from the Trudinger-Moser inequality.
In addition, a classification of the singular limits using the Green function [6] and the
unique existence of the solution when 2 is simply connected and A € [0,87) [11] are also
known. Moreover, this system has a dual variational structure [13]. In more precisely,
for the above mentioned variational structure in X = H}(€Q), there is another variational
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structure in the dual space X* = H~1(Q). The variational functional on X* is defined
by

J*(u) = ——;—((—AD)'lu,u)+/Qulogud.7:—/\logz\,

and the mean field equation for u € X* is given by

(=Ap)~'u = logu + constant in
u >0, fn udz = A

as the Euler-Lagrange equation for J*. These two variational structures are governed by
the Lagrangian L{v,u) on X x X* defined by

1
L(v,u) = / u(logu — 1)dz — A(log A — 1) + 3 IVl = (v,u) + 1peee)
Q
veX, ue X"

D(F*)={u€X|u20,/u=)\},
Q

and the Toland duality
inf = L(v,u) = inf J*(u) = lél)f( J(v)

(vu)eX x X* ueX*

holds.

To generalize the condition in the circulation of the vortex in the system, we consider
the deterministic system, in which the number density of the vortices on the circulation
is given by P(da) on [-1, 1]:

M
P(da) = Y #mim(dd), MeN (2)
m=1
M
with ¥ @A™ =1, A" €0,1].
m=1

The mean field equation for this generalized system is given by
eau
—Av = )\/ a-———P(da) in Q
[-1,1] Joeovdz (3)
v=20 on 02

and analized through the variational functional

” log (/Q e"‘"dx)'P(da),

using the modified Trudinger-Moser inequality, see [7]. (3) is the mean field equation for
a neutral system which is composed of opposite signed circulation obtained by [2], [9].

1
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In this note, we consider vortex filament systems as a three dimensional extension of
the two dimensional point vortex system. Even though the motion of the vortex filaments
is very complex [14], the motion of the vortex filament system which is composed of nearly
parallel vortex filaments is described by a Hamiltonian using the asymptotic theory [3].

The mean field equation for the vortex filament system with P(d&) is given by

K, e
—Ay; = A a+————7P(da) in
Ly Jo Kieovida ()

v; =0 on O

i=1,---,P (4)

in the framework of the P-layer broken path model, where

Ki = Ki(l’i, )\)

P i—za]2 P Az
= / €Y =1 [2ir1=2il% o 35 s “J(I:)dxl coodri_1dzig - - dzp
QP-1

AS
Tpyl = T1, Y= _8_77’ S : structure parameter.

This equation is regarded as the generalization of the mean field equation for the
vortex filament system in R® with P(da) = 6,,(da) studied in [4, 5]. We analyze the
mean field equation for this system, and obtain the following results.

Conclusion 1 The vortez filament system has the same dual variational structure as
in the case of the point vortex system.

Conclusion 2 There exist a global minimizer for the variational functional of (4) and
a classical solution to (4), if A € (0,87) and P(d&) = 6,1(da).

This note is organized as follows. In Section 2, we show the derivation of the mean
field equation for the vortex filament system, applying the heuristic methods used in the
derivation of the mean field equation for the point vortex system in [1]. In Section 3, we
discuss on the dual variational structure of the vortex filament system and the existence
of the solution to the mean field equations.

2 Derivation of the mean field equation

We consider the system where vortex filaments nearly parallel to the zs-axis are included
in a columnar region with cross section 2. Assume that the number density of the vortex
filaments on the circulation is subject to a probability measure P(d&) and set a periodic
boundary condition (period L) on zsz-axis.

We approximate the each vortex filament by a broken line with P nodes, and denote
i-th vortex filament X by two dimensional coordinates z7 € {1 at each layer o:
Xx® = (z},--- ,zF) e QP

2

The model in this framework is called the P-broken path model.
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Figure 1. Sketch of the broken path model

The motion of the vortex filament system is described by a Hamiltonian given by

(@7 a7 a7
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Hyp = 8—

1

i

N
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M*u ||IEI1‘_‘*U "M“U
Mz an

(cs)*LR(=7),

1

q
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where, | = L/P and S is a structure parameter for the vortex filament. S describes
the strength of the connection with upper and lower layers, and the filament becomes a
straight line when S goes to infinity. Compared with the Hamiltonian Hy of the point
vortex system, we can see that a self interaction term between layers is included in Hy p.

Using the Hamiltonian Hy p, Gibbs measure for the inverse temperature By is defined
by

“NP = /J‘NP(dX(z) e ’dX](\?))
1

= - _ dx® ... x®@
Z(, ) P A G X

2N, G = [ exp[-uHaplaX X,

Then, reduced probability function (pdf) for k-filaments with the circulation &™ is
defined by

pTIG,PkdX(z) . dx(2) —pNP (X(z) .. X(z))dX(m"'dX,(cz)
exp [~BxHnp (X, - XP)] Xy - ax P, (5)

) =

and, similarly, reduced pdf for the position z{ of i-th vortex filament with &™ is defined



g = 1, (a9)da
= [ R (Xt dag e dof (©

Hence, k-filament reduced pdf with &™ is given by
2 2
pYNn,P,k(Xl( )7 e aXIE: ))

1
= Z0N. 5% exp [—BnHy,p)

P k N
/Q(N_k)P exp [—OnHN-kp exp[ ﬁNZZ Z a"aa;lGa(xy, ])]

o=1 i=1 j=k+1

[N
- €Xp N éNkHN_k’P} Z(N k 5N).UN kP(dXJ(\?)—kv"' ’ng))
_ Z(N ~k, B) Bnk
= _—_.——Z(N,,B ) exp[ BnHi P] N €xp {N — kHN—-k,P

" €Xp _.ﬁNZZ Z a anlGQ i 3):| ’I‘N kP(dXI(\?-)-k,"' 7dXI(\?))7

o=1 i=1 j=k+1
using

dX}E?l dX;\?) =Z(N -k :BN)eN LA “P R k,P (7)
which is derived from the decomposion of the Hamiltonian

Hup(X2D, - XP) = Hy, (X(“’)- XD+ Hy e p(XE L XD

+ZZ Z aia;lGa(af, 7 (8)

o=1 i=1 j=k+1
and

——1—-—exp[ NBv PN
Z(N =k, Bx) (N—k) NhF

HN_ kP ] ka+1 ' dXI(\?)'

For k = 1, we have

o7 1 (X)
P
Z(N_IHBN) azﬁN ~m\2 ” 1 o-+1 o2 azﬂN(&m)z o
A LT L - )

s o+l _ o
L(N . exp [~8 5{7" Z(azf | 1 |2
P S S owglCGalal, ) + 5SS (0 (0)]

o=1i=2j=2,j#1i o=1i=2

P N
o [—_aﬁNdmZZaﬂ’lGQ (27,2 g)] [0l 1P(dXz£2)7"' 7dXJ(\?))'

o=1j=2
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Here, we take the mean field limit:
N - 00, f=a*ByN = constant, S = S/N = constant, (9)
under the following assumption
e the propagation of chaos (p%;(X 3 = limy 00 P3;, p1(X @)
e the existence of the smooth function
Pp1= A;l_r'noo PN.P1 MPe = Iélfcl}o IN.Po
Z = lim Z(N,fn)/Z(N -1, 0n)-

Then we obtain

pPl(X(z))

~m\2 & P
= ool BEISS L

o=1

exp[—f-zpz L Gn(x,y)(fa"ﬂ"nz,a(x )(fza A () ) dady
exp ﬁale/ Ga(zd,y Zn”a”nﬁa > y]

By the condition [, pB,dX @ = 1 and P(da), it follows that
25 &

[_B(as: 28 Z 1 lxaﬂ 33‘{]2]

o=1

7 &P

eXP[—Bdmil /Q Gn(xi’,y)( "a"f#o(y))dy]-

P (X2

From the pdfs pp, and 7, limiting functions associated to the vorticity and the stream
function are described by

srol) = [ dnka PR
vro@) = [ Ga[ | ankwPE]ay

Therefore, using the relation between 1p, and wp, on each cross section {2, and the
following translations

Vo = —B"pP,aa s = -'L'a’
l=1, B=-)\ a=qa, S=2G,
Aa2S

’Y: 87(' I
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we obtain the mean field equation

K;e®"
—Awv; = )\/ a—————7P(da) in Q
Ly Jo Kie®idz; )

v; =0 on 02,

i=1---,P (10)

where

P 1142 P vz
—_ / 672j=1 |41 -] 60‘21:1,];41 ”J(Ij)dxl ce dxi—ldxi+1 .. de‘
QP-1

In the case that P goes to infinity, the vortex filaments are described by using a condi-
tional Wiener measure, and the corresponding 1-filament pdf is determined through the
Green function of a partial differential equation indicated by the Feynman-Kac formula
4, 5].

3 Analysis of the vortex filament system

3.1 Dual variational structure

In this section, we consider a dual variational structure for the vortex filament system,
using the same approach in [13]. Our starting point is the mean field equation (10).
This mean field equation has a variation structure, and the variational functional for
v, € Hi(Q)i=1,---, P is given by

1
Tor,-o- o) = 5 193 =2 |

P
log (/ K exp [a) vi]dz; - dxp)P(da), (11)
1,1} QF i=1

where .
K =K(z1,-+ ,zp;7) = exp [’72|$i+1 - xilz].
i=1
The mean field equation (10) is the Euler-Lagrange equation for this variational functional
(11), in fact, we have

d
<‘Pia6iJ(U1;"' 7UP)> = —‘J(Ul,"' Ui+ 84, ,UP)
s=0

ds
K,eovi
= f "Aivi—/\/ o—+————P(da) )dz; =0
e o g Pde)

for Vo, € H{(Q), i=1,---,P.

We see that v; is connected with each other by K which originates from the self
interaction term. In order to describe the behavior of the vortex filament system, a
suitable function space X on z;,--- ,zp is needed. We try to construct a dual variational
structure on X and its dual space X*, considering the two candidates for the space X.
In both cases, we set z = (21, -+ ,zp), z; €Q i=1,---,P and dxr = dz, - - - dzp.
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Case 1 Here, we set
X =H'(@), X*=(HE®)"
In order to express the variational functional (11), we use a subspace
D= {’u = @f;wz'(xi) | v € Hé(Q), i=1,--- ,P},

Then, for v € D, we have

" Vin

vap

Vol = [ IVoljda
QP
= 1PVl + -+ IVeeel )

Kevdz,---dzp / K;e"®)dz,

QP
/ 6‘721_1 i1 -zl eZt— ”'(”')dxl -dzp.
OF

The variational functional corresponding to (11) is given by
1
J(v) = = |Vl - A7 / log ( / Ke™)P(da) + 1(v)
2 [-1,3] QP

on X. It is confirmed that the mean field equation (10) is the Euler-Lagrange equation
of J(v) on X, since we have

{ U=Z LuilTi), vi € HO(Q)
(v)=0&

el
—-Av; = A ___P(da) i=1,---,P.
' [-1,1] fn Kie (da)

This variational functional is represented by

J(v) = G(v) - F(v),

using
1
Glv) = §|leII§+1D(v)
Fv) = AQFf? / log( / Ke"‘”)’P(da).
[-1,1] oF
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Since G(v) is proper, convex, lower semi continuous (l.s.c), its conjugate function
G*(u) on X* (Legendre transform of G(v)) is defined by

G"(u) = sup{{v,u) = G(v)} = (v,u) - G(v)

u=0G(v)
1 P
= §|Q|P_1 ;((—A)"l%uﬁ + 1g(u),
where
H={u=0fu()|weH(Q), i=1, P}
In this derivation,
'U,ZéG(U):>’Uﬂ5=(—Az)U1, lzl,,P

is used.
Similarly, since F'(v) is also proper, convex, l.s.c., its conjugate function F™*(u) on X*
is defined by

Fr(w) = sup{(v,u) = F(o)} = (v,0) = F()] _

= / / ua(log uq — log K — 1) dzP(da)
[-1,1] JaP
—A[Q]P‘1<log ANQIFT — 1) + 1p(r)(u),
where

D(F*)y = {u =/ auaP(da) | ue € X*, uq >0, / UdT = )\IQ|P“1}.
[-1,1] QF

In this derivation,

U= 6F(v) = 1o = QP12 5 g
fQP Keovdx

is used.
Considering the subspaces H and D(F™*), we set

p
{u = ;-/[—1,1] aud(z;)P(da) |

P
uf € H1(Q), > u¢ >0, Zu"‘dq: =ANQP! =1, ,p}’
=1

QP is1
in order to define the variational functional J*(u) on X*:

J*w) = F*(u)—G*(u)
= / / Uq logua—logK—l)dl"P(da)
[-1,1] Jar

——|Q|P lz “ug,us) — AT log \|QIF = 1) + 15(u).



For u¢ € H~1(Q) satisfying

p
Zuf‘ >0
i=1

we have

P
J*(@uy) = / / log Z ) logK—l)dx'P(da)
[-1,1] JQF i=1 i=

—5lor / / S (-2
[-1,1} J[- 11] ;_1

~XQP log AJQY P — 1).

The Euler-Lagrange equation for this variational functional J*(u) is given by

Zuadx = A\Q|F1,

QP i=1

P
a(—A)u; = log Z u — log K + constant

i=1

P P
w20, [ Sutdr=Mar w= [ ouP(da)
i=1 QP i=1 [_1’1]

This is the mean filed equation for u € X* related to the vorticity.
These two variational structures on X and X* are governed by the Lagrangian L(v, u)

on X x X* defined by
L(v,u) = F*(u)+ G(v)— (v,u)

= / / o (log ug — log K — 1)dzP(da) — A7~ (log A[Q2{77! — 1)
(-1,13 Jor

1
+'2' "V’U"g - <U7u> + 1D(F')(u’) + ]-D(v)’

and it holds that
e

2 e
inf  L(v,u)
(vyu)EX xX*

Moreover, we have

L('Uau)lueaF(U) = J(’U)
L(v,u)|vesc ) =

inf {F"(u) + G(v) = (v, u)}
F*(u) - gg)g{(v,w - G(v)}
F*(u) — G*(u) = J*(u)

J(v)

inf J*(u) =

ueX*

)

J*(w)

L(v,u) > max{J(v), J*(u)}.

uf)P(da)P(do)

94
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Case 2 Let

X = {v=0Zv(z) | ve H}Q), i=1,---,P}
X* = {u:@f—_lui(.’ﬂi)luiEH—l(Q) z'=1,"-,P}.

The norm and the duality pairing are defined by
P
2 2
[Vel, = D IVaul
i=1

P
(v,u)x,x- = Z(Uiaui>Hg(ﬂ),H—1(Q)'
i=1
On this space X, the variational functional is given by

J(v) = E ||Vv||§ — Alog (/ Ke'dz, - - - dzp)

and represented by
J(v) = G(v) — F(v)

using
1 2
Gw) = IVl
F(v) = Alog( Ke'dz, - - - dzp).
QP

The conjugate function G*(u) on X* for G(v) is defined by

G*(u) = sup{{v,u) — G(v)}
veEX

.

using the relation
u=0G(v) =>u=(-4A)v i=1,--- P
Similarly, the conjugate function F*(u) on X* for F(v) is defined by
F*(u) = sup{(v,u) — F(v)}

veX

P
= Z/ui(logui~logKi—1)dmi~—P)\(log)\—1)
=179

P
-MP -1) log/ K exp [sz] dz + 1p(r+)(u),
QP

i=1
where

D(F™) :{u=@£1uieX* | w; >0, /

Quidxiz)\ i=1.- ,P}.
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In this derivation,

K.vi
i >0 i=1,-,P

= S W A
u=06F(v) = u [ Ketudz =

is used. But we fail to express K; by u;, so F*(u) is not closed in X*. It is concluded
that Case 2 is not a valid space to construct the dual variational structure of the vortex
filament system.

3.2 Existence of the solution

We consider the solution of the mean field equations for the vortex filament system with
P(da) = 6,1(da) on the space X = H*(QF) and its dual space X*.
First, we show the existence of the solution to the mean field equation on X

Kie“"
~Avy;= ————— in Q)
v Jq Kievdz; n i=1,---,P, (12)
v; =0 on OS2
where v; € H}(Q) i=1,---,P. Since Q C R? is bounded, there eixsits a constant Kgq

satisfying
P
1<K =exp [72 |Ziy1 — $z|2] < Ky,
i=1
and it holds that
1 F P
J() 2 S|P [Vul} - AP log | Ka[ T / ¢ dai]
2 i=1 i=1J0
for v € D. Then, from the Trudinger-Moser inequality
/ e¥dz; < Cilﬂleﬁlv‘“"g,
)
we have

P
1 P
J(v) > §IQ|P'1;||V1),-||§—AIQ[P‘llog [Kngc,.|g|e,-;;|w§]
_ o 3 (R - ) 19l - Nl og [KaloP T
- 2 167 Villa og Q H il

i=1 i=1

i=

Thus, we have the boundedness from below:

AL8r = 12}f( J(v) > —-3C. (13)

This indicates the existence of the solution to (12) for A € (0, 87).
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Next, we consider the existence of the solution for the mean field equation on X*.

P
(=4)7 u; = log (Zuz) —log K + constant i=1,---,P
=1

, - (14)
Zui >0, / S wdz = A|QF,
=1 QF =1

where u; € H™'(2) i=1,---, P. The associated variational functional is given by

J(Gu;) = /{)P(iui(:vi))(log(iui(xi)) —log K — 1)dz; - - - dzp

i=1

P
- 1 ope -
—NQUT log AP — 1) = SIQIFT Y (=40 s w)
i=1

for u; with the property 37 u; > 0, Jor SF  widz = MQIP~!. The form of this
functional is different from the one discussed in the Theorem 5 of [10]:

U(a) = Z/ﬂﬁz(z) logﬂ,-(z)d:v——;—Zai,j/nAﬂi(x)G(x,y)ﬂj(y)dmdy

on {ﬁ = (ﬂ],ﬁg,"' ,17,1) ' ﬂi > 0, / ’[Llegsz < 00, /’&,z = /\z}
Q Q
A = (ay;) : symmetric, a;; > 0,

and the lower boundedness conjectured from the dual variational principle is not con-
firmed yet. The difficulty of this problem is caused by the absence of the positivity of
each u;.

Table of formulas

Dual variational structure for the point vortex and the vortex filament systems:

e Point vortex system with mono circulation

31Vel; — 2iog ([ )

v
{ —Av=A—— inQ

J(v)

fn e’

v=20 on 09,

I = /Qu(logu ~1)dz — Alog A — 1) %((—A)_lu,u) +15(u)

{ (=A)"lu = logu + constant in

u >0, ]u=A
[¢)



e Point vortex system with generalized circulation P(da)

1
J) = 5IVvl; - / log( / e"”)P(da)
[-1,1] Q
—-Av = )\/ a—fi—'P(da) in Q
-y Joe®
v=20 on 0%,
T @us) = / / 1o (log (e — 1)dzP(da)
[-1,1) Ja

_AlogA—1) - & / / 00 (= A) g, ) P(da)P(de)
2 -y Jiy
{ o(—A)"'u = log u, + constant in Q

ug > 0, / Ug = A, U= / auyP(da)
Q [_lal]

e Vortex filament system with mono circulation
1
J0) = Iveli-NalPtog ([ Ke') +1o(0)
2 QP

Ui
{ —Av; = A Kie in Q

fQKie”i i=1,---,P
v, =0 on 99,

Few) = [ (S u(e)op( u(w) ~logK ~ day - dap

- - 1 oP-1& -
~AIQPH (log AIQIP ™ — 1) = S0P ((- 4) T s, i)

i=1

P
(—A)—lui = log (Zu,) —log K + constant i=1,---,P
1=1

P P
> u >0, S uide = AjQF?
i=1

QP i=1

98
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e Vortex filament system with generalized circulation P(da)

J) = -;-uvvug-A;mP-l / log ( /sz _ Ke)P(da) + 1p(v)

[—1’1]

K,e®vi
Ay = i d in Q
v )\/[-1,1] an Kieavidxip( @) in i=1,---,P
v; =0 on 09,
J'(@ud) = / / log (Zu ) log K — 1)d3;1 .- dzpP(da)
[-1,1) JoF i—l
AP (log AlQIP ! — 1)
1 P-1 s -1, o o ’
—5 /¢ aa’y ((—4)" uf, ui" )P(da)P(dd)
[—111] ["111]

i=1

P
a(—A)" u; =log (ZU?) —logK +constant i=1,---,P
i=1

P P
w20, [ Sutde =N u= [ autP(d
— QP i=1 (-1,1]
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