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Formula Decomposition into Ternary Majorities
( )多数決 3分木への論理式分解

上野 賢哉 *

概要 $\neg x_{3})\vee(\neg x_{3}\wedge x_{1})$ is the universal gate for the class of
self-dual Boolean functions. This Boolean function

Any self-dual Boolean function can be decomposed is also representable by the 3-bit majority function
into compositions of 3-bit majority functions. In with negations. Therefore any self-dual Boolean
this paper, we define a notion of a ternary ma- function can be also decomPosed into compositions
jority formula, which is a ternary tree composed of 3-bit majority functions with negations.
of nodes labeled by abit majority functions and Ibaraki and Kameda [5] developed a decomposi-
leaves labeled by literals. We study their complex- tion theory of monotone self-dual Boolean functions
ity in terms of formula size. In particular, we prove for the data structure called coteries which realize
upper and lower bounds for ternary majority for- mutual exclusions in distributed systems. The the-
mula size of the parity, majority and recursive ma- ory was further investigated for self-dual Boolean
jority functions. To prove the lower bounds, we functions in general by Bioch and Ibaraki [1], who
analyze the largest separation between ternary ma- gave the decomposition scheme of the 3-bit par-
jority formula size and DeMorgan formula size. ity function into comPositions of 3-bit majority

functions. We will fully utilize this decomposition
scheme in our results.1 Introduction There are two kinds of formula models stud-

A class of Boolean functions closed under com- ied in the literature, $U_{2}$-formula (DeMorgan for-
positions is called a Boolean clone. There are sys- mula) and its extension $B_{2}$-formula (full binary ba-
tematic studies on the relationshiP among Boolean sis formula). In this paper, we study a formula
clones knovn as Post’s lattice [10]. (See also a sur- model MAJ3-formula (ternary majority formula)
vey [2] on Post’s lattice with its $aPPlications.$ ) Ac- besides $U_{2}$-formula and $B_{2}$-formula. Every node
cording to the theory of Post’s lattice, any mono- of a $MAJ$3-formula is labeled by the 3-bit major-
tone self-dual Boolean function can be decomPosed ity function while every node of a $U_{2}$-formula and
into $comPositions$ of 3-bit $mority$ functions. In $B_{2}$ -formula is labeled by a 2-bit Boolean function.
other words, the 3-bit majority function is the Independently $hom$ any choice of formula mod-
universal gate for the class of monotone self-dual els, proving formula size lower bounds is one of the
Boolean functions. On the other hand, the 3-bit most important problems in computational com-
Boolean function denoted by $(x_{1}\wedge\neg x_{2})\vee(\urcorner x_{2}$ Aplexity theory as a weaker version of the circuit
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図 $1$ : Formula Size Upper and Lower Bounds

in some complexity class (e.g., NP) including $NC^{1}$

implies a separation between the two complexity

classes (e.g., $NC^{1}\neq$ NP). The $\infty mplexity$ class
$NC^{1}$ is defined in terins of logarithm circuit depth,

which turns out to be equivalent to polynomial for-
mula size [12]. Therefore, the effect of the basis
for formula complexity is also significant from the
viewpoint of logical circuit design.

In this paper, we will prove the $MAJ_{3}$-formula
size upper and lower bounds in Section 3 and 5,
respectively, as summarized in Figure 1. After the
completion of this paper, we have noticed that the
lower bound for the parity function is weaker than
1.33 of Chokler and Zwick [3] using the random re-
striction technique. Still, our lower bound method

has merit in the sense that it can be applied for
any Boolean function. To prove the lower bounds,

we will show that the largest separation between

MAJ3-formula and $U_{2}$-formula complexity is at
most $O(n^{\log_{2}3})$ in Section 4. It can be regarded as
analogue of Pratt’s result [11], which showed the
largest separation between $B_{2}$-formula complexity
and $U_{2}$-formula complexity is at most $O(n^{\log_{3}10})$ .

We hope that a new technical discovery to clarify

MAJ3-formula complexity will also shed light on
resolving the stiff barrier against formula complex-
ity of the existing models.

2 Definitions
In this section, we summarize definitions con-

cerned with Boolean functions and formula size.

We assume that the readers are familiar with the

basics of these concepts together with the notations
of $O,$ $0,$ $\Omega,$ $\omega$ and $\ominus$ .

2.1 Boolean Functions

In this paper, we consider the following Boolean

functions. Through the paper, $n$ means the number
of input bits.

Definition 2.1 (Boolean lfunctions). The parity

function $\oplus_{n}$ : $\{0,1\}^{n}\mapsto\{0,1\}$ is formally defined
$by$

$\oplus_{n}(x_{1}, \cdots,x_{n})=\{\begin{array}{l}1 (\sum_{n^{1}}^{n}x_{i}\equiv 1:= mod 2),0 (\sum_{i=1}x_{i}\equiv 0 mod 2).\end{array}$

The majority junction MAJ2$l+1$ : $\{0,1\}^{2l+1}\mapsto$

$\{0,1\}$ on odd number of input bits is defined by

$MAJ_{2l+1}(x_{1}, \cdots,x_{n})=\{\begin{array}{l}1 (\sum_{:=n^{1}}x_{i}\geq l+1)n,0 (\sum_{*=1}x_{i}\leq l).\end{array}$
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The recursive majority function $RecMAJ_{3}^{h}$ :
$\{0,1\}^{3^{h}}\mapsto\{0,1\}$ is defined by

$RecMAJ_{3}^{h}(x_{1}, \cdots,x_{3^{h}})=$

$MAJ_{3}(RecMAJ_{3}^{h-1}(x_{1}, \cdots, x_{3^{h-1}})$ ,
$RecMAJ_{3}^{h-1}(x_{3^{h-1}+1}, \cdots, x_{2\cdot 3^{h-1}})$ ,
$RecMAJ_{3}^{h-1}(x_{2\cdot 3^{h-1}+1}, \cdots, x_{3^{h}}))$

wiih $RecMAJ_{3}^{1}=$ MAJ3.
We will define another Boolean function right be-

fore it will appear. The notions of monotone and
self-dual for Boolean fUnction are defined as follows.

Definition 2.2 (Monotone and Self-Dual). For
Boolean vectors $\tilde{x}$ $=$ $(x_{1}, \cdots, x_{n})$ and $\vec{y}$ $=$

$(y_{1}, \cdots , y_{n})$ , we define $x\neg\leq\vec{y}$ if $x_{i}\leq y_{i}$ for all
$i\in\{1, \cdots n\}$ . A Boolean function $f$ is called
monotone if $\vec{x}\leq\vec{y}$ implies $f(\vec{x})\leq f(y\gamma$ for any
$\vec{x},\vec{y}\in\{0,1\}^{n}.$ A Boolean function $f$ is called self-
dual if $f(x_{1}, \cdots,x_{n})=\neg f(\neg x_{1}, \cdots, \neg x_{n})$ where $\neg$

denotes the negation, which flips 1 to $0$ , and $0$ to
1.

2.2 Formula Size

In this paper, we consider the following three for-
mula models. For each model, a literal means either
a variable $x_{i}$ or the a negated variable $\neg x_{i}$ for some
index $i$ . Each formula is called monotone if it does
not have negated variables. In the definition, the
nodes $\wedge$ and $\vee$ mean the logical conjunction and
disjunction, respectively.

Definition 2.3 (Formula Models). A $U_{2}$ -formula
is a binary tree with leaves labeled by literals and
internal nodes labeled $by\wedge and\vee.$ A $B_{2}$ -formula
is a binary tree with leaves labeled by literals and
internal nodes labeled by any of 2-bit Boolean func-
tions such $as\wedge,$ $\vee and\oplus_{2}.$ $A$ MAJ3-formula is
a ternary tree with leaves labeled by literals and in-
temal nodes labeled by MAJ3.

If we allow $0$ and 1 in leaves along with liter-
als, MAJ3-formulas can compute all the Boolean
functions because MAJ3 $(x_{1}, x_{2},0)=x_{1}\wedge x_{2}$ and
MAJ3 $(x_{1}, x_{2},1)=x_{1}\vee x_{2}$ . So the -bit majority
function with $0$ and 1 can be regarded as a kind
of the universal gate for all the Boolean functions.
In this sense, MAJ3-formula is yet another natural
extension of $U_{2}$-formula like $B_{2}$-formula. Even if
we do not allow $0$ and 1 in leaves MAJ3-formulas
can compute all the self-dual Boolean functions.
Furthermore, even if we allow only variables with-
out negations, they can compute all the monotone
self-dual Boolean functions.

The formula size for each formula model is de-
fined as follows. For the convenience, we will not
distinguish a Boolean function $f$ and a formula
computing $f$ . We should note that $L_{MAJ_{3}}(f)$ is
defined only for self-dual Boolean functions while
$L_{B_{2}}(f)$ and $L_{U_{2}}(f)$ are defined for all Boolean
functions.

Definition 2.4 (Formula Size). The size of a for-
mula is its number of leaves for any formula model.
We define the $fo$rmula size of a Boolean function $f$

as the size of the smallest formula computing $f$ .
We denote the size of $U_{2}$ -formula, $B_{2}$ -formula and
MAJ3-fomula of a Boolean function $f$ by $L_{B_{2}}(f)$ ,
$L_{IJ_{2}}(f)$ and $L_{MAJ_{3}}(f)$ , respectively. We will some-
times abbreviate $L_{U_{2}}(f)$ to $L(f)$ for simplicity.

Since we consider a ternary tree, the number of
leaves is at most three times the number of nodes.
So the $MAJ$3-formula model with $0$ and 1 leaves is
similar with a formula model with gates $\wedge,$ $\vee$ and
MAJ3. While this paper focuses on the MAJ3$-$

formula model without $0$ and 1, it might be inter-
esting to ask the minimum number of $0$ and 1 of
$MAJ$3-formula as the measure of a kind of distance
to self-dual Boolean functions for future work.
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3 Ternary Majority Formula
Size Upper Bounds

In this section, we prove MAJ3-formula size up-
per bounds of the parity and majority function. In

both cases, the upper bounds are shown by utilizing

the decomposition scheme of Bioch and Ibaraki [1]

for the 3-bit parity function as

$\oplus_{3}(x_{1},x_{2},x_{3})=[1, [\overline{1},\overline{2},\overline{3}], [i, 2,3]]$

where we use notations $[i,j, k]=MAJ_{3}(x_{i}, x_{j}, x_{k})$,
$i=x_{i}$ and $\overline{i}=\neg x_{i}$ . FYom the decomposition

scheme, we obtain $L_{MAJ_{3}}(\oplus_{3})\leq 7$ . We show that
$MAJ_{3}$-formula complexity is intermediate between
$B_{2}$-formula complexity and $U_{2}$-complexity for both

functions.

3.1 The Parity Function

In the case of $U_{2}$-formula, we can construct a
2-bit parity formula $(x_{1}\wedge\neg x_{2})\vee(\neg x_{1}\wedge x_{2})$ . By

a similar construction, we can construct a $2n$-bit
parity fomula

$\oplus_{2n}(x_{1}, \cdots,x_{2n})=(f_{1}\wedge\neg f_{2})\vee(\neg f_{1}\wedge f_{2})$

from two sorts of n-bit parity formulas $f_{1}$ $=$

$\oplus_{n}(x_{1}, \cdots, x_{n})$ and $f_{2}=\oplus_{n}(x_{n+1}, \cdots, x_{2n})$ in
general. Therefore we can prove an upper bound
$L(\oplus_{n})\leq n^{2}$ where $n=2^{h}$ from a recursive inequal-
ity $L(\oplus_{2n})\leq 4\cdot L(\oplus_{n})$ .

In the case of MAJ3-formula, we can decom-
pose the $3^{h}$-bits parity function into a composition
of a 3-bit parity function and three $3^{h-1}$-bits par-
ity functions. Thus we have a recursive inequal-
ity $L_{MAJ_{3}}(\oplus_{3^{h}})\leq 7\cdot L_{MAJ_{8}}(\oplus_{3^{h-1}})$ from the de-
composition scheme of the 3-bit parity function.
Solving this inequality straightforwardly, we can
show an upper bound $L_{MAJ_{3}}(\oplus_{3^{h}})\in O(n^{\log_{3}7})\subseteq$

$O(n^{1.7712})$ . Actually we can give a better upper
bound as follows.

Theorem 3.1 (See also [3]). $L_{MAJ_{S}}(\oplus_{2l+1})\in$

$O(n^{1.7329})$ where $n=2l+1$ .

Proof. For some constant $\alpha$ , we consider decompo-

sition of the $(2\alpha+1)$ . m-bit parity function into a
composition of a 3-bit parity function with a m-bit
parity function and two $\alpha$ . m-bit parity functions

as follows.
$\oplus_{(2a+1)\cdot m}(x_{1}, \cdots,x_{(2\alpha+1)\cdot m})=$

$\oplus_{3}(\oplus_{m}(x_{1}, \cdots,x_{m})$ ,

$\oplus_{\alpha\cdot m}(x_{m+1}, \cdots,x_{(\alpha+1)\cdot m})$,

$\oplus_{\alpha\cdot m}(x_{(\alpha+1)\cdot m+1}, \cdots,x_{(2\alpha+1)\cdot m}))$ .

Here we can assume that $\alpha\cdot m$ is an odd integer by

increasing or decreasing it at most 1. In this case,
$(2\alpha+1)\cdot m$ becomes also an odd integer if $m$ is

odd.
Let $S(n)=L_{MAJ_{3}}(\oplus_{n})$ and assume $S(n)\leq\beta\cdot n^{\gamma}$

for some constants $\beta,$ $\gamma>0$ for any odd number $n$ .
By increasing the value of $\beta$ , the slight modifica-
tion which makes $\alpha\cdot m$ be an odd integer can be

ignored for the following estimation of $\gamma$ . By using

decomposition scheme of the 3-bit parity function,

$S((1+2\alpha)\cdot m)$

$\leq 3\cdot S(m)+2\cdot S(\alpha\cdot m)+2\cdot S(\alpha\cdot m)$

$\leq(3+4\cdot\alpha^{\gamma})\cdot\beta\cdot n^{\gamma}$ .

It suffices to show that the last expression $ib$

bounded by $(1+2\alpha)^{\gamma}\cdot\beta\cdot n^{\gamma}$ . Therefore we consider
the minimum value of $\gamma$ which satisfies

$3+4\cdot\alpha^{\gamma}\leq(1+2\alpha)^{\gamma}$

by eliminating $\beta\cdot m^{\gamma}$ from both sides. We can verify

that this inequality is satisfied when $\alpha=1.73896$

and $\gamma=1.73282$ . $\square$

3.2 The Majority Function

Our MAJ3-formula size upper bound for the

majority function essentially relies on the gen-

eral theory established by Paterson, Pippenger and
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Zwick [8]. Their idea is based on construction of a
carry save adder from a full adder of fixed size as
building blocks. Here we consider a full adder FA3
from 3 bits to 2 bits. The first and second output
bits $y_{1},$ $y_{2}$ of FA3 are the 3-bit parity and majority
function, respectively.

In the case of $U_{2}$-formula, the full adder FA3
can be constructed by $y_{1}=(x_{1}\wedge((\neg x_{2}\vee x_{3})\wedge$

$(x_{2}\vee\neg x_{3})))\vee(\neg x_{1}\wedge((x_{2}\wedge\neg x_{3})\vee(\neg x_{2}\wedge x_{3})))$

and $y_{2}=(x_{1}\wedge x_{2})\vee((x_{1}\vee x_{2})\wedge x_{3})$ . They defined
the notion of the occurrence matrix. It summarizes
the information of the number of occurrence in the
formula. For example, the occurrence matrix of the

above case is $M=(\begin{array}{lll}2 4 41 2 2\end{array})$ . In the first and

second row of the matrix, each entry counts the
number of occurrence of each variable in the first
and second formula, respectively.

From the construction of an arbitrary fixed size
full adder and its corresponding occurrence matrix,
Paterson, Pippenger and Zwick [8] gave the follow-
ing general upper bound method.

Theorem 3.2 ([8]). Let $M$ be an occurrence ma-
trx of some full adder for some fixed basis and
some Boolean function $f$ . Let $\epsilon(M)$ be the $ma\mathfrak{X}-$

mum value of $\frac{1}{\gamma}$ such that $\Vert x\urcorner|_{\gamma}\leq\Vert M\cdot x\urcorner|_{\urcorner}$ for any
vector $\vec{x}\geq\vec{0}$ where $||x \Vert_{\gamma}=(\sum_{i}|x_{i}|^{\gamma})^{1/\gamma}$ . Then
$O(n^{\epsilon(M)+o(1)})$ gives a formula size upper bound for
$f$ on the fixed basis.

By the theorem, we can derive a $U_{2}$-formula size
upper bound of $O(n^{4.70})$ . Paterson and Zwick [9]
gave a construction of the full adder from 11 bits to
4 bits and an improved upper bound of $O(n^{4.57})$ .

In the case of $B_{2}$-formula, Paterson, Pippenger
and Zwick [8] proved a $B_{2}$-formula size upper
bound of $O(n^{3.21})$ improved to $O(n^{3.13})$ by Pater-
son and Zwick [9].

In the case of $MAJ$3-formula, the full adder $FA$3
can be constructed by $y_{1}=[1, [\overline{1},\overline{2},\overline{3}], [\overline{1},2,3]]$ and

$y_{2}=[1,2,3]$ . So the corresponding occurrence ma-

trix is $M=(\begin{array}{lll}3 2 2l 1 1\end{array})\cdot \mathbb{R}om$ this, we can ob-

tain the following MAJ3-formula size upper bound
for the majority function.

Theorem 3.3. $L_{MAJ_{3}}(MAJ_{21+1})\in O(n^{3.7925})$

where $n=2l+1$ .

Proof For the occurrence matrix, $M$ $=$

$(\begin{array}{lll}3 2 21 1 1\end{array})$ , the inequality $\Vert\vec{x}\Vert_{\gamma}\leq\Vert M\cdot x\urcorner|_{\gamma}$

which appears in the theorem of Paterson,
Pippenger and Zwick [8] can be interpreted as
$p(a, b, c,\gamma)=(3\cdot a+2\cdot b+2\cdot c)^{\gamma}+(a+b+c)^{\gamma}-$

$a^{\gamma}-b^{\gamma}-c^{\gamma}\geq 0$ . If $L_{MAJ_{3}}(MAJ_{n})\in O(n^{\gamma})$ , there
exists $a,b,$ $c>0$ such that $p(a, b, c, \gamma)<0$ . We set
$a=0.729608,$ $b=c=1$ and $1/\gamma=3.7925$ . Then,
we have $p(a, b, c, \gamma)\approx-0.0000256657<0$ . This
certifies that the maximum value of $1/\gamma$ which
satisfies $\Vert\vec{x}||_{\gamma}\leq\Vert M\cdot x\urcorner|_{\gamma}$ for any vectors $\vec{x}\geq\vec{0}$ is
less than 3.7925. Thus we have obtained the upper
bound. $\square$

The optimality of the value $\gamma$ can be confirmed
by numerical analysis. That is, the minimum value
of $p(a, b,c, \gamma)>0$ for $\gamma=3.7924$ .

The best monotone $U_{2}$-formula size upper bound
for the majority function is $O(n^{5.3})$ by a prob-
abilistic construction of Valiant [13]. Following
the analysis of Valiant‘s constmction replaced by
balanced compositions of the 3-bit majority func-
tion with random variables, we can construct a
monotone MAJ3-formula whose size is $O(n^{4.2945})$

$(\supseteq O(n^{\log_{3/2}}3+\log_{2}3))$. The size of its conver-
sion into a monotone $U_{2}$-formula is $O(n^{6.2913})$

$(\supseteq O(n^{\log_{3/2}}5+\log_{2}5))$ and larger than Valiant‘s
bound.
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4 Ranslation from Ternary
Majority Formulas to De-
Morgan Formulas

In this section, we analyze the relation between
$MAJ$3-formula complexity and $U_{2}$-formula com-
plexity. The results in this section will be useful
to derive a MAJ3-formula size lower bound ffom a
$U_{2}$-formula size lower bound for the same function
as shown in Section 5. We begin with the following
simple proposition.

Proposition 4.1. $L_{MAJ_{3}}(B\epsilon cMAJ_{3}^{h})=n$ where
$n=3^{h}$ is the number of input bits.

Proof. The upper bound $L_{MAJ_{8}}(RecMAJ_{3}^{h})\leq n$

follows from the same construction as the defini-
tion. The lower bound $L_{MAJ_{3}}(RecMAJ_{3}^{h})\geq n$ is
also immediate because it depends on all the vari-
ables. $\square$

Rom a majority formula $L(MAJ3)\leq 5$ , we
can recursively construct a formula for the recur-
sive majority function whose size is $5^{h}$ . There
fore we have an upper bound $L(RecMAJ_{3}^{h})\leq 5^{h}$ ,
i.e., $L(RecMAJ_{3}^{h})\in O(L_{MAJ_{S}}(f)^{1.4650})$ . Sim-
ilarly, the best upper bound we know for $B_{2^{-}}$

formula is also $L_{B_{2}}(RecMAJ_{3}^{h})$ $\leq$
$5^{h}$ . The

quantum adversary bound [7], which is useful to
prove $U_{2}$-formula size lower bounds, has a nice
composition property written as ADV$(f\cdot g)\geq$

ADV$(f)$ . ADV$(g)$ . It implies a formula size lower
bound $4^{h}\leq L(RecMAJ_{3}^{h})$ , i.e. $L(RecMAJ_{3}^{h})\in$

$\Omega(L_{MAJ_{3}}(f)^{1.2618})$ .
We call the value $\gamma$ an expansion factor from

a MAJ3-formula into $U_{2}$-formula for an arbi-
trary self-dual Boolean function $f$ if $L(f)$ $\in$

$O((L_{MAJ_{3}}(f))^{\gamma})$ . In the case of the recursive ma-
jority function, we can prove $\gamma\geq\log_{3}5$ by solving
5. $a^{\gamma}\leq(3a)^{\gamma}$ where $L_{MAJ_{3}}(f_{1})=L_{MAJ_{3}}(f_{2})=$

$L_{MAJ_{3}}(f_{3})=a$ . At first glance, the recursive ma-
jority function seems to have the largest expan-
sion factor $\log_{3}5$ from a MAJ3-formula into a $U_{2^{-}}$

formula among all the MAJ3-formulas. Surpris-
ingly, this is not true as we prove in the next lemma.

Lemma 4.2. For any self-dual Boolean function $f$ ,
$L(j)\in O(L_{MAJ_{3}}(f)^{\log_{2}3})\subseteq O(L_{MAJ_{3}}(f)^{1.5850})$ .

Proof. We are looking for the largest formula ex-
pansion $bom$ a MAJ3-formula into a $U_{2}$-formula.
Differently from the recursive majority function,

the same variable might appear more than once in a
ternary majority formula for an arbitrary $Bo$olean
function $f$ . In this case, the expanded $U_{2}$-formula
can shrink more. So we can concentrate on the case
in which all the variable appear exactly once. That
is, $L_{MAJ_{3}}(f)=n$ .

We assume that $L(f)\leq\beta\cdot L_{MAJ_{S}}(f)^{\gamma}$ for any
self-dual Boolean function and consider an induc-
tive argument. The expansion factor $\gamma$ must satisfy
an inequality $L(f)\leq 2\cdot\beta\cdot(L_{MAJ_{3}}(f_{1}))^{\gamma}+2\cdot\beta$ .
$(L_{MAJ_{3}}(f_{2}))^{\gamma}+\beta\cdot(L_{MAJ_{3}}(f_{3}))^{\gamma}\leq\beta\cdot(L_{MAJ_{3}}(f))^{\gamma}$

by looking at a formula expansion from a $MAJ3-$

formula $f=$ MAJ3$(f_{1}, f_{2},f_{3})$ into a $U_{2}$-formula
$f=$ $(f_{1} A f_{2})\vee((f_{1}\vee f_{2})\wedge f_{3})$ . This expansion
is processed from leaves to the root in a recursive
way.

We can assume that $L_{MAJ_{8}}(f_{1})\leq L_{MAJ_{3}}(f_{2})\leq$

$L_{MAJ_{3}}(j_{3})$ without loss of generality. We set
$L_{MAJ_{3}}(J_{1})=a-b,$ $L_{MAJ_{3}}(f_{2})=a+b$ and
$L_{MAJ_{3}}(f_{3})=a+c$ where $a>b\geq 0$ and $c\geq b\geq 0$ .
In this case, we need to find the minimum value
of $\gamma$ which always satisfies 2 $\cdot(a-b)^{\gamma}+2\cdot(a+$

$b)^{\urcorner}+(a+c)^{y}\leq(3a+c)^{\gamma}$ . So we set $p(a, b, c, \gamma)=$

$(3a+c)^{\gamma}-(a+c)^{\gamma}-2\cdot(a+b)^{\gamma}-2\cdot(a-b)^{\gamma}$ and seek
the minimum value of $\gamma$ such that $p(a, b, c, \gamma)\geq 0$

for any $a>b\geq 0$ and $c\geq b>0$ .
First we fix $a,$ $b$ and $\gamma$ and consider $q(\alpha)=$

$(3+\alpha)^{\gamma}-(1+\alpha)^{\gamma}$ where $\alpha=\frac{c}{a}(0<\alpha)$ . By
the derivative $y’=\gamma\cdot x^{\gamma-1}$ of $y=x^{\gamma},$ $(3+\alpha)^{\gamma}$

18



increases more than $(1+\alpha)^{\gamma}$ whenever $\alpha$ slightly
increases. So $q(\alpha)$ monotonically increases as $\alpha$ in-
creases. To minimize $p(a, b, c.\gamma)$ for fixed $\gamma$ , we
would like to minimize $q(\alpha)$ and had better $\alpha$ be
as small as possible. Hence we set $c=b$ because
$c\geq b$ .

Next we consider $r( \alpha, \gamma)=\frac{p(a,b,b_{\urcorner}\cdot)}{a^{\gamma}}=(3+\alpha)^{\gamma}-$

$3\cdot(1+a)^{\gamma}-2\cdot(1-a)^{\gamma}$ where $\alpha=\frac{b}{a}(0\leq\alpha<1)$ .
Since $r(\alpha, \gamma)\geq 0$ for any $\alpha(0\leq\alpha<1)$ implies
$p(a, b, c,\gamma)\geq 0$ for any $a,$ $b$ and $c$ , it suffices to seek
the minimum $\gamma$ which satisfies this condition.

It is easy to see that $\log_{3}5$ is not the largest ex-
pansion factor because $r(1, \log_{3}5)\approx-0.660928<$

$0$ while $r(1, \log 35)=0$ . On the other hand, $\log_{2}3$

seems to be a good candidate which is very near to
the largest expansion factor because $r(O, \log_{2}3)\approx$

$0.704522>0$ and $r(1,\log_{2}3)\approx 1.77636\cross 10^{-15}>$

$0$ . To confirm $r(O, \log_{2}3)\geq 0$ for $0\leq\alpha<1$ ,
it is sufficient to draw the graph of $r(\alpha, \log_{2}3)$

$(0\leq\alpha<1)$ as shown in Figure 2. (Strictly speak-
$ing$ , it requires a rigorous analysis on $r(\alpha, \log_{2}3)$ ,
but we omit it in this paper.)

Pratt [11] proved $L_{U_{2}}(f)\in O((L_{B_{2}}(f))^{\log_{3}10})\subseteq$

$O((L_{B_{2}}(f))^{2.096})$ . The exponent $\log_{3}10$ is derived
from the $U_{2}$-formula size of 10 for the 3-bit parity
function. The above lemma can be seen as an ana-
logue of Pratt’s bound [11] for the relation between
$MAJ$3-formulas and $U_{2}$ -formulas.

5 Ternary Majority Formula
Size Lower Bounds

In general, we can derive a $MAJ$3-formula size
lower bound for an arbitrary Boolean function $hom$

a $U_{2}$-formula size lower bound of the same function
using Lemma 4.2 as follows.

Theorem 5.1. For any self-dual Boolean func-
tion $f$ such that $L(f)$ $\in$ $\Omega(n^{c}),$ $L_{MAJ_{3}}(f)$ $\in$

$\Omega(n^{c/\log_{2}3})$ .

Proof. By Lemma 4.2, an upper bound for $U_{2}-$

formula size expanded from a MAJ3-formula of
size $N$ is at most $O(N^{\log_{2}3})$ . This size must be
not smaller than the formula size lower bound
$L(f)\in\Omega(n^{c})$ . Therefore we have obtained the the-
orem. 口

Rom $U_{2}$-formula size lower bounds of $L(\oplus_{n})\in$

$\Omega(n^{2})$ and $L(MAJ_{n})\in\Omega(n^{2})$ by Khrapchenko [6],
we have the following corollaries.

0.2 0.4 0.6 0.8 1.0

図 2: $r(\alpha,\log_{2}3)=(3+\alpha)^{\log_{2}3}-3\cdot(1+\alpha)^{\log_{2}3}-$
$1$

$2\cdot(1-\alpha)^{Iog_{2}3}(0\leq\alpha<1)$.
$1$

く．Therefore the largest expansion factor is at most
$f$

$\log_{2}3$ , which is given for a MAJ3-formula with $a-$
$i$

$1=b=c$, i.e., $L_{MAJ_{3}}(f_{1})=1$ and $L_{MAJ_{3}}(f_{2})=$

$L_{MAJ_{3}}(f_{3})$ for each subtree. $\square$

a

Corollary 5.2. $L_{MAJ_{3}}(\oplus_{2l+1})\in\Omega(n^{1.2618})$ and
$L_{MAJ_{3}}(MAJ_{2l+1})\in\Omega(n^{1.2618})$ where $n=2l+1$ .

Since $2/\log_{2}3=\log_{3}4$ , these lower bounds are
qual to the $U_{2}$-formula size lower bound for the

recursive majority function accidentally. It seems
to be difficult to give a matching MAJ3-formula
size upper and lower bounds even for the parity
unction while we can obtain those for $U_{2}$-formula
and $B_{2}$-formula. Both of them seem to be not tight
and have room for further improvements.
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6 Concluding Remarks
In this paper, we have introduced the notion

of MAJ3-formula and have shown the upper and
lower bounds for $MAJ_{3}$-formula size of several
Boolean functions. MAJ3-formula can be regarded
as the most simplified form of threshold circuits as
well as neural networks. Therefore there are pos-
sibilities to utilize techniques related with them.
We hope that developing a new stream of studies
on MAJ3-formulas will contribute a new progress
revealing the complexity of itself as well as other
existing formula models.
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