
Hybrid Automata Theoretic Specification and
Verification of CPU-DRP Reconfigurable Systems

Ryo Yanase
Kanazawa University *

Minami Shota
Kanazawa University

Gao Ying
Kanazawa University

Satoshi Yamane
Kanazawa University

Abstract
In this paper, we propose formal modeling, specification and verification for CPU-DRP reconfigurable

systems based on hybrid automata. First, we specify CPU and environment as real-time systems, and
specify DRP as hybrid systems by using hybrid automata. Next, we verify various properties by model
cheCking using HYTECH. We have realized verification of parallel composition of CPU, DRP and environ-
ment.

1 Introduction
Embedded systems recently begin to have various functions, but increasing the number of processors
causes troubles for miniaturization and saving energy. Therefore, recently, a Dynamically Reconfigurable
Processor(DRP) is paid to attention[l]. In DRP, a plural number of exclusive processings is executed in
the same board by dynamically changing the circuit configuration[l, 2]. DRP is used as an accelerator
of CPU, and some DRP is loosely connected with the CPU[I]. In this paper, DRP is loosely connected
with the CPU. We model the embedded system which integrates CPU and DRP cooperatively. Also,
we specify the embedded system using hybrid automata, and verify properties by using model checker
$H_{Y}T_{ECH}[3]$.

1.1 Related Works
1.1.1 Specification language

A specification language of dynamic reconfigurable system is either reactive model, real-time model
or hybrid model. Also, the style is either process algebra, automaton or Petri Net. A. Deshpande has
developed $smFT[4]$, and F. Kratz has developed R-Charon[5] based on hybrid automaton. SHIFT[4] and
R-Charon[5] have specification power for dynalnically changing the structure of the network. However,
as they cannot describe event trigger behaviors, then they cannot describe a dynamically reconfigurable
processor. Also, the Φ-calculus is a process algebra based on hybrid reconfigurable modeling language[6].
But the Φ-calculus considers continuous behavior to be a property of an explicit environment instead of
being part of other embedded systems as we do. On the other hand, thought J. Teich[7] and K.Onogi[S]
have studied modeling method of DRP related to this paper based on discrete event system, their method
cannot specifir DRP, in which the operating frequency of DRP changes dynamically.

’ryanase@csl.ec.t.kanazawa-u.ac.jp

数理解析研究所講究録
第 1799巻 2012年 21-28 21

1.1.2 Verification

Wang Yi and co-workers have proposed the general schedulability checking problem for real-time tasks
is a reachability problem for a decidable class of timed automata extended with subtraction[15]. Also,
Cimatti and Palopoli have modeled reaJ-time tasks by parametric timed automata[16]. Wang Yi s and
Cimatti‘s work mean real-time properties such as schedulability can be verified by timed automata. In
this paper, as we verify both real-time and hybrid properties, we specify DRP using hybrid automata.

1.1.3 Architecture

Pellizzoni and Caccamo have developed reconfigurable architecture composed of CPU and reconfigurable
area (FPGA) with periodic tasks[17]. Also, H. Nakano and T. Shindo have developed dynamically recon-
figurable processor LSI[2]. In this paper, our model is reconfigurable architecture composed of CPU and
dynamically reconfigurable processor LSI(DRP). We have already specified reconfigurable system com-
posed of CPU and DRP using hybrid automata. Moreover we have verified schedulability of specification
using $HYTECH[11,18]$.

In this paper, we improve specification and verify safety and liveness with hybrid, real-time and
reactive features.

2 Model of CPU, DRP and Environment
We model the embedded system that combines CPU, DRP and environment as shown in Figure 1. The
embedded system advances processing by cooperated operations of CPU and DRP. Tasks on CPU are
dynamically created by an external environment. Tasks are executed under the management of CPU-
Dispatcher. The task that can be executed at the same time on CPU is one. When it is necessary to
process two or more tasks, the allocation of CPU is changed according to priority (preemption). When
there is a description to use DRP in a task, CPU-Dispatcher outputs the creation demand of co-task of
DRP to DRP-Dispatcher. At this time, initial values such as a necessary substrate area and operating
hequency in co-task information are inputted into co.task. Two or more co-tasks are executable at the
same time on DRP. It is arranged on the substrate as long as there is becoming empty in the tile in
order of arrival. However, when you execute co-task a and b at the same time, it operates by the slowest
value f_{b} in the operating frequency of co-tasks under execution as shown lower in Figure 2. We specify
dynamic creation and destruction of tasks and co-tasks by a static system.

Figure 2: Behavior of dynamic reconfigurable pro-
Figure 1: Overview of dynamic reconfigurable sys- cessor
tem

22

3 Specification language of DRP, CPU and Environment
We define syntax and semantics of a linear hybrid automaton [3] of specification language of DRP, CPU
and environment as follows. We extend a linear hybrid automaton [3] with discrete variables.

3.1 Syntax of a linear hybrid automaton
First, the syntax of a linear hybrid automaton is formally defined.

Syntax of a linear hybrid automaton An invariable condition and a guard condition are defined as
follows:

$\phi::=true|asap|\gamma_{1}\sim\gamma_{2}|\phi_{1}\wedge\phi_{2}$

, where

$\gamma::=x|d|c|\gamma_{1}+\gamma_{2}|\gamma_{1}-\gamma_{2}$

$\sim\in\{<, >, ==, \leq, \geq\},$ $x\in X$ is a real-valued variable, $d\in D$ is a discrete variable, c is real number. asap
is included only in the guard condition. The transition relation to which asap attaches gives priority
more than a timed transition in $HYTECH[3]$. Let $B(X)$ be the set of invariable conditions and guard
conditions.

A flow, which assigns a flow condition to each location, is the following predicate:

$\alpha::=\mathfrak{X}=c$

The dotted variable $\dot{x}\in\dot{X}$ refers to the first derivative of x with respect to time, i.e., dx/dt . Let
$F(X)$ be the set of flow conditions. Also, arithmetic expression over a finite set $V(=X\cup D)$ is defined
as follows:

upd : $:=v$ $:=const|v$ $:=v+c\sigma nst$

, where const is real number, integer,character string. Let $UPD(V)$ be the set of arithmetic expressions.
A linear hybrid automaton LHA is a tuple (X, $D,$ $L,$ inv , init, flow, E , Act) that consists of the fol-

lowing components:. X is a finite set of real-valued variables.. D is a finite set of discrete variables.

eL is a finite set of locations.. inv is a function that assigns an invariant condition $\phi\in B(X)$ to each location $l\in L$.. init is an initial condition consists of the set of initial locations and arithmetic expressions.. flow is a fUnction that assigns a flow condition $\alpha\in F(X)$ to each location $l\in L$.. Act is a finite set of actions, where $Act=Act_{in}\cup Act_{out}\cup\{\tau\}$. Here Act_{in} is a finite set of input
actions, Act_{out} is a finite set of output actions, τ is an internal action.. $E\subseteq L\cross Act\cross B(X)\cross 2^{UPD(V)}\cross L$ is a finite set called the transition relation. An element of E is a
tuple of the form $\langle l$, action, $\phi,$ $UPD(V),$ $l’\rangle$, where action is either $a!,$ $a?,$ τ , and $UPD(X)$ is a finite
set of arithmetic expressions, and ϕ is a guard condition.

Here a linear hybrid automaton LHA is a stopwatch automaton if a flow condition α is defined as follows:

$\alpha::=\dot{x}=0|\dot{x}=1$

\blacksquare

23

3.2 Semantics of a linear hybrid automaton
First, we define a state of a linear hybrid automaton.

State of a linear hybrid automaton A state of alinear hybrid automaton is a pair (l, μ, ν) consisting
of alocation $l\in L,$ $\nu:Xarrow R,$ μ : $Darrow Z\cup$STRI NG, where Z is integer, STRING is a set of character
strings.

\blacksquare

Tkansitions of a linear hybrid automaton consist of a timed transition and two discrete transitions.
Next, we define a timed transition of a linear hybrid automaton.

Timed transition
$(l, \mu, \nu)arrow\delta(l, \mu, \nu’)$

Here a curve of $fl\alpha w$ is a differentiable function $f:[0,\delta]arrow R^{n}$, where $|X|=n,$ $f(O)=\nu,$ $f(\delta)=\nu’$.
\blacksquare

Next, discrete transitions consist of an internal transition and a synchronization transition.

An internal transition
$(l_{\backslash }\mu, \nu)\underline{\tau,guard,UPD(V)}(l’,\mu’, \nu’)$

ϕ is assigned to guard, variables are updated by $UPD(V)$. Also, if $\phi=$ asap, then the discrete
transition is immediately done.

\blacksquare

Synchronization transition When automaton 1, automaton 2, and automaton 3 change synchronously
by action a? and $a!$, the behaviors are formally defined as follows:

$(l_{1},\mu_{1}, \nu_{1})arrow^{a!,,guard_{1,},UPD(V_{1})}(l_{1}’, \mu_{1}’, \nu_{1}’),$ $(l_{2},\mu_{2}, \nu_{2})\underline{a?,guard_{2},UPD(V_{2})}(l_{2}’,\mu_{2}’, \nu_{2}’)$,
$(l_{3},\mu_{3}, \nu_{3})arrow^{a?,,guard_{S,},UPD(V_{3})}(l_{3}’,\mu_{3}’, \nu_{3}’)$

Automaton 1 outputs $a!$, then both automaton 2 and automaton 3 input $a?$.
\blacksquare

Finally, we define a run of a linear hybrid automaton.

A run of a linear hybrid automaton

$(l_{0}, \mu_{0}, \nu_{0})\delta_{1}e_{1}arrow(l_{0},\mu_{0}, \nu_{1})arrow(l_{1}, \mu_{1}, \nu_{2})\cdots$

, where l_{0} is an initial location, both ν_{0} and μ_{0} are valuations given by an initial condition, $e_{1}\in E$ is a
transition relation.

\blacksquare

3.3 Parallel composition
The communications between external environment, CPU-Dispatcher, task, DRP-Dispatcher and co-task
in Figure 1 are expressed by parallel compositions of hybrid automata. For given

$LHA_{i}=(X_{i}, D_{i}, L_{i}, inv_{1},init_{i}, flow_{i}, E_{i},Act_{i})(i=1, \ldots,n)$,

the parallel composition $LHA_{1}\cross\cdots\cross LHA_{n}$ is $LHA=$ ($X,D,$ $L,$ inv , init, flow, E , Act) consisting of
the following components:. $X=X_{1}\cup\cdots\cup X_{n}$ is a finite set of variables.

24

. $D=D_{1}\cup\cdots\cup D_{n}$ is a finite set of discrete variables.. $L=L_{1}\cross\cdots\cross L_{n}$ is a finite set of locations.. inv is a function that assigns an invariant condition $\phi\in B(X)$ to each location $l\in L$, where $\phi=$

$\phi_{1}\wedge\cdots\wedge\phi_{n},$ $\phi_{1}\in B(X_{1}),\ldots,\phi_{n}\in B(X_{n})$.. $init=(init_{1}, \ldots, init_{n})$ is an initial condition.. flow is a function that assigns a flow condition $\alpha\in F(X)$ to each location $l\in L$, where $\alpha=$

$\alpha_{1}\wedge\cdots\wedge\alpha_{n}$.. $Act=\{\tau\}$ is a finite set of actions. The input action synchronizes with the output action and it
becomes an internal action τ .. $E\subseteq L\cross Act\cross B(X)\cross 2^{UPD(V)}\cross L$ is a finite set called the transition relation. An element of E is a
tuple of the form $\langle l,$

$\tau,$ $\phi,$ $UPD(V),$ $l’\rangle$, where an element of E is a tuple of the form $(l,$ $\tau,$
$\phi,$ $UPD(V),$ $l’\rangle$,

where $l,$ $l’\in L,$ $\tau\in Act,$ $\phi=\phi_{1}\wedge\cdots\wedge\phi_{n},$ $UPD(V)=UPD(V_{1})\cup\cdots\cup UPD(V_{n})$.

4 Configuration of CPU, DRP and Environment
We show configuration of CPU, DRP and environment based on hybrid automata in Figure 3.
1. Ext is an automaton which expresses the environment. Ext sends a create demand on Task.

2. Task is an automaton that changes to a ready state from a NONE state when an activation demand is
received from Ext, and a dispatch demand is sent to Task Dispatcher. It changes to an executing state
when selected by Task Dispatcher as an execution task. An executing task might send processing
activities to a Co-task. In this case, the task changes to a waiting state, the dispatch demand is sent
to the Task Dispatcher and the processing demand of the Co-task is sent to the Co-task. It changes
to a waiting state when the end response of the processing Co-task is returned. When the executing
task ends processing, the dispatch demand is sent to Task Dispatcher.

3. Task Dispatcher is an automaton for dispatching tasks. When a dispatch demand is received from
a task, the task with the highest priority changes to the executing state, and other tasks change to
waiting states. There is also a dispatch demand from Task.

4. DRP Dispatcher is an automaton for dispatching Co-task in DRP. When DRP Dispatcher receives
dispatch demand from Co-Task, it sends an execution demand to Co-task with the highest priority.
if there are tiles for executing a Co-task of a head of waiting queue.

5. Co-Task is an automaton of a co-task executing on DRP. It changes to a ready state when a create
demand of Co-task is received from Task. It changes to the executing state when an execution
demand is received from DRP Dispatcher, and the processing of Co-task begins. The processing
end response is returned to task when processing ends.

6. DRP Frequency is an automaton that manages the hequency of DRP. When a Co-task is executed
with slow operating frequency, the inclination of the execution time of Co-task under execution is
changed.

5 Verification for CPU-DRP reconfigurable systems
5.1 Verification Properties
5.1.1 Overview

Dynamically reconfigurable systems have the following three significant features that are called hybrid,
real-time and reactive features[10, 19, 20].

25

Ext (external environment)

Figure 3: Configuration of CPU, DRP and environment

. Hybrid $featur-Systems$ behave as a hybrid system with dynamically changing the operating fre-
quency of DRP. Real-time feature–Systems behave as a real-time system with the deadline in the processing task. Reactive feature—-Systems behave as a reactive system with responding to the input from the
environment.

We must verify whether our specification satisfies safety and liveness requirements[21] with the above
features or not. Therefore, we classify the verification properties into six categories shown in Table 1.

Properties with hybrid feature In this paragraph, we explain liveness and safety requirements with
hybrid feature.

Liveness requirement with hybrid feature is a requirement of “idle frequency.” All co-tasks are de-
stroyed and the operating frequency of DRP becomes the idle hequency in the future. Safety requirement
with hybrid feature is a requirement of “minimum frequency.” The operating frequency of DRP is always
fixed to a minimum frequency of running co-tasks.

Properties with real-time feature Next, we explain liveness and safety requirements with real-time
feature.

Liveness requirement with real-time feature is a requirement of “dispatch of co-tasks.” If a co-task is
called by a task, it is executed within the maximum waiting time, where the maximum waiting time is a
difference between the deadline and CPU computation time.

Safety requirement with real-time feature is a requirement of “ CPU schedulability” for tasks[9]. The
remaining time needed to finish executing a task is always less than the remaining time until the deadline.

Properties with reactive feature Finally, we explain liveness and safety requirements with reactive
feature.

Liveness requirement with reactive feature is a requirement of “destruction of co-tasks“. If the co-task
is dispatched by the DRP dispatcher, it is destroyed in the future.

Safety with reactive feature is a requirement of “ control of tiles” for management of resource. In this
paper, we assume that the total number of tiles is 8. Therefore, the number of unused tiles always ranges
$bom0$ to 8.

26

5.2 Practical verification experiment
Using monitor automata, we have verified six properties for the dynamically reconfigurable system by
using HYTECH.

Now, we show the case of CPU-DRP reconfigurable system that has two tasks and two co-tasks. Table
2 shows parameters of tasks. A period $T_{-}A$ of task A is 70 milliseconds and a period $T_{-}B$ of task B is
200 milliseconds. Processing procedure “20 ms, $Co_{-}Task_{-}a,$ 10 ms, $Co_{-}Task_{-}b$” means that “co-task a

is called after CPU advances processing for 20 milliseconds, and co-task b is called after CPU advances
processing for 10 milliseconds afterwards“. Also, parameters of co-tasks are shown in Table 3.

For our experimental environment, we have used the machine which runs CentOS version 6.0 with Intel
Core 2 Quad 2. $50GHz$ processor and $8GB$ RAM. Table 4 shows the results oi the verification $expe\iota\cdot i_{1}nent$.
In this case, all requirements are satisfied and can be computed with less than 600 MB RAM in less
than 15 seconds of CPU time. For requirements with hybrid feature, the requirement of idle frequency
can be verified with 248 MB RAM in 10.23 seconds, and the requirement of minimum trequency can be
verified with 237 MB RAM in 9.67 seconds. For requirements with real-time feature, the requirement
of dispatch of co-tasks can be verified with 105 MB RAM in 4.16 seconds, and the requirement of CPU
schedulability can be verified with 545 MB RAM in 14.99 seconds. For requirements with reactive feature,
the requirement of destruction of co-tasks can be verified with 24 MB RAM in 1.82 seconds, and the
requirement of control of tiles can be verified with 134 MB RAM in 5.32 seconds. By verffication, it is
not possible to schedule the system because the remainder time until the deadline became 29 at time
171 though the time of 30 is needed for CPU processing of task B . In this case, required memory and
computation time are 2IIMB and 7.1 seconds.

Table 1: Classification of properties

Table 3: Co-task information

\overline{Co}-Task Computation time Deadline Tiles RF τ

a $10ms$ $15ms$ 2 1
$\frac{b5ms10ms61/2}{\uparrow RF-RatioofFrequency}$

6 Conclusions

Table 2: Task parameter

$\overline{\frac{TaskPeriodDeadlinePriorityProcessingprocedure}{A70ms70mshigh20ms,Co_{-}Task_{-}a}}$

10 ms, $Co_{-}Task_{-}b$

B 200 ms 200 ms low $Co_{-}Task_{-}a,$ 97 ms

Table 4: Experimental results

Requirement Satisfied 0ι NOTMNOTMemory Time

Idle frequency Satisfied 248 MB 10.23 s

Minimum Satisfied 237 MB 9.67 s

frequency
Dispatch of co- Satisfied 105 MB 4.16 s

tasks
CPU schedula- Satisfied 545 MB 14.99 s

bility
Destruction of Satisfied 24 MB 1.82 s

co-tasks
Control of tiles Satisfied 134 MB 5.32 s

In this article, we have proposed formal modeling, specification of CPU-DRP reconfigurable system
based on hybrid autotama, and have verified six properties such as safety and liveness requirements with
hybrid, real-time and reactive features using an existing model checker HYTECH[3]. Especially we specify
creation and destruction of tasks and co-tasks by a static model. But in fact, $c\infty tasks$ on DRP are created
and destroyed. And thus the state-space explosion problems may occur in verification stages. In order
to avoid this problem, we have already developed dynamic hybrid automaton and its dynamic hybrid

27

CEGAR(CounterExample-Guided Abstraction Refinement)[14], and we are now implementing dynamic
hybrid CEGAR verifier.

References
[1] H. Amano, A Suivey on Dynamically Reconfigurable Processors, IEICE Transactions, 89-B(12),

pp.3179-3187, 2006.
[2] H. Nakano, T. Shindo, T. Kazalni and M. Motomura, Development of Dynamically Reconfigurable

Processor LSI, NEC Technical Joumal, Vol.56(4), pp.99-102, 2003.
[3] T.A.Henzinger and P.Ho, H.Wong-Toi, HyTech: A Model Checker for Hybrid Systems, STTT,

Vol.1 (1-2), pp. 110-122, 1997.
[4] A.Deshp, A.Gollu and L.Semenzato, The SHIFT programming language and run-time system for

dynamic networks of hybrid systems, IEEE $\mathcal{I}\dagger unsactions$ on Automatic Control, Vol.43(4), pp.584-
587, 1998.

[5] F.Kratz, O.Sokolsky, G.J.Papspas and I.Lee, R-Charon, a Modeling Language for Reconfigurable
Hybrid Systems, LNCS 3927, pp.392-406, 2006.

[6] W.C. Rounds and H. Song, The Phi-Calculus: A Language for Distributed Control of Reconfigurable
Embedded Systems, LNCS 2623, pp.435-449, 2003.

[7] J.Teich and M.Koster, (Self-)reconfigurable finite state lnachines. Theory and implementation, Proc.
of Design, automation and test in Europe, pp.559-568, 2002.

[S] K.Onogi and T.Ushio, Scheduling of Periodic Tasks on a Dynamically Reconfigurable Device Using
Timed Discrete Event Systems, IEICE $\pi ansactions,$ $E89-A(11)$, pp.3227-3234, 2006.

[9] J. Goossens and P. Richard, Overview of real-time scheduling problems, Proceedings of ninth inter-
national workshop on project management and Scheduling, pp.13-22, 2004.

[10] P.Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-Physical Sys-
tems,2nd edition, Springer, 2010.

[11] S.Takinai and S.Yamane, Case study of Modeling, Specification and Finite Model Checking for Pre-
emptive Embedded Software, IEICE Itansactions, E93-D(11), pp.2403-2415, 2010. (in Japanese)

[12] M.Y. Vardi and P. Wolper, An automata-theoretic approach to automatic program verification,
Proceedings of Logic in Computer Science, pp.322-331. IEEE Computer Society Press, 1986.

[13] T.A. Henzinger, Pei-Hsin Ho and Howard Wong-Toi, A user guide to HyTech, LNCS 1019, Springer,
pp. 41-71, 1995.

[14] M.Sakai and S.Yamane, Dynamic hybrid hybrid automaton and Dynamic hybrid CEGAR, RIMS
Kokyuroku, RIMS(Kyoto University) 1744, pp.15-24, 2011. (in Japanese)

[15] E. Fersman, P. Pettersson, and W. Yi, Timed automata with asynchronous processes: Schedulability
and decidability, LNCS 2280, pp.67-S2, 2002.

[16] A. Cimatti, L. Palopoli and Y. Ramadian, Symbolic Computation of Schedulability Regions Using
Parametric Timed Automata, IEEE Real-Time Systems Symposium, pp.80-89, 2008.

[17] R. Pellizzoni and M. Caccamo, Hybrid Hardware-Software Architecture for Reconfigurable Real-
Time Systems, Proceedings of the 14th IEEE RTAS, pp.273-284, 2008

[18] S. Minami, S. Takinai, S. Sekoguchi, Y. Nakai and S. Yamane, Modeling, Specification and Model
checking of dynamically reconfigurable processors, Computer Software 28(1), pp.190-216, 2011.

[19] Z. Manna and A. Pnueli, Models for Reactivity, Acta Inf. 30(7), pp.609-678, 1993.
[20] Hideharu Amano and Yoshinori Adachi and Satoshi Tsutsumi and Kenichiro Ishikawa, A context

dependent clock control mechanism for dynamically reconfigurable processors, Technical Report of
IEICE, 104(589), pp.13-16, 2005.

[21] E. M. Clarke, Jr., O. Grumberg and D. A. Peled, Model Checking, The MIT Press, 1999.

28

