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On QMA Protocols with Two Short Quantum Proofs

Frangois Le Gall* Shota Nakagawa\dagger Harumichi Nishimura \ddagger

Abstract. This paper gives $a$ . QMA (Quantum Merlin-Arthur) protocol for 3-SAT with two logarith-
mic-size quantum proofs (that are not entangled with each other) such that the gap between the com-
pleteness and the soundness is $\Omega(\frac{1}{npoly\log(n)})$ . This improves the best completeness/soundness gaps
known for NP-complete problems in this setting.

1 Introduction
The quantum complexity class QMA [9, 10, 18]

is a quantum analogue of the complexity class NP
(or of the class MA). That is, a decision problem
is in QMA if there is a polynomial-time quantum
algorithm $V$ (called the vemfier) that satisfies the
following two properties: (completeness) $V$ ac-
cepts any yes-instance with probability $\geq a$ by the
help of a quantum state (called a quantum proof);
(soundness) $V$ accepts any no-instance with prob-
ability $\leq b(<a)$ whatever quantum state is pro-
vided. Bounding from below the gap between com-
pleteness and soundness $a-b$ by a positive constant
(or an inverse polynomial) is enough since efficient
gap amplification is possible (see, e.g., [9]).

Several variants of QMA, whose classical coun-
terparts are uninteresting, have been introduced
in the literature. One variant is the case where
the verifier receives multiple quantum proofs that
are unentangled with one another, which was first
considered by Kobayashi, Matsumoto, and Ya-
makami [11]. Unexpectedly from the classical
case, multiple quantum proofs may be more help-
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ful than one proof since the verifier can use the
fact that these proofs are not entangled to improve

the soundness. In fact, Liu, Christandl, and Ver-
straete [12] found a problem that can be verified
in quantum polynomial time using multiple quan-
tum proofs but is not known to be in QMA. Re-
cently, Harrow and Montanaro [8] showed that two
quantum proofs are enough to obtain the full power
of multiple quantum proofs by proving that effi-
cient gap amplification is possible (note that it was
shown before that the number of quantum proofs
can be reduced to two if and only if efficient gap
amplification is possible [1, 11] $)$ . Another vari-
ant is the case where the verifier receives only a
logarithmic-size quantum proof. Marriott and Wa-
trous [14] showed that, similarly to the classical
case, a logarithmic-size quantum proof is useless,
that is, such a variant of QMA collapses to BQP,
by proving that efficient gap amplification, where
the proof must be kept to be logarithmic-size, is
possible.

A combination of the above two variants (mul-
tiple quantum proofs with logarithmic length) was
first studied by Blier and Tapp [3]. They showed
that an NP-complete problem such as the 3-
coloring problem can be verified in quantum poly-
nomial time only using two quantum proofs with
logarithmic length, while the gap between com-
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pleteness and soundness is an inverse polynomial
(note that it is unknom whether efficient gap am-
plification is possible). Moreover, Aaronson et
al. [1] showed that 3-SAT can be efficiently verified
with a constant completeness/soundness gap using
$O(\sqrt{n}poly\log(n))$ quantum proofS, each proof be
ing of logarithmic length. These results thus give
new evidences that multiple quantum proofS may
be helpful.

This paper focuses on how much the complete
ness/soundness gap can be improved in QMA pro-
tocols using two quantum proofs with logarithmic
length for NP-complete problems. The gap ob-
tained by Blier and Tapp was $\Omega(_{\overline{n}^{T}}1)$ . After that,
Beigi [2] improved the gap to $\Omega(_{\overline{n}^{R}}1_{e})$ for 3-SAT,
where $\epsilon>0$ is any constant. In the present work
we further improve the gap to $\Omega(\frac{1}{npoly\log(n)})$ for 3-
SAT.

Independently of us, Chiesa and Forbes [6]
also improved the completeness/soundness gap of
QMA protocols with two logarithmic-size quantum
$pro$0&. They showed that the gap of the Blier-Tapp
protocol can be improved to $\Omega(\pi_{n}^{1})$ by tightening
the analysis. (In fact, two of the authors obtained
the same conclusion before the present work [16]. $)$

The reason why our gap is better is simple: we com-
bine the Blier-Tapp protocol with Dinur $s$ PCP re-
duction [7]. However, we then need a complicated
case-study analysis different from the one of [3],
while the analysis in [6, 16] basically follows [3].

2 Preliminaries
In this section, we present technical tools that

are used to obtain our result. All of the tools
have already been used previously [3, 5] for study-
ing QMA protocols using multiple quantum proofs
with logarithmic length but we state them for self-

1
containedness.

The first group of our tools, which was used in
[3], consists of the distance between (pure) quan-
tum states, the distance between probability distri-
butions, the relation between their distances, and
a basic fact on the swap test [4].

Definition 1 (Quantum distance) $D(|\Psi\rangle, |\Phi\});=$

$\sqrt{1-|\{\Psi|\Phi\rangle|^{2}}$ .

Definition 2 (Classical distance) Let $P$ $=$

$\{p_{1}, \ldots,p_{k}\}$ and $Q=\{q_{1}, \ldots,q_{k}\}$ be two probability
distributions. Then, $D(P, Q)$ $:= \frac{1}{2}\sum_{1=1}^{k}|p_{i}-q_{i}|$ .

Theorem 1 (Relationship between the quantum
and classical notions of distance $[17J)$ Let $M$ be
a von Neumann measurement. Let $P$ and $Q$ be
the distributions of outcomes when performing $M$

on $|\Psi\rangle$ and $|\Phi\rangle$ , respectively. Then, $D(|\Psi\rangle, |\Phi\rangle)\geq$

$D(P,Q)$ .

$Th\infty rem2$ (Swap test $l41$) When performing the
swap test on $|\Psi)$ and $|\Phi\rangle$ , the probability that the
test outputs NO (which means the two states are
not equal) is- - $\frac{|(\Psi|\Phi)|^{2}}{2}$ .

The second group of our tools is from Dinur’s
PCP theorem [7], which was used in [5]. We present
necessary terminologies and Dinur’s PCP reduc-
tion, following the description given in [5].

Definition 3 (Constraint gmph) $A$ constraint
graph $G=(V(G),E(G))$ is an undirected graph
(possibly with self-loops) along utth a set $\Sigma$ of “col-
ors” and mappings $R_{e}$ : $\Sigma\cross\Sigmaarrow\{0,1\}$ for each
edge $e=(v,u)\in E(G)$ (called the constraint to
$e).$ A mapping $\tau$ : $V(G)arrow\Sigma$ (called $a$ coloring)

satisfies the constraint $R_{e}$ if R. $(\tau(v), \tau(u))=1$ for
an edge $e=(v,u)\in E(G)$ . The graph $G$ is said
to be satisfiable if there is a coloring $\tau$ that satis-

fies all constraints, while $G$ is said to be $(1-\eta)-$

unsatisfiable if for $dl$ colorings $\tau$ , the fraction of
constraints satisfied by $\tau$ is at most $1-\eta$ .
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Theorem 3 $[7J$ There exists a mapping $T$ from (Soundness) If $x\not\in L$ , then for all states $|\Psi\rangle\otimes$

3-SAT instances to constraint graphs with the fol- $|\Phi\}\in(\mathcal{H}_{2}^{c\log(n)})^{\otimes 2}$, the probability that $V$ ac-
lowing properties. cepts is at most $b$ .. (Completeness) If $\phi$ is a satisfiable formula, Our result is the following theorem where a 3-

$T(\phi)$ is a satisfiable constraint graph. SAT instance has $n$ clauses.. (Soundness) There exists an absolute constant Theorem 4
$\eta>0$ such that if $\phi$ is unsatisfiable formula, 3-SAT is in $QMA_{\log}(2,1,1-\Omega(\frac{1}{npoly\log(n)}))$ .
$T(\phi)$ is $(1-\eta)$ -unsatisfiable.

There are a few remarks about this theorem.. (Size-Efficiency) If $\phi$ has $m$ clauses,
First, our result keeps perfect completeness simi-

then $|V(T(\phi))|$ $=$ $O$ (mpolylog$(m)$ ) and larly to the Blier-Tapp’s result [3] (and the recent
$|E(T(\phi))|=$ O(mpolylog(m)). (The value improvement of the gap to $\Omega(\pi_{n}^{1})[6,16])$ . Second,
$|V(T(\phi))|$ will usually be denoted in this paper our protocol is applicable to other NP-complete
by $n.)$

problems for which Theorem 3 holds (e.g., the 3-
$0$ (Alphabet Size) $|\Sigma$ I $=K>1$ is a constant coloring problem).

independent of $m$ . To prove Theorem 4, in view of Theorem 3 it
suffices to show the following theorem.. (Regularity) $T(\phi)$ is a d-regular graph (with

self-loops), where $d$ is a constant independent Theorem 5 There is a $QMA$ pmtocol with two
of $m$ . logarithmic-size quantum proofs such that for any

constraint graph $G=(V(G), E(G))$ obtained from
3-SAT instances by the mapping of Theorem 33 Our Result
$($where $n=|V(G)|)$ :

We first recall the formal definition of the quan- (Completeness) If $G$ is satisfiable, then there ex-
tum complexity class $QMA_{\log}(2, a, b)$ , which is ist two logarithmic-size quantum proofs $|\Psi\rangle$

the set of languages that can be verified in quan- and $|\Phi\rangle$ such the verifier accepts with proba-
tum polynomial time using two logarithmic-size bility 1.
quantum proofs. In what follow, let $\mathcal{H}_{\ell}$ $=$

span$\{|0\rangle, |1\rangle, \ldots, |\ell-1\}\}$ for any value $P\geq 1$ . (Soundness) If $G$ is $(1-\eta)-unsatisfiable$, the ver-
ifier accepts with probability at most $1- \Omega(\frac{1}{n})$

Definition 4 A language $L$ is in $QMA_{\log}(2, a, b)$ for any two logarithmic-size quantum proofs
if there exists a polynomial-time quantum algorithm I $\Psi$ } and $|\Phi\rangle$ .
$V$ (verrifier) and a constant $c$ such that for any $n$

In the next section, we prove Theorem 5. Theand any instance $x$ of length $n$ the following two
verifier $s$ protocol is described in Section 4.1. Sec-conditions hold:
tion 4.2 discusses its completeness, and Section 4.3

(Completeness) If $x\in L$ , there exists a state discusses its soundness, which is our main technical
$|\Psi\rangle\otimes|\Phi\rangle\in(H_{2}^{c\log(n)})^{\otimes 2}$ (two quantum proofs) part.
such that $V$ accepts with probability at least $a$ .

75



4 Proof of Theorem 5
Recall that $n$ stands for the number of vertices

of a given constraint graph $G=(V(G),E(G))$ , and
$K$ is the alphabet size. We denote the quantum
Fourier transform on $\mathcal{H}_{k}$ by $F_{k}$ .

4.1 Protocol

As mentioned before, our protocol is obtained
by incorporating Dinur’s PCP reduction into the
Blier-Tapp protocol. Similarly to the Blier-Tapp
protocol, the protocol of the verifier consists of
three tests: the equality test, the consistency test,
and the uniformity test. The verifier expects to
receive, as the two proo&, the same uniform super-
positions of all vertices and their coloring $(i,\tau(i))$ ,

$\frac{1}{\sqrt{n}}\sum_{i}|i\rangle|\tau(i))$ ,

which we call a proper state (whose name follows
similar concepts in [1, 2] $)$ . Suppose that the two
proo& are proper and the same. Then the consis-
tency test will check if the coloring is really valid:
by measuring the two proo& in the computational
basis, we obtain two vertices and their colors $(i,j)$

and $(i’,j’)$ , and then we can cheCk whether edge
$(i,i’)$ satisfies the constraint (or whether $j=j’$
if $i=i’)$ . For any no-instance, we can find the in-
consistency with a better probability than previous
works [3, 6, 16] because our protocol uses Dinur’s
PCP reduction, which guarantees the existence of
many edges that do not satisfy the constraint. The
equality test can be used for checking whether the
two proofs are really the same via the swap test.
Finally, whether the proofs are proper or not can
be checked by the combination of the consistency
test and the uniformity test.

The protocol of the verifier is now formally given
as follows.

Verifier’s protocol for instance $G$

Suppose that $|\Psi)$ and $|\Phi\rangle$ on $\mathcal{H}_{n}\otimes’kl_{K}$ are given
to the verifier as the two quantum proofs. The
verifier then performs, with equal probability, one
of the following three tests on $\prime H_{n}\otimes’lt_{K}$ . If he does
not reject, then he accepts. We call the first part

of $?\cdot l_{n}\otimes’H_{K}$ the vertex register and the second part

of $\prime rt_{n}\otimes’fi_{K}$ the $\infty 1or$ register.

(Equality test). Perform the swap test [4] on I $\Psi\rangle$

and $|\Phi\rangle$ , and reject if the test outputs NO.

(Consistency test). Measure the two states $|\Psi\}$

and $|\Phi\rangle$ in the computational basis, yielding
the outcomes $(i,j)$ and $(i’,j’)$ , respectively.
Then, do as follows:
a$)$ If $i=i’$ , verify that $j=j’$ . Reject if $j\neq j’$ .
b$)$ If $i\neq i’$ and $(i,i’)\in E(G)$ , verify that
$R_{(i,i’)}(j,j’)=1$ . Reject if $R_{(i,i’)}(j,j’)=0$.

(Uniformity test). For both $|\Psi\rangle$ and $|\Phi\rangle$ , do as
follows: The Fourier transform $F_{K}$ is applied
on the color register, which is then measured in
the computational basis. If the outcome is $0$ ,
the inverse Fourier transform $F_{n}^{1}$ is applied on
the vertex register, which is then measured in
the computational basis. Reject if the $se\infty nd$

outcome is not $0$ .

4.2 Completeness

The following theorem shows that our protocol

has perfect completeness.

Proposition 1 If $G$ is satisfiable, then there ex-
ist two quantum proofs $|\Psi\}$ and $|\Phi\}$ such that the

verifier accepts with probability 1.
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Proof. Take $| \Psi\}=|\Phi\}=\frac{1}{\sqrt{n}}\sum_{i}|i\}|\tau(i)\}$ where
$\tau$ is a coloring that satisfies all constraints. Since
I $\Psi\}=|\Phi\rangle$ , the verifier accepts with probability 1 in
the equality test. Because $\tau$ satisfies the constraint
$R_{e}$ for any edge $e\in E(G)$ , the verifier accepts with
probability 1 in the consistency test. Finally, we
analyze the uniformity test. The Fourier transform
$F_{K}$ is performed on the color register, and

$(I \otimes F_{K})\frac{1}{\sqrt{n}}\sum_{i}|i\rangle|\tau(i)\rangle$

$= \frac{1}{\sqrt{n}}\sum_{i}|i\}\frac{1}{\sqrt{K}}\sum_{k}\exp(\frac{2\pi\sqrt{-1}\tau(i)k}{K})|k\rangle$.

So, if the outcome of the measurement of the color
register is $0$ , the state of the vertex register is
$\frac{1}{\sqrt{n}}\sum_{i}|i\rangle=F_{n}|0)$ . Therefore, the verifier accepts
with probability 1 in the uniformity test. $\square$

4.3 Soundness

What remains to show is the soundness of our
protocol.

Proposition 2 If $G$ is $(1-\eta)$ -unsatisfiable, the
verifier rejects with probability at least $\Omega(\frac{1}{n})$ for
any two quantum proofs I $\Psi$ ) and $|\Phi\rangle$ .

In order to prove Proposition 2, we first describe
general forms for the two quantum proofs. Because
the two proofs are not entangled, they can be writ-
ten separately as

$| \Psi\}=\sum_{i=0}^{n-1}\alpha_{i}|i\rangle\sum_{j=0}^{K-1}\beta_{i,j}|j)$ ,

$| \Phi\rangle=\sum_{i=0}^{n-1}\alpha_{i}’|i)\sum_{j=0}^{K-1}\beta_{i,j}’|j\rangle$ , (1)

where $\sum_{i}|\alpha_{i}|^{2}=1$ and $\sum_{j}|\beta_{i,j}|^{2}=1$ for any $i$ ,
and likewise for $|\Phi\}$ . Next we give several lemmas.
The first lemma guarantees that for every vertex

$i$ there is at least one relatively large $|\beta_{i,j}|$ (which
means that $j$ will be measured in the color register
with a relatively high probability).

Lemma 1 For every $i$ , there exists at least one $j$

such that $| \beta_{i,j}|^{2}\geq\frac{1}{K}$ . (Likewise for $\beta_{i,j}’.$)

Proof. By contradiction. Suppose that $| \beta_{i,j}|^{2}<\frac{1}{K}$

for every $j$ . Then,

$\sum_{j}|\beta_{i,j}|^{2}<\frac{1}{K}\cross K=1$ .

This contradicts the condition $\sum_{j}|\beta_{i,j}|^{2}=1$ . $\square$

By definition we have $\sum_{j}|\beta_{i,j}|^{2}=1$ . The second

lemma shows that if $| \sum_{j}\beta_{i,j}|^{2}$ is small, then at
least two different $|\beta_{i,j}|$ must be relatively large.

Lemma 2 For every $i,$ $if| \sum_{j}\beta_{i,j}|^{2}<\frac{1}{100K}$ , then

there are at least two $js$ such that $| \beta_{i,j}|^{2}\geq\frac{1}{K^{4}}$ .

Pmof. By Lemma 1, we know that there exists an
index $jo$ such that $| \beta_{i,j_{0}}|^{2}\geq f\geq\frac{1}{K^{4}}$ . We work by
contradiction and suppose that $| \beta_{i,j}|^{2}\leq\frac{1}{K^{4}}$ for all
the indexes $j\neq j_{0}$ . Note that this implies that

$| \sum_{j\neq[be]}\beta_{i,j}|\leq\sum_{j\neq jo}|\beta_{i,j}|$

$\leq(K-1)\cross\frac{1}{K^{2}}$

$\leq\frac{1}{K}$ .

Using the fact that the inequality $|a-b|$ $\geq$

$||a|-|b||$ holds for any complex numbers $a$ and $b$ ,
we obtain:

$| \sum_{j}\beta_{i,j}|2 =| \beta_{i,jo}+\sum_{j\neq j_{0}}\beta_{i,j}|^{2}$

$\geq(|\beta_{i,j_{0}}|-|\sum_{j\neq j_{0}}\beta_{i,j}|)^{2}$
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Since $| \beta_{i,jo}|-|\sum_{J\neq jo}\beta_{i,j}|\geq\frac{1}{\sqrt{K}}-\frac{1}{K}\geq 0$ and
$K>1$ , we conclude that

$| \sum_{j}\beta_{*,j}|^{2}\geq\frac{(1-\frac{1}{\sqrt{K}})^{2}}{K}$

$\geq\frac{1}{100K}$ ,

which contradicts the assumption of the lemma. $\square$

The following lemma follows trivially from
Lemma 1, but we prefer to state it explicitly for
later reference.

Lemma 3 For every $i$ , there esists at least one $j$

such that $K|\beta_{:,j}|^{2}\geq|\beta_{i,j}’|^{2}$ and $| \beta_{i,j}|^{2}\geq\frac{1}{K}$ . (For
later reference, we denote such $j$ by $j[i].)$

Proof. By Lemma 1, there exists an index $j$ such
that $|\beta_{i,j}|^{2}$

$\geq$ $\frac{1}{K}$ . Moreover, for the same $j$ ,
$K|\beta_{i,j}|^{2}\geq|\beta_{i,j}’|^{2}$ (since $K| \beta_{i,j}|^{2}\geq K\cross\frac{1}{K}=1\geq$

$|\beta_{i,j}’|^{2})$ . $\square$

Now we are ready to prove Proposition 2.

Proof of Proposition 2. We first introduce the
following subsets of $\{0,1, \ldots,n-1\}$ (the set of pos-
sible $i’ s$). This will be the key of our analysis.

$A= \{i||\alpha_{i}|^{2}<\frac{1}{5000K^{3}n}\}$ ,

$B= \{i||\sum_{j}\beta_{i,j}|^{2}<\frac{1}{100K}\}$ ,

$A’= \{i||\alpha_{i}’|^{2}<\frac{1}{10000K^{4}n}\}$ ,

and

$C=\{i\in\overline{A}\cap\overline{A’}|Arg{\rm Max}_{j}|\beta_{i,j}|^{2}$

$\neq Arg{\rm Max}_{j}|\beta_{1j}’|^{2}\}$ ,

where, for any $i,$ $Arg{\rm Max}_{j}|\beta_{i,j}|^{2}$ represents the $j$

that maximizes $|\beta_{i,j}|^{2}$ (when multiple such $j$ ’s ex-
ist, the smallest one is taken). Let us describe intu-
itively the roles of the sets $A,$ $A’,$ $B$ and $C$ . The set
$A$ (resp. $A’$ ) will be used to analyze what happens
when the distribution of the $|\alpha:|$ ’s (resp. the distri-
bution of the $|\alpha_{i}’|’ s)$ is far from uniform. The set
$B$ will be used to analyze what happens when $|\Psi\rangle$

contains many vertices with more than one color
(via Lemma 2). The set $C$ will be used to analyze
what happens when there are many vertices whose
color differs in I $\Psi\rangle$ and in $|\Phi\rangle$ .

Next we consider the four disjoint sets $A,$ $\overline{A}\cap A’$ ,
$\overline{A}\cap\overline{A’}\cap B$ and $\overline{A}\cap\overline{A^{J}}\cap\overline{B}$ , which partition the set
$\{0,1, \ldots,n-1\}$ . We have $\sum_{i\in\overline{A}}|\alpha_{i}|^{2}\geq 0.99$ since

$\sum_{i\in\overline{A}}|\alpha_{i}|^{2}=1-\sum_{i\in A}|\alpha_{i}|^{2}$

$\geq 1-\frac{1}{5000K^{3}n}\cross n$

$=1- \frac{1}{5000K^{3}}$

$\geq 0.99$ .

Thus at least one of the three sums $\sum_{i\in\overline{A}\cap A},$ $|\alpha_{i}|^{2}$ ,
$\sum_{i\in\overline{A}\cap\overline{A}\cap B}|\alpha_{t}|^{2}$ and $\sum_{i\in\overline{A}\cap\overline{A}\cap\overline{B}}|\alpha_{i}|^{2}$ is larger
than 0.3. Now we analyze the following six cases.

1. $\sum_{i\in\overline{A}\cap A},$
$|\alpha_{\dot{*}}|^{2}\geq 0.3$. : case 1

2. $\sum_{i\in\overline{A}\cap\overline{A’}\cap B}|\alpha_{i}|^{2}\geq 0.3$. : case 2

3. $\sum_{i\in\overline{A}\cap\overline{A’}\cap\overline{B}}|\alpha_{i}|^{2}\geq 0.3$.

3.1. $|A|\geq 0.05\eta n$ . : case 3

3.2. $|A|<0.05\eta n$ .
3.2.1. $|A’|\geq 0.15\eta n$ . : case 4
3.2.2. $|A’|<0.15\eta n$ .

3.2.2.1. $|C|\geq 0.01\eta n$ . : case 5

3.2.2.2. $|C|<0.01\eta n$ . : case 6

These six cases cover the six possibilities that can
happen for a no-instance. Intuitively, case 1 is when
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the two proofs are much different; this is rejected test) since, without it, perfect cheating becomes
with high probability by the equality test. Case possible (i.e., there are quantum proofs such that
2 is when the two proofs are similar but there are the verifier accepts a no-instance with probability
many vertices $i$ for which at least two different col- 1). This is different from the case of [5] where it
ors have large amplitude; this can be rejected with was shown that the swap test can be eliminated
high probability by part a) of the consistency test. while still obtaining the same conclusion as in [1]
Case 3 is when the two proofs are similar and most (namely, that 3-SAT can be verified in quantum
vertices have a unique color but the distribution of polynomial time using $O(\sqrt{n}poly\log(n))$ quantum
the weights $|\alpha_{i}|^{2}$ in $|\Psi\rangle$ is far ffom uniform; this proofs with logarithmic length).
is rejected with high probability by the uniformity
test. Case 4 is when the distribution of the weights Notes. If you want to read Japanese version of
$|\alpha_{i}|^{2}$ in $|\Psi\rangle$ is close to uniform but the distribu- this paper, see the paper [15].
tion of the weights $|\alpha_{i}’|^{2}$ in $|\Phi\rangle$ is far $hom$ uniform;
this is rejected with high probability by the equal-
ity test. Case 5 is when there are many vertices Acknowledgements
such that their color in I $\Psi\rangle$ is different from their We are grateful to Richard Cleve, Kazuo Iwama,color in $|\Phi\}$ ; this is rejected with high probability Hirotada Kobayashi, Shuichi Miyazaki, and Junichiby part a) of the consistency test. Finally, case 6 is yama or epTeru ama for hel ful discussions.when the two proofs are close to proper states; this
is rejected with high probability by part b) of the
consistency test due to the soundness of the PCP References
reduction.
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