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Abstract

The minimum number of NOT gates in a Boolean circuit computing
a Boolean function f is called the inversion complexity of f. In 1958,
Markov determined the inversion complexity of every Boolean function
and particularly proved that [log,(n + 1)] NOT gates are sufficient to
compute any Boolean function on n variables. In this note, we consider
circuits computing probabilistically, and prove that the decrease of
the inversion complexity is at most a constant if probabilistic circuits
compute a correct value with probability 1/2 + p for some constant
p>0.

1 Introduction

When we consider Boolean circuits with a limited number of NOT gates,
there is a basic question: Can a given Boolean function be computed by a
circuit with a limited number of NOT gates? This question was answered by
Markov [2] in 1958 and the result plays an important role in the study of the
negation-limited circuit complexity. The inversion complezity of a Boolean
function f is the minimum number of NOT gates required to construct a
Boolean circuit computing f, and Markov completely determined the in-
version complexity of every Boolean function f. In particular, it has been
shown that [logy(n + 1)] NOT gates are sufficient to compute any Boolean
function.

The inversion complexity has been studied for many circuit models such
as constant depth circuit [5], bounded depth circuits [6], formulas [3], bounded
treewidth and upward planar circuits [1], and non-deterministic circuits [4].
In this note, we consider the inversion complexity in probabilistic circuits.

2 Preliminaries

A circuit is an acyclic Boolean circuit which consists of AND gates of fan-
in two, OR gates of fan-in two and NOT gates. A probabilistic circuit is
a circuit with actual inputs (z1,...,2,) € {0,1}" and some further inputs
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(r1,...,Tm) € {0,1}™ called random inputs which take the values 0 and 1
independently with probability 1/2. For 0 < p < 1/2, a probabilistic circuit
C(z) computes a Boolean function f(z) with probability 1/2 + p if

Prob[C(z) = f(z)] = 1/2+p for each z € {0,1}".

In this note, we call a circuit without random inputs a deterministic circuit
to distinguish it from a probabilistic circuit.

Let z and ' be Boolean vectors in {0,1}". z < 2’ means z; < z; for all
1<i<n.z<z' meansz <z and z; <:L'§ for some <.

The theorem of Markov [2] is in the following. We denote the inversion
complexity of a Boolean function f in deterministic circuits by I(f). A chain
is an increasing sequence z! < 22 < --- < z* of Boolean vectors in {0,1}".
The decrease dx (f) of a Boolean function f on a chain X is the number of
indices i such that f(z?) £ f(z'*!). The decrease d(f) of f is the maximum
of dx(f) over all increasing sequences X. Markov gave the tight bound of
the inversion complexity for every Boolean function.

Theorem 1 (Markov([2]). For every Boolean function f,

I(f) = [loga(d(f) + D]-

In Theorem 1, the Boolean function f can also be a multi-output function.

3 Inversion Complexity in Probabilistic Circuits

3.1 Result

We denote by Ipc(f,g) the inversion complexity of a Boolean function f
in probabilistic circuits with probability g. We consider only single-output
Boolean functions since probabilistic circuits are not defined as ones com-
puting multi-output Boolean functions.

Theorem 2. For every Boolean function f,
Ipe(f,1/2 + p) 2 [logy(2p - d(f) + 1)1

By Theorem 1 and Theorem 2, if p is a constant, then the decrease of
the inversion complexity from deterministic circuits is at most a constant,
which means that probabilistic computation save only the constant number
of NOT gates. Especially, if p = 1/4, then,

Corollary 1. For every Boolean function f,

Ipe(f,3/4) 2 I(f) — 1.
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3.2 Proof

Proof (of Theorem 2). Let C be a probabilistic circuit computes f with
probability 1/2 4 p, and let X be a chain such that dx (f) = d(f), i.e., the
decrease of f is the maximum on X. Consider some 7 such that f(z*) =1
and f(z'*1) = 0. Since C computes each of f(z%) and f(z**1) correctly with
at least 2™(1/2+ p) random inputs, the number of random inputs such that
C computes both of f(z') =1 and f(z*+!) = 0 correctly is at least,

2™ . (1-2-(1—-(1/2+p))) = 2™ - 2p.

Since, for all 7 such that f(z*') = 1 and f(z**!) = 0, the number of random
inputs such that C' computes both of f(z*) = 1 and f(z**!) = 0 correctly is
at least 2™-2p, there is random inputs r such that C with r computes f(z*) =
1 and f(z'*') = 0 correctly for at least 2p - d(f) ’s. Let C’ be a circuit
- which obtained by fixing random inputs in C to r. C’ is a deterministic
circuit and computes a Boolean function f’ such that d(f’) > 2p - d(f). By
Theorem 1, C’ includes at least [log,(2p - d(f) + 1)] NOT gates, which is
also included in C. O
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