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1 Introduction

Let $P$ be an $n\cross n$ pixel grid. A pixel $(i,])$ of $P$ is
the unit square whose top-right corner is the grid
point $(i,j)\in Z^{2}$ . For example the bottom-left cell
of $P$ is (1, 1) and the top-right cell is $(n,n)$ . Each
pixel $p=(i_{J})$ , where $1\leq i,j\leq n$, has its weight
$w(p)\in$ Z. Now we define the following general
problem.

Problem: $MAxn Ub\iota$ WEIGHT REGION PROBLEM
(MWRP)

Instance: An $n\cross n$ pixel grid $P$.
Objective: Find a region $R\in r$ maximizing the

weight $w(R)= \sum_{p\epsilon R}w(p)$ , where $\mathcal{F}’\subseteq 2^{P}$ be
a fixed family of pixel regions.

The general problem MWRP has been studied for
several families S7““. Observe that if $r=2^{P}$, then
$R$ can be arbitrarily chosen, and thus the answer is
the set of all positive cells. On the other hand, if

“ is the famuily of connected regions (in the usual
-neighbor topology), then the problem becomes

NP-hard [1]. For the complexity of MWRP for
other families, see the paper by Chun, Kasai, Kor-
man, and Tokuyama [2] and the references therein.

Motivated by the $imag\tilde{e}$ segmentation problem,
Chun et al. [2] stud\’ied more complicated family of
pixel regions for $b\mathfrak{X}$ (see Figure 1). A baseline
of an $n\cross n$ pixel grid $P$ is a vertical line $x=b$ or hor-
izontal line $y=b$, where $0\leq b\leq n$ . A pixel region

$R$ is a based $x$-monotone region if there is a hori-
zontal baseline $y=b$ such that $(i_{J})\in R$ implies
$(i,j-1)\in R$ for $j\geq b+1$ , and $(i_{J})\in R$ implies
$(i,j+1)\in R$ for $j<b$ (see Figure 2). Based y-
monotone regions are analogously defined. Based
x- and $y$-monotone regions are base-monotone re-
gions. Given a set of $k$ baselines, a region $R$ is
base-monotone feasible if it can be decomposed
into pairwise disjoint base-monotone regions with
respect to the baselines. The $k$ baseline MWRP is
MWRP in which we are given $k$ (vertical or hori-
zontal) baselines, and we find a maximum-weight
base-monotone feasible region respect to the base-
lines. Chun et al. showed that the $k$ baseline
MWRP can be solved in polynomial time. They
also studied the $k$ base-segment MWRP, in which
we are given $k$ segments and find a region decom-
posable into base-monotone regions respect to the
given base-segments. (We will define this problem
more precisely in the next section.) They showed
some partial results on this problem. For other for-
mulations, as optimization problems, of the image
segmentation problem, see the recent work by Gib-
son, Han, Sonka, and Wu [5].

In the setting of the $k$ baseline MWRP, we are
given $k$ baselines. Thus a natura! question would be
“What if baselines are not given¿‘ In other words,
“How can we divide the pixel ghd into subgrids
with vertical and horizontal $1ines^{\eta}$

” We study this
problem and show that the problem of optimally
locating $k$ baselines is NP-hard but can be approx-
imated within factor 2. Next we propose another
way to divide the pixel grid into subgrid, and show
that this variant can be solved in polynomial time.
Finally, we study the $k$ base-segment MWRP and
present sharp contrasts of its computational com-
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Theorem 2.1 ([2]). The $k$ baseline MWRP can be
solved in $O(n^{3})$ time.

To complement this result, we study the compu-
tational complexity of the following problem.

Problem: BASELINE LOCATION
Instance: An $nxn$ pixel grid $P$ and $posi\dot{\mathfrak{a}}ve$ inte-

gers $k$ and $w$ .
Question: Is there $k$ baselines in $P$ such that a

maximum-weight base-monotone feasible re-
gion has weight at least $w$?

Figure 1: Image segmentation via $k$ baseline It is easy to see that there $a\infty$ only $(\begin{array}{l}2n+2k\end{array})$ possi-
MWRP. We first convelt a picture to a gray scale ble allocations of $k$ baselines. Therefore, BASELmE
image. Next, with some suitable hnction, we con- LOCATION can be solved in $o(2^{k}n^{k+3})$ time. How-
struct a pixel gnid in which each dark pixel has ever, tluis is far Rom efficient if $k$ is a part of the
positive weight and each light pixel has negative input. We would like to solve this problem in
weight Finally we solve the $k$ baseline MWRP $O(f(k)\cdot poly(n))$ time or even in $O(poly(k\cdot n))$

to segment the back gound fiom the objects. In time. Unfortunately, the latter case very unlikely
this example, the edges of the picture is used as happens as we will prove the problem is NP-hard
baselines $(k=4)$. For example, the red region in if $k$ is a part of the input. The possibility of the
the thuird figure (from left) uses the top edge as its former case remains unsettled in this paper.
baseline.

Figure 2: A based x-monotone region (left) and a
based y-monotone region (right).

plexity.
Due to space hmitation all proofs are omitted.

2Pre殖皿血 naries

In this paper we study three different but well re-
lated problem. This section introduces these three
problems.

2.1 BAsELmr LocmoN

Chun et al. [2] presented the following positive re-
sult.

2.2 The $k$ base-segment MWRP

Consider a segment $s$ in a baseline $l$. If a monotone
region $R$ with baseline $l$ intersects $l$ only in $s$, then
$R$ has $s$ as its base-segment. Chun et al. [2] also
studied $k$ base-segment MWRP, in which $k$ base-
segments are given, and one wants to find a region
that can be decomposed into disjoint monotone
regions with respect to the given base-segments.
They also smdied two-directional version of this
problem in which the region can be built only on
the right side of each vertical base-segment and
on the upper side of each horizontal base-segment.
They showed the following results.

Theorem 2.2 ([2]). ne two-directional $k$ base-
segment MWRP can be solved in $O(kn)$ time.
The originwl $k$ base-segment MWRP can be solved
in $O(n\alpha k))$ time.

The first statement says that the two-directional
version is fixed parameter tractable when param-
eterized by $k$. The second statement says that
the original problem can be solved in polynomial
time if $k$ is not a part of the input. It was not
known whether the two-directional version can be
solved in polynomial time with both $n$ and $k$, and
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whether the original version is NP-hard when $k–$
is a part of the input. We will answer these two $\frac{x}{x\cdot x_{-}}$

questions: the original problem is NP-hard and the
$-\underline{X}$

two-directional version is polynomial-time solv-
able, when $k$ is a part of the input. Figure3: A baseline forcer: forcing one baseline.

3
$TIONNP$

-hardness of BASELmE LOCA- $\overline{\frac{x}{\frac\cross\bullet x}}---$

$—-$

$\overline{\frac{x}{A^{*}\Delta*}}$

As the first step of the smdy on BASELINE LOCATION,
we prove the following theorem.

Theorem 3.1. BASELmE LOCATION is NP-complete
in the strong sense.

The problem is clearly in NP. We prove its NP-
hardness by reducing INDEPENDENT SET to this prob-
lem. An independent set of a graph is a set of pair-
wise non-adjacent vertices. It is known that the fol-
lowing decision problem is NP-complete [3].

Problem: INDEPENDENT SET

Instance: A graph $G$ and a positive integer $s$ .
Question: Does $G$ have an independent set of size

at least $s$ ?

Note that INDEPENDENT SET is NP-complete even
with the restriction $|V(G)|=|E(G)|$ . .

Proposition 3.2. INDBPENDENr SET is NP-complete
for the instances $with|V(G)|=|E(G)|$.

$1$

3.1 Gadgets
$\rceil$

We first define two small gadgets for forcing base- 1
lines into restricted zones. Throughout this paper, ]
each red $\cross$ in a pixel grid represents a huge neg- a
ative weight whose absolute value is equal to the $z$

sum of all the positive weights in the gnd. Also, 1

each blue . represents a (not necessarily large) pos- $($

itive weight. All the other cells have weight $0$ . $i$

Our first gadget is the $3\cross 3$ grid depicted in Fig- $i$

ure 3. If we want to take the positive cell at the 1
center, we need one baseline as in the figure. Since $\langle$

we cannot take any huge negative cell, the possible
locations of the baselines are restricted to the four $’$

in the figure. We call this gadget a baselineforcer.
The weight of a baseline forcer is the weight of the $\langle$

positive cell, and the position of a baseline forcer $($

is the position of its bottom-left cell. a

Figure 4: A vertical baseline forcer: forcing one
vertical baseline or two horizontal baselines.

Next we consider a similar gadget depicted in
Figure 4. To take all positive cells and not to take
any negative cell, we need either one vertical base-
line or two horizontal baselines. Therefore, if we
need to mimimize the number of baselines, then we
have to use one vertical baseline. We call this gad-
get a vertical baselineforcer. By rotating this gad-
get, we can also obtain a gadget for forcing two
vertical baselines or one horizontal baseline. We
call it a horizontal baseline forcer. Two positive
cells in this gadget have the same weight, and their
weight is the weight of the vertical or horizontal
baseline forcer. The position of a vertical or hori-
zontal baseline forcer is the position of its bottom-
left cell.

Vertical and horizontal baseline forcers work
ven if we insert some space between columns or
ows as in Figure 5. The location of the base-

line is restricted to the area depicted in the fig-
re. We say that a vertical (horizontal) baseline
orcer intersects a vertical (horizontal resp.) base-
ine if the baseline is in the restricted area; that is,
base monotone shape with the vertical or hori-

zontal baseline can contain the positive cells in the
ertical or horizontal baseline forcer. The number

of the columns used by a vertical baseline forcer is
its width, and the number of rows used by a hor-
izontal baseline forcer is its height. For example,
he original vertical baseline forcer in Figure 4 is
of width 3.

3.2 Reduction

iven an instance $(G, s)$ of INDEPENDENT SET, we
construct an instance $(P,k,w)$ of BASELINE LOCATION
as follows. It is easy to see that the reduction below
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Figure 5: Forced baselines are restricted to the area
indicated by double headed arrows.

$\wedge$ へ

can be done in polynomial time, and the absolute
values of the weights are bounded by a polynomial
of the input size.

By Proposition 3.2, we may assume $|V(G)|=$

$|E(G)|$ for notational convenience. Let $V(G)=$
$\{v_{1}, \ldots,v_{m}\}$ and $E(G)=\{e_{1}, \ldots,e_{m}\}$ . We set the
number of baselines $k=2m$ and the required
weight $w=8m^{3}+8m^{2}+s$. The grid $P$ is the
$(20m+20)\cross(20m+20)$ pixel grid with the fol-
lowing entries. (see Figure 6).

Vertex gadgets

For each vertex $v_{i}$, we put a vertical baseline forcer
of width 5 and weight $2m^{2}+m$ , denoted $VF_{i}$ , at
the position $(10i, 5i)$. We also put a baseline forcer
of weight 1, denoted $BF_{i}$, at the position $(10i-$

$1,20m+15)$.

Edge gadgets

Let $e_{h}=\{v_{i},v_{j}\}\in E(G)$ be an edge with $i<j$.
We put a honizontal baseline forcer of height 10
and weight $2m^{2}+m$ , denoted $HF_{h}$ , at the position
$(10m+5h,5m+15h)$. Next we pm two horizontal
baseline forcers $HF_{h,i}$ and $HF_{h,j}$ of height 3 and
weight $m$ at the positions $(10i-3,5m+15h-1)$
and $(10j-3,5m+15h+8)$, respectively. Also, we $|$

put two baseline forcers $BF_{h,i}$ and $BF_{h,j}$ of weight $|$

$m$ at the positions $(10i+3,5m+15h+2)$ and $(10j+$ .

3, $5m+15h+5)$, respectively.
$1$

The weight of negative cells

We have the following positive cells in the grids:

$\circ 4m$ cells of weight $2m^{2}+m$,

$\circ 6m$ cells of weight $m$, and. $m$ cells of weight 1. .

$v_{i}$ $\nu_{j}$

FFigure 6: Gadgets for an edge $\{v_{i},v_{j}\}$ : black thick
llines are the candidates of required baselines, two
vertical and one horizontal.

The total weight of the positive cells is $W=$
$4m(2m^{2}+n)+6m^{2}+n=8m^{3}+10m^{2}+m$. We
sset the weight of the negative cells $to-W$ so that
these cells cannot be taken in any solution with a
ppositive total weight.

3.3 Equivalence

Lemma 3.3. $(G, s)$ is a yes-instance of INDEPEN-
DENT $SF\Gamma$ ifand only $\iota f(P,k,w)$ is a yes-instance of
BAsmntE LOCATION.

4 A 2-approximation algorithm
for BASBIJNE LocmoN

$\langle$Our approximabihty result is based on the
ppolynomiaI-time solvability of the following prob-
lem.

lProblem: VERTICAL BASmINE LOCATION

lInstance: An $n\cross n$ pixel grid $P$ and a positive in-
teger $k$.

Objective: Find $k$ vertical baselines in $P$ that
$\ovalbox{\tt\small REJECT}$ the weight of an optimal base-
monotone feasible region respect to these
baselines.

ne. roblem HORIZONT BASBImE $L\infty ATION$ is de-
fined analogously.
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Theorem 4.1. VERTICAL BASBLINE LOCArION and
HORIZONTAL BASELINE LOCrYON can be solved in
$O(n^{3})$ time.

1 rmge of $s$

$s’\{$ rageof $s’$

Theorem 4.2. There is an $O(n^{3})$-time 2- Figure 7: The ranges of vertical base-segments $s$

approximation algorithm for locating $k$ baselines and $s’$ .
to mximize the weight ofoptimum base-monotone
feasible region. $a_{s}(1):$

.
$a_{s}(.2)a_{s}(3)a_{s}.(4)$ $a_{s}(5)$

5 The $k$ base-segment MTWRP

We extend the results of Chun et al. [2] (The-
orem 2.2). We first reduce the two-directional
version to WEIGHTED INDEPENDENT SET in bipartite
graphs, which can be solve in polynomial time [6].
We next reduce the INDEPENDENT SET in planar
graphs to the original problem. Thuis implies the
NP-hardness of the original problem, since INDE-
PENDENF SET is NP-hard for planar graphs [4].

In what follows, we may assume without loss
of generality that no base-monotone shape with
respect to a base-segment contains another base-
segment properly (in such a case, we can just par-
tition the base-monotone shape). We may also as-
sume that two parallel base-segments may have in-
tersection only at their end-points.

5.1 Two-directional version

We first divide each base-segment of length $\ell$

into $f$ base-segments of length 1. This refine-
ment does not change the optimum value of the $k|$

base-segment MWRP. Now we have $O(kn)$ base-
$i$

segments of length 1. We identify a base-segment
$s$ with $(i,j)$ if $s$ is the left or bottom edge of a pixel :

$(i_{j})$ .
For each vertical base-segment $s=(i_{J})$, we de-

$\rceil$

fine its range as follows: if there is no vertical base-
segment $s’=(i’,j)$ with $i’>i$, then the range of $s$

is $[i,n]$ ; otherwise the range of $s$ is $[i, i’]$ , where $i’$ is
the smallest index for which such a segment exists.
(see Figure 7). We define the range of a horizontal
base-segment analogously.

Let $s=(i,j)$ be a vertical base-segment with
range $[i,i’]$ . Let $a_{s}(0)=i-1$ , and for $p\geq$

1, let $a_{s}(p)$ be the minimum index $h$ such that ]

$a_{s}(p-1)<h\leq i’$ and $\sum_{a_{s}(p-1)<q\leq h}w(q,j)$ is pos- $v$

itive. If there is no such index, then $a_{s}(p)$ is unde- $t$

fined. If $a_{s}(p)$ is defined for some $p\geq 1$ , then let $i$

Figure 8: Example of $a_{s}(p)$ . The corresponding
weights $w_{s}(1),$ $\ldots,w_{s}(5)=5,1,1,3,3$ .

$w_{s}(p)= \sum_{a_{s}(p-1)<q\mathscr{D}_{s}(p)}w(q,j)$ . See Figure 8. For
each horizontal base-segment $s’$ , we also define the
sequence $a_{s’}(\cdot)$ analogously.

Now we construct a bipartite graph $G$ $=$

$(U, V;E)$ . Let $s=(i,])$ be a vertical base-segment.
Assume that $r$ is the largest index such that $a_{s}(r)$ is
defined. Now all $a_{s}(0),$

$\ldots,$
$a_{s}(r)$ are defined from

the definition. If $r=0$, then this segment $s$ is use-
less and just ignored. Otherwise, we put vertices
$u_{s}(p),$ $1\leq p\leq r$ , with weight $w_{s}(p)$ into $U$. For
each honizontal base-segment $s’=(i’, j’)$ , we put
vertices $v_{s’}(p’)$ into $V$ in the same way. Next we
define the edge set $E$ . Two vertices $u_{s}(p)\in U$

and $v,(p’)\in V$ are adjacent if and only if two
base-monotone regions with base-segments $s$ and
$s’$ have nonzero area intersection if they contain
$(a_{s}(p)_{J})$ and $(i’,a,(p’))$ , respectively. More pre-
cisely, this can be stated as: $i\leq i’\leq a_{s}(p)$ and
$f\leq j\leq a_{s’}(p’)$ . See Figure 9 for example.

Lemna 5.1. An optimum solution of an instance
of the two-directional $k$ base-segment MWRP has
weight at least $Wlf$ and only $\iota f$ the corresponding

$u(1)$ $u_{j}(2)$ $u,(3)$ $u_{3}(4)$ $u(5)$

$v’(1)v,’(2)v’(3)v’(4)$

igure 9: The bipartite graph construction. The
ertices corresponding to the crossing ranges of
wo base-segments induce a disjoint union of an

independent set and a complete bipartite graph.
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bipartite graph $G$ has an independent set ofweight
at least $W$.

6. no two endpoints of segments have the same
position.

Theorem5.2. The two-directional $k$ base-segment We call a visibility representation satisfying the
MWRP can be solved in $O(k^{3}n^{6}\log kn)$ time. three additional conditions a nice visibility repre-

sentation. Given a visibility representation of a
5.2 NP-hardness of the $k$ base-segment planar graph, we can obtain a nice visibility rep-

MWRP resentation of the graph in polynomial time by re-
fining each cell of the gnid to an $O(n)\cross O(n)$ sub-We now show the following theorem.
grid, slightly extending each horizontal segment,

Theorem 53. The $k$ base-segment MWRP is NP- and slightly shifUng each vertical segment.
complete in the strong sense.

The problem is clearly in NP, and thus it suf- 5.2.2 Reduction
fices to show the NP-hardness. To this end, we re-
duce the INDEPENDENT $S_{E}r$ for planar graphs to the Let $(G,s)$ be an instance of INDEPBNDENr SET, where
$k$ base-segment MWRP. A graph is planar if it can $G$ is a planar graph with $n$ vertices and $m$ edges.

be drawn in the plane without edge crossings. It Note that we do not assume $n=m$ here. We first

is known that INDEPENDENr SET is NP-hard even for construct a nice visibility representation $R=(A,B)$

planar graphs [4]. of $G$ in polynomial time, where $A$ is the set of hor-
izontal segments and $B$ is the set of vertical seg-
ments. We construct a pixel grid $P$ Rom $R$ as fol-5.2.1 Nice visibihty representations
lows (see Figure 11).

Planar graphs have several geometric representa- For each vertex $u\in V$ with the correspond-
tions. We use one of them here. A subset of plane ing horizontal segment $a_{u}=[x_{1},x_{2}]\cross\{y\}\in A$ ,
$\{$ 1, 2, $\ldots,w\}x(1,2,$ $\ldots,h\}$ is a $wxh$ grid. A visi- we put a vertical base-segmem $(x_{1},y)$ and set the
bility representation ofaplanar graph $G$ maps each weight 1 to the cell $(x_{2},y)$ . For each edge $e=$

vertex of $G$ to a horizontal segment with endpoints $\{v,w\}\in E$ with the corresponding vertical seg-
in a gnid and each edge of $G$ to a vertical segment ment $b_{u}=\{x\}\cross[y_{1},y_{2}]\in B$, we put horizontal
with endpoints in a gnd such that base-segments $(x,y_{1})$ and $(x,y_{2}+1)$ and set the

weight $n$ to the cell $(x,y_{e})$ , where the y-coordinate1. no segments of two distinct vertices intersect,
$y_{\ell}$ is not used by any vertical base-segment and

2. segments of two distinct edges intersect only
$\mathcal{Y}1<y_{e}<\mathcal{Y}2$. Such a coordinate can be chosen

at their endpoints, and by the refinement of the grid. Note that the weight
3. the segment of an edge $\{u, v\}$ touches the seg- of a cell is at most $n$ and there is no negative-weight

ments of $u$ and $v$ . cell.

Otten and van Wjk [7] showed that every planar
graph has a visibility representation. It is known
that a $Vi\mathfrak{X}biLty$ representation of a planar graph
in an $O(n)\cross O(n)$ grid can be found in linear
time [8, 9]. For the oecent development on visibil-
ity representations, see the recent paper by Wang
and He [10] and the references therein. For our
purpose, we need the following additional condi-
tions for visibihty representations:

4. no two vertical segments have the same x-
coordinate,

5. no two horizontal segments have the same y-
coordinate, and

5.2.3 Equivalence

We now show that $(G, s)$ is a yes-instance if
and only if the optmum value of $k$ base-segment
MWRP on $P$ is at least $mn+s$. (The proof is omit-
ted.)

5.2.4 The $three4irectional$ version

In the reduction above, we may assume without
loss of generality that the region can be built only
on the right side of each vertical base-segment, on
the upper sides of some horizontal base-segments,
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–
Figure 10: Reduction. Each green thick segment is a base-segment. In the right figure $S=\{b,d\}$ . Yellow
cells are taken by the vertical base-segments, and green cells are taken by the horizontal base-segments.

and on the lower sides of the remaining horizon-
tal base-segments. We call this version the three-
directional $k$ base-segment MWRP.

Corollary 5.4. me three-directional $k$ base-
segment MWRP is NP-complete in the strong
sense.
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Maximum weight digital regions decompos-
able into digital star-shaped regions. In $22nd$
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