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1 Introduction
Motivated by two notions of a reaction system

([3, 4, 5]) and a multiset ([1]), in this paper we
will introduce computing devices called reaction
automata and show that they are computationally
universal by proving that any recursively enumer-
able language is accepted by a reaction automaton.
There are two points to be remarked: On one hand,
the notion of reaction automata may be taken as
a kind of an extension of reaction systems in the
sense that our reaction automata deal with mul-
tisets rather than (usual) sets as reaction systems
do, in the sequence of computational process. On
the other hand, however, reaction automata are in-
troduced as computing devices that accept the sets
of string objects (i.e., languages over an alphabet).
This unique feature, i.e., a string accepting device
based on multiset computing in the biochemical re-
action model can be realized by introducing a sim-
ple idea of feeding an input to the device from the :
environment. :
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This paper is organized as follows. After prepar-
ing the basic notions and notations in Section 2,
we introduce the main notion of reaction automata
together with one language example in Section 3.
Moreover we present our main results: reaction
automata are computationally universal. We also
consider some subclasses of reaction automata from
a viewpoint of the complexity theory in Section 4,
and investigate the language classes accepted by
those subclasses in comparison to the Chomsky hi-
erarchy. Finally, concluding remarks as well as fu-
ture research topics are discussed in Section 5.

2 Preliminaries
We assume that the reader is familiar with the

basic notions of formal language theory. For unex-
plained details, refer to [8].

We use the basic notations regarding multisets
that follow [2, 9]. A multiset over an alphabet $V$

is a mapping $\mu$ : $Varrow N$ , where $N$ is the set of
non-negative integers and for each $a\in V,$ $\mu(a)$

epresents the number of occurrences of $a$ in the
multiset $\mu$ . The set of all multisets over $V$ is de-
noted by $V\#$ , including the empty multiset denoted
by $\mu_{\lambda}$ , where $\mu_{\lambda}(a)=0$ for all $a\in V$ . We often
identify a multiset $\mu$ with its string representation
$w_{\mu}=a_{1}^{\mu(a_{1})}\cdots a_{n}^{\mu(a_{\mathfrak{n}})}$ or any permutation of $w_{\mu}$ .
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A usual set $U\subseteq V$ is regarded as a multiset $\mu_{U}$

such that $\mu_{U}(a)=1$ if $a$ is in $U$ and $\mu_{U}(a)=0$

otherwise. In particular, for each symbol $a\in V$ , a
multiset $\mu\{a\}$ is often denoted by $a$ itself.

For two multisets $\mu_{1},$ $\mu_{2}$ over $V$ , we define one
relation and three operations as follows:

Inclusion : $\mu_{1}\subseteq\mu_{2}$ iff $\mu_{1}(a)\leq\mu_{2}(a)$ ,
Sum: $(\mu_{1}+\mu_{2})(a)=\mu_{1}(a)+\mu_{2}(a)$ ,

Intersection : $( \mu_{1}\cap\mu_{2})(a)=\min\{\mu_{1}(a)_{:}\mu_{2}(a)\}$ ,

Difference : $(\mu_{1}-\mu_{2})(a)=\mu_{1}(a)-\mu_{2}(a)$ ,
(for the case $\mu_{2}\subseteq\mu_{1}$ only),

for each $a\in V$ . The sum for a family of multisets
$\mathcal{M}=\{\mu_{i}\}_{*\in I}$ is denoted by $\sum_{:\in I}\mu;$ . For a multiset
$\mu$ and $n\in N,$ $\mu^{n}$ is defined by $\mu^{n}(a)=n\cdot\mu(a)$ for
each $a\in V$ . The weight of a multiset $\mu$ is $|\mu|=$

$\sum_{a\in V}\mu(a)$ .

3 Reaction Automata
By recallin$g$ from [3] basic notions related to re-

actions systems, we first extend them (defined on
the sets) to the notions on the multisets. Then,
we shall introduce our notion of reaction automata
which plays a central role in this paper.

Definition 1. For a set $S$ , a reaction in $S$ is a 3-
tuple $a=(R_{a},I_{a},P_{a})$ of finite multisets, such that
$R_{a},P_{a}\in S^{*},$ $I_{a}\subseteq S$ and $R_{a}\cap I_{a}=\emptyset$ .

The multisets $R_{a}$ and $P_{a}$ are called the reactant
of a and the product of $a$, respectively, while the set
$I_{a}$ is called the inhibitor of $a$. These notations are
extended to a multiset of reactions as follows: For
a set of reactions $A$ and a multiset $\alpha$ over $A$,

$R_{\alpha}= \sum_{a\in A}R_{a}^{\alpha(a)},$ $I_{\alpha}= \bigcup_{a\subseteq\alpha}I_{a},$ $P_{\alpha}= \sum_{a\in A}P_{a}^{\alpha(a)}$
.

Definition 2. Let $A$ be a set of reactions in $S$ and
$\alpha\in A\#$ be a multiset of reactions over $A$. Then,
for a finite multiset $T\in s\#$ , we say that
(1) $\alpha$ is enabled by $T$ if $R_{\alpha}\subseteq T$ and $I_{\alpha}\cap T=\emptyset$ ,
(2) $\alpha$ is enabled by $T$ in maximally paralld manner

if there is no $\beta\in A^{*}$ such that $\alpha\subset\beta$ , and $\alpha$ and
$\beta$ are enabled by $T$ .
(3) By $En_{A}^{p}(T)$ we denote the set of all multisets

of reactions $\alpha\in A\#$ which are enabled by $T$ in
maximally parallel manner.
(4) The results of $A$ on $T$ , denoted by ${\rm Res}_{A}(T)$ , is
defined ae follows:

${\rm Res}_{A}(T)=\{T-R_{o}+P_{\alpha}|\alpha\in En_{A}^{p}(T)\}$ .

Note that we have ${\rm Res}_{A}(T)=\{T\}$ if $En_{A}^{p}(T)=\emptyset$ .

Definition 3. (Reaction Automata) A reac-
tion automaton (RA) $\mathcal{A}$ is a 5-tuple $\mathcal{A}$ $=$

$(S, \Sigma, A, D_{0}, f)$ , where. $S$ is a finite set, called the background set of
$\mathcal{A}$ ,. $\Sigma(\subseteq S)$ is called the input alphabet of $\mathcal{A}$,. $A$ is a finite set of reactions in $S$ ,

. $D_{0}\in s\#$ is an initial multiset,. $f\in S$ is a special symbol which indicates the

final state.

Definition 4. Let $A=(S, \Sigma, A,D_{0}, f)$ be an RA
and $w=a_{1}\cdots a_{n}\in\Sigma$ “. An interactive pro-
cess in $\mathcal{A}$ with input $w$ is an infinite sequence
$\pi=D_{0},$

$\ldots,$
$D_{i},$

$\ldots$ , where

$\{\begin{array}{ll}D_{1+1}\in{\rm Res}_{A}(a_{i+1}+D_{i}) (for 0\leq i\leq n-1),D_{l+1}\in{\rm Res}_{A}(D_{i}) (for an i\geq n).\end{array}$

By $IP(\mathcal{A}, w)$ we denote the set of all interactive
processes in $A$ with input $w$ .

In order to represent an interactive process $\pi$ ,
we also use the ”arrow notation” for $\pi$ : $D_{0}arrow a_{1}$

$D_{1}arrow a_{2}\ldotsarrow^{a_{n}}D_{n}arrow D_{n+1}arrow\cdots$ .
For an interactive process $\pi$ in $A$ with input $w$ ,

if $En_{A}^{p}(D_{m})=\emptyset$ for some $m\geq|w|$ , then we have

that ${\rm Res}_{A}(D_{m})=\{D_{m}\}$ and $D_{m}=D_{m+1}=\cdots$ .
In this case, considering the smallest $m$, we say that
$\pi$ converges on $D_{m}$ (at the mth step). When an
interactive process $\pi$ converges on $D_{m}$ , each $D_{:}$ of
$\pi$ is omitted for $i\geq m+1$ .
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Definition 5. Let $A=(S, \Sigma, A, D_{0}, f)$ be an RA.
The language accepted by $\mathcal{A}$ , denoted by $L(\mathcal{A})$ , is
defined as follows:

$L(\mathcal{A})=\{w\in\Sigma^{*}|\pi\in IP(A, w)$ that converges on
$D_{m}$ at the m-th step, for some
$m\geq|w|$ , and $f\subseteq D_{m}$ }.

Let $\mathcal{A}$ be an RA and $f$ be a function defined on
N. Motivated by the notion of a workspace for
a phrase-structure grammar ([8]), we define: for
$w\in L(\mathcal{A})$ with $n=|w|$ , and for $\pi$ in $IP(\mathcal{A}, w)$ ,

$WS(w, \pi)=\max_{i}$ { $|D_{i}||D_{i}$ appears in $\pi$ }.

Further, the workspace of $\mathcal{A}$ for $w$ is defined as:

Example 1. Let us consider a reaction automaton
$\mathcal{A}=(S, \Sigma, A, D_{0}, f)$ defined as follows:

$S=\{a,b, c, d, e, f\}$ with $\Sigma=\{a\}$ ,

$A=\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\}$ , where
$a_{1}=(a^{2}, \emptyset, b),$ $a_{2}=(b^{2}, ac,c),$ $a_{3}=(c^{2}, b, b)$ ,

$a_{4}=(bd,$ $ac,$ $e),$ $a_{5}=(cd,$ $b,$ $e)$ , 下 6 $=(e,$ $abc,$ $f)$ ,
$D_{0}=d$.

Let $w=$ aaaaaaaa $\in S^{*}$ be the input string and
consider an interactive process $\pi$ such that

$\pi$ : $darrow^{a}adarrow^{a}bdarrow^{a}abdarrow^{a}b^{2}darrow^{a}ab^{2}d$

$arrow^{a}b^{3}darrow^{a}ab^{3}darrow^{a}b^{4}darrow c^{2}darrow bdarrow earrow f$ .

It can be easily seen that $\pi\in IP(\mathcal{A}, w)$ and $w\in$

$L(\mathcal{A})$ . For instance, since $a_{2}^{2}\in En_{A}^{p}(b^{4}d)$ , it holds
$|$

that $c^{2}d\in{\rm Res}_{A}(b^{4}d)$ . Hence, the step $b^{4}darrow c^{2}d$

is valid. We can also see that $L(\mathcal{A})=\{a^{2}" |n\geq 1\}$

which is context-sensitive (see Figure $1-(i)$ ).
$\}$

We shall show the equivalence of the accepting a

powers between reaction machines and Turing ma- a

chines. For the details of proof, we refer [6]. $($

$\langle$

Theorem 1. Every recursively enumerable lan-
$r$

guage is accepted by a reaction automaton.
$($

14 Space Complexity Classes
$r$

We now consider space complexity issues of re-
$($

action automata. That is, we introduce some
$($

subclasses of reaction automata and investigate
$’)$

the relationships between classes of languages ac-
$($

cepted by those subclasses of automata and lan-
guage classes in the Chomsky hierarchy.

$WS(w,A)= \min_{\pi}\{WS(w, \pi)|\pi\in IP(A, w)$ ,

where $\pi$ converges.}.

Definition 6. (i). An RA $\mathcal{A}$ is $f(n)$ -bounded if for
any $w\in L(\mathcal{A})$ with $n=|w|,$ $WS(w,A)$ is bounded
by $f(n)$ .
(ii). If a function $f(n)$ is a constant $k$ (lin-
ear, polynomial, exponential), then $\mathcal{A}$ is termed
k-bounded (resp. linearly-bounded, polynomially-
bounded, exponentially-bounded), and denoted by
k-RA (resp. lin-RA, poly-RA, exp-RA). Further,
the class of languages accepted by k-RA (lin-RA,
poly-RA, exp-RA, arbitrary RA) is denoted by k-
$\mathcal{R}A$ $($resp. $\mathcal{L}\mathcal{R}\mathcal{A},\mathcal{P}\mathcal{R}\mathcal{A},\mathcal{E}\mathcal{R}A,\mathcal{R}\mathcal{A})$ .

Let us denote by $\mathcal{R}\mathcal{E}\mathcal{G}(\mathcal{L}\mathcal{I}\mathcal{N},C\mathcal{F},CS,\mathcal{R}\mathcal{E})$ the
class of regular (resp. linear, context-hee, context-
sens ’

$ve,$ recurs vely enumerable) languages.
We show two characterizations concerning $\mathcal{L}\mathcal{R}\mathcal{A}$

and $\mathcal{E}\mathcal{R}\mathcal{A}$ in relation to the Chomsky hierarch.,
nd two interesting results. One is concerned with
representation theorem for the class $\mathcal{R}\mathcal{E}$ in terms

of $\mathcal{L}\mathcal{R}\mathcal{A}$ , and the other is a new characterization of
$CS$ with $\mathcal{E}\mathcal{R}\mathcal{A}$ (for the proofs, see [7]).

Theorem 2. For any recursively enumerable lan-
guage $L$ , there exists an $LRA$ $A$ such that $L=$

$h(L(\mathcal{A}))$ for some projection $h$ .

Theorem 3. The following inclusions hold:
(1). $CS=\mathcal{E}\mathcal{R}\mathcal{A}$ .
(2). $\mathcal{R}\mathcal{E}\mathcal{G}=k-\mathcal{R}\mathcal{A}\subset \mathcal{L}\mathcal{R}\mathcal{A}\subseteq\prime P\mathcal{R}\mathcal{A}\subset \mathcal{E}\mathcal{R}\mathcal{A}\subset$

$\mathcal{R}\mathcal{A}=\mathfrak{X}$ (for each $k\geq 1$).
(3). $\mathcal{L}\mathcal{I}\mathcal{N}(C\mathcal{F})$ and $\mathcal{L}\mathcal{R}\mathcal{A}$ are incomparable.
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図 1: (i) Interactive processes for accepting $a^{2},$ $a^{4}$ and $a^{8}$ in $\mathcal{A}$ . (ii) Language class relations in the
Chomsky hierarchy : $L_{1}=\{a^{n}b^{n}c^{n}|n\geq 0\};L_{2}=\{a^{m}b^{m}c^{n}ff^{\iota}|m,n\geq 0\};L_{3}=\{ww^{R}|w\in\{a, b\}^{*}\}$.

5 Concluding Remarks
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