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1 Introduction

Motivated by two notions of a reaction system
(13, 4, 5]) and a multiset ([1]), in this paper we
will introduce computing devices called reaction
automata and show that they are computationally
universal by proving that any recursively enumer-
able language is accepted by a reaction automaton.
There are two points to be remarked: On one hand,
the notion of reaction automata may be taken as
a kind of an extension of reaction systems in the
sense that our reaction automata deal with mul-
tisets rather than (usual) sets as reaction systems
do, in the sequence of computational process. On
the other hand, however, reaction automata are in-
troduced as computing devices that accept the sets
of string objects (i.e., languages over an alphabet).
This unique feature, i.e., a string accepting device
based on multiset computing in the biochemical re-
action model can be realized by introducing a sim-
ple idea of feeding an input to the device from the

environment.
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This paper is organized as follows. After prepar-
ing the basic notions and notations in Section 2,
we introduce the main notion of reaction automata
together with one language example in Section 3.
Moreover we present our main results: reaction
automata are computationally universal. We also
consider some subclasses of reaction automata from
a viewpoint of the complexity theory in Section 4,
and investigate the language classes accepted by
those subclasses in comparison to the Chomsky hi-
erarchy. Finally, concluding remarks as well as fu-
ture research topics are discussed in Section 5.

2 Preliminaries

We assume that the reader is familiar with the
basic notions of formal language theory. For unex-
plained details, refer to [8].

We use the basic notations regarding multisets
that follow (2, 9]. A muliiset over an alphabet V'
is a mapping u : V — N, where N is the set of
non-negative integers and for each a € V, u(a)
represents the number of occurrences of a in the
multiset p. The set of all multisets over V is de-
noted by V#, including the empty multiset denoted
by wu, where py(a) = 0 for all @ € V. We often
identify a multiset p with its string representation
w, = @) ... a8 or any permutation of w,.



A usual set U C V is regarded as a multiset py
such that py(a) = 1 if a is in U and py(a) = 0
otherwise. In particular, for each symbola € V, a
multiset p(4) is often denoted by a itself.

For two multisets u;, p2 over V, we define one
relation and three operations as follows:

Inclusion : p1 € po iff pai(a) < p2(a),

Sum : (11 + p2)(a) = pa(a) + po(a),
Intersection :  (u3 N p2)(e) = min{u1(a), u2(a)},
Difference :  (p1 — p2)(a) = p1(a) — p2(a),

(for the case pa C p1 only),

for each a € V. The sum for a family of multisets
M = {p;}ies is denoted by ), ; p;. For a multiset
wand n € N, u" is defined by u"(a) = n - u(a) for
each a € V. The weight of a multiset p is |u| =
Yaev K@)

3 Reaction Automata

By recalling from [3] basic notions related to re-
actions systems, we first extend them (defined on
the sets) to the notions on the multisets. Then,
we shall introduce our notion of reaction automata
which plays a central role in this paper.

Definition 1. For a set S, a reaction in S is a 3-
tuple a = (Ra, Ia, P,) of finite multisets, such that
R, PocS# I, CSand RaNIy=0.

The multisets R, and P, are called the reactant
of a and the product of a, respectively, while the set
I, is called the inhibitor of a. These notations are
extended to a multiset of reactions as follows: For
a set of reactions A and a multiset a over A,

Ro=Y R®, I, = |J L, Pa =) P2®.

acA aCa acA
Definition 2. Let A be a set of reactions in S and
a € A#¥ be a multiset of reactions over A. Then,
for a finite multiset T € S#, we say that
(1) a is enabled by T if R, C T and I, NT = §,
(2) a is enabled by T in mazimally parallel manner
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if there is no 8 € A¥ such that a C 8, and a and
B are enabled by T.

(3) By En%,(T) we denote the set of all multisets
of reactions & € A¥ which are enabled by T in
maximally parallel manner.

(4) The results of A on T, denoted by Resa(T), is
defined as follows:

Resa(T) = {T — Ry + Pa | € En&(T)}.
Note that we have Resa(T) = {T} if Enfy(T) = 0.

Definition 3. (Reaction Automata) A reac-
tion automaton (RA) A is a 5-tuple A =
(S,%, 4, Dy, f), where

e S is a finite set, called the background set of
A,

e I(C S) is called the input alphabet of A,
o A is a finite set of reactions in S,
e Dy € S# is an initial multiset,

e f € S is a special symbol which indicates the
final state.

Definition 4. Let A = (S,%, A, Do, f) be an RA
and w = a1---ap, € X*. An interactive pro-
cess in A with input w is an infinite sequence

« = Dyg,...,D;,..., where

Di1 € Resa(aiy1 +D;) (for0<i<n-1),
D;,1 € Resa(D;) (for all i > n).

By IP(A,w) we denote the set of all interactive
processes in A with input w.

In order to represent an interactive process T,
we also use the “arrow notation” for 7 : Dy =%
Dy =% ... 2% Dy = Dypyg — -

For an interactive process 7 in A with input w,
if En%,(D,,) = 0 for some m > |w|, then we have
that Res4(Dy) = {Dm} and Dy, = D1 = -+
In this case, considering the smallest m, we say that
7 converges on Dy, (at the m-th step). When an
interactive process 7 converges on Dy, each D; of
x is omitted for i > m + 1.



Definition 5. Let A= (S,Z, A, Dy, f) be an RA.
The language accepted by A, denoted by L(A), is
defined as follows:

L(A) = {w € =*| 7 € IP(A,w) that converges on
D,,, at the m-th step, for some

m 2 |w|, and f C Dy}

Example 1. Let us consider a reaction automaton
A= (S,XZ,A, Dy, f) defined as follows:

S ={a,b,¢c,d,e, f} with £ = {a},
A = {a;,a3,a3,a4,35,a6}, Where
a; = (a?,0,b), a; = (b?,ac,c), ag = (c2,b,b),
ay = (bd,ac,e), as = (cd, b,e), ag = (e,abc, f),
Dy =d.

Let w = anaaaaaa € S* be the input string and
consider an interactive process 7 such that

7 :d —° ad —° bd —° abd —° b%°d —° ab*d

-2 b3d =% ab®d +° b*d > >d > bd > e — .

It can be easily seen that 7 € IP{A4,w) and w €
L(A). For instance, since a3 € En, (b*d), it holds
that c?d € Resa(b*d). Hence, the step b‘d — c2d
is valid. We can also see that L(A) = {a®" |n > 1}
which is context-sensitive (see Figure 1-(i)).

We shall show the equivalence of the accepting
powers between reaction machines and Turing ma-
chines. For the details of proof, we refer [6].

Theorem 1. Every recursively enumerable lan-
guage is accepted by a reaction automaton.

4 Space Complexity Classes

We now consider space complexity issues of re-
action automata. That is, we introduce some
subclasses of reaction automata and investigate
the relationships between classes of languages ac-
cepted by those subclasses of automata and lan-
guage classes in the Chomsky hierarchy.
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Let A be an RA and f be a function defined on
N. Motivated by the notion of a workspace for
a phrase-structure grammar ([8]), we define: for
w € L(A) with n = |w|, and for 7 in IP(A, w),

WS(w,n) = max{|D;| | D; appears in 7 }.
k2
Further, the workspace of A for w is defined as:

WS(w, A) = n;in{WS(w, m) |r € IP(A,w),

where 7 converges.}.

Definition 6. (i). An RA Ais f(n)-bounded if for
any w € L(A) with n = |w|, WS(w,.A) is bounded
by f(n).

(#). I a function f(n) is a constant k (lin-
ear, polynomial, exponential), then A is termed
k-bounded (resp. linearly-bounded, polynomially-
bounded, exponentially-bounded), and denoted by
k-RA (resp. lin-RA, poly-RA, exp-RA). Further,
the class of languages accepted by k-RA (lin-RA,
poly-RA, exp-RA, arbitrary RA) is denoted by k-
RA (resp. LRA,PRA,ERA,RA).

Let us denote by REG (LIN,CF,CS,RE) the
class of regular (resp. linear, context-free, context-
sensitive, recursively enumerable) languages.

‘We show two characterizations concerning LR.A
and ERA in relation to the Chomsky hierarchy,
and two interesting results. One is concerned with
a representation theorem for the class RE in terms
of LRA, and the other is a new characterization of
CS with ERA (for the proofs, see [7]).

Theorem 2. For any recursively enumerable lan-
guage L, there exists an LRA A such that L =
h(L(A)) for some projection h.

Theorem 3. The following inclusions hold :

(1). €S =ERA.

(2). REG=kRACLRACPRACERAC
RA = RE (for each k > 1).

(3). LIN (CF) and LRA are incomparable.
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_ RE=RA=H(LRA)
(ORI

CS=ER2

1: (i) Interactive processes for accepting a?, a* and a® in A. (ii) Language class relations in the
Chomsky hierarchy : L; = {a™"c* | n > 0}; Lo = {a™b™c*d" | m,n > 0}; Lz = {ww® |w € {a,b}"}.

5 Concluding Remarks

Based on the formal framework presented in
a series of papers [3, 4, 5], we have introduced
the notion of reaction automata and investigated
the language accepting powers of the automata.
Roughly, a reaction automaton may be character-
ized in terms of three key words as follows : a lan-
guage accepting device based on the multiset rewrit-
ing in the mazimally parallel manner. Specifically,
we have shown that reaction automata can perform
the Turing universal computation.

Moreox;er, we investigate reaction automata with
a focus on the formal language theoretic properties
of subclasses of reaction automata. We have shown
(i) any recursively enumerable language can be ex-
pressed as a homomorphic image of a language in
LRA, (ii) the class ERA coincides with the class
of context-sensitive languages.

Many subjects remain to be investigated along
the research direction suggested by reaction au-
tomata in this paper. Most of all, it is of impor-
tance to explore the relationship between RAs and
other computing devices that are based on the mul-
tiset rewriting, such as a variety of P-systems and
their variants ([2]).
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