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Pattern Formation by Fully Asynchronous Mobile Robots
Nao Fujinaga * Yukiko Yamauchi \star Shuji Kijima* Masafumi Yamashita *

Abstruct

This paper considers a system $R$ of anonymous mo-
bile robots, each represented by a point in $2D$ Eu-
clidean space. A robot, given an algorithm, re-
peats a $Look-Compute-Move$” cycle, to observe
the other robots’ positions (in Look), to compute
the next position by using the algorithm (in Com-
pute), and to move toward the next position (in
Move). The robots are anonymous in the sense that
they do not have identifiers, and are controlled by
the same algorithm. A basic and crucial assump-
tion on the system is that they are not aware of
the global coordinate system, and all the actions
by robots are via their local coordinate systems,
which may be inconsistent each other.

The problem of forming a given pattem by a set
of mobile robots is called the pattern formation
problem. Suzuki and Yamashita proposed oblivi-
ous algorithms with which robots’ actions depend
only on latest observation. They characterized, for
any pattern, a necessary and sufficient condition on
initial positions for the pattern formation both in
oblivious and non-oblivious case, showing they are
equivalent in Semi-Synchronous model [5].

This paper is concerned with pattem formation
by fully-asynchronous (i.e., CORDA [3]) oblivious
robots, and we present a pattern formation algo-
rithm $\psi_{P}$ for any pattern $P$, with which robots form
$P$ if initial position of the robots do not have a kind
of symmetry.

1 Introduction
Autonomous mobile robot In autonomous
mobile robots model, we consider a system consist-
ing of anonymous mobile robots. A robot, given an
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algorithm, repeats a $Look-Compute-Move$” cy-
cle, to observe the other robots’ positions (in Look
phase), to compute the next position by using the
algorithm (in Compute phase), and to move toward
the next position (in Move phase). The robots are
anonymous in the sense that they do not have iden-
tifiers (and are not identified just by their looks nei-
ther), and are controlled by the same algorithm. A
basic and crucial assumption on the system is that
they are not aware of the global coordinate system,
and all the actions by robots are via their local co-
ordinate systems, which may be inconsistent each
other.

The problem of forming a given pattern by a
set of mobile robots is called the pattern formation
problem and has been studied extensively in vari-
ous observation and synchronous models. Notably,
Suzuki and Yamashita considered oblivious algo-
rithms with which robots’ action depend only on
latest observation. They characterized for any pat-
tern, a necessary and sufficient condition on initial
positions for the pattern formation both in oblivi-
ous and $nonarrow blivious$ case, showing they are equiv-
alent with a mild synchronous assumption, i.e.,
semi-synchronous model (refer to section 2 for its
detail).

Contribution This paper is concerned with the
pattem formation by fully-asynchronous oblivious
robots. We, for any pattern, give a sufficient condi-
tion on initial positions for the pattern formation.
That is, any pattern is formable if initial position
of robots does not have a kind of symmetry.

organization This paper is organized as follows:
In section 2, we introduce models of the robot sys-
tem and summarize known results about the pat-
tern formation problem. In section 3, we define the
“clockwise matching”, which plays key role in our
pattern formation algorithm $\psi_{P}$ . The definition of
$\psi_{P}$ and its correctness is presented in section 4.
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2 Preliminaries Look: to observe the other robots’ positions:

In the literatures, various $\infty mmunication$ and syn-
chronous models are considered for autonomous
mobile robots model, while the basic assumptions
are shared. In this section, we briefly overview the
various $\infty mmunication$ (i.e., observation) and syn-
chronous models discussed in the literatures and
summarize their results. After that, we provide our
result.

Terminology Before, taking up the main sub-
ject, we develop terninologi$\propto$ we use throughout
this paper. Let $N$ denotes the set $\{0,1, \ldots\}$ of natu-
ral numbers, $\mathbb{R}$ denotes the set of real numbers, and

i.e., for $p\in \mathbb{C},$ $|p|$ is the Euclidean norm of $p$. For
$r\dot{d}^{\theta}\in \mathbb{C}$, let $\arg(rd^{\theta})=\theta$. We $\infty nsider\mathbb{C}$ to be
ordered by: for $r\dot{d}^{\theta},r’d^{\theta’}\in \mathbb{C}$,. if $r<r’$ then $r\dot{d}^{\theta}<r’\dot{d}^{\theta’}$ , and. if $r=r’$ and $\theta<\theta’$ then $rd^{\theta}<r’\dot{d}^{\theta’}$ .

For $p,q\in \mathbb{C}$, let $\overline{pq}=\{p+t(q-p)$ : $t\in \mathbb{R},$ $0\leq t\leq$

$1]\},\vec{pq}=\{p+t(q-p) : t\in \mathbb{R},0\leq t\}$ . Let

$E_{2}^{+}=\{f_{p,q}:p,q\in \mathbb{C}, |p|=1\}$ ,
$D_{2}^{+}=\{f_{p,q}:p,q\in \mathbb{C}, |p|>1\}$

where $f_{p,q}(x)=px+q$ . Let $P_{n}=\{P$ : $P\subset$

$\mathbb{C},$ $|P|=n\}$ . An element of $P_{n}$ is called a pat-
$ter?\iota$ A bijection (i.e., a matching) $M$ : $Aarrow B$

is identified with the set $\{(a, f(a)) : a\in A\}$ . For
$A,B\in P_{n}$ , let $\mathcal{U}(A,B)$ denotes the set of all bi-
jection $fi_{iO}m$ $A$ to $B$ , and for $M\in \mathcal{U}(A,B)$ , let
$d(M)= \sum_{(a,b)\in M}|a-b|$ . For $A,B\in \mathcal{P}_{r\iota}$ , let
$d(A,B)=-n\{d(M) : M\in \mathcal{U}(A,B)\}$ . For $P\in$

$P_{n}$ , let $c(P)= \sum P/n$ i.e., $c(P)$ is the center of $P$.

Autonomous mobile robot model In the
model, we $\infty nsider$ a system $\infty nsisting$ of $n$ robots
$r_{1},r_{2},$ $\ldots,r_{n}$ in $2D$ Euclid space C. Let $t:(t)$ de-
notes the position of $r_{i}$ at time $t$ on the global
coordinate system, (hence, $r_{l}(t)\in \mathbb{C},$ ) and let
$R(t)=\{r_{1}(t),r_{2}(t), \ldots,r_{n}(t)\}$ . We describe the lO-
$cal$ coordinate system of $r_{l}$ at time $t$ by some trans-
formation $Z_{i,t}$ on C. (See the next paragraph for
the detail of local coordinate systems.)

Given an algorithm $\psi$ , each robot $r_{i}$ , repeats a
“$Look-Compute$-Move cycle:

$Z_{1,t}(R(t))=\{Z_{i,t}(r_{1}(t)), Z_{*,t}(r_{2}(t)), \ldots, Z_{i,t}(r_{n}(t))\}$

of current time $t$ via $Z_{*,t}$ , and

Compute: to compute, by $\psi$ , the next position:

$q=\psi(Z_{i,t_{0}}(R(t_{0})), Z_{\dot{*},t_{1}}(R(t_{1})), \ldots, Z_{i,t_{n}}(R(t_{m})))$

where $t_{0}<t_{1}<\cdots<t_{m}=t$ are the times
when $r_{i}$ performed Look so far, and

Move: to move directly $tow\pi d$ the next position
$Z_{1}^{-1}t(q)$ of global $\infty$ordinate system (which cor-
respond to $q$ of $r_{*}\cdot$ ’s local coordinate system).

The system is distributed in the sence that 1)
they are not aware of the global coordinate system,
and all the observations by robots are via their lo
cal coordinate systems, which may be inconsistent
each other, and 2) the timing of each Look, Com-
pute and Move performed by robots may be incon-
sistent each other; the system is asynchronous. The
detail of the observation and synchronous models
are discussed in the following paragraphs. More
over, the system is anonymous in the sense that
they do not have identifiers (and are not identified
just by their looks neither), and are $\infty ntroUed$ by
the same algorithm.

Observation models Here, we introduce locol
coordinate system We assume that a robot ob-
serves other robots’ positions on its own local $cc\succ$

ordinate system. Let $G$ be some group of trans-
formation on $2D$ Euclid plane. A local coordinate
system of $r$: at time $t$ is expressed by a transforma-
tion $Z_{l,t}\in G$ such that $Z\iota(r(t))=0$; a robot $f_{i}$ is
located on the origin of its own local coordinate sys-
tem. According to observation models, we consider
a different group $G$ as the set of possible local coor-
dinate systems, and call it $G$-observation model. In
$G$-observation model we always $\infty nsider1$) a worst
local coordinate system in $G$ for each robot to ob-
serve other robots’ positions, and 2) two pattems
$P,P’\in P_{\mathfrak{n}}$ to be similar if there nists $Z\in G$ , such
that $Z(P)=P’$, and write $P\simeq cP’$ , since there is
no way the robots can distinguish two pattem $P$,
$P’$ such that $P\simeq {}_{G}P$.
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Synchronous models As for the asynchrony,
three kinds of synchronous models have been dis-
cussed in the literatures. A (fully) synchronous
robot synchronously executes a Look-Compute-
Move cycle; alI robots simultaneously start and fin-
ish the Look, Compute and Move phases in each it-
eration, and they always reach their next positions
(computed in their Compute phases) in their Move
phases. We call this robot model F-synchronous
[4].

An asynchronous (or CORDA [3]) robot, on
the other hand, asynchronously executes a Look-
$Compute-Move$ cycle. Moreover, a Move phase
may finish when a robot is still on the way to its
next position. To give a lower bound on robots’
mobility, we assume the existence of the minimum
movable distance $\epsilon>0$ ; every robots can move at
least $\epsilon$ length in every Move phase. We call this
robot model A-synchronous.

Finally, a semi-synchronous robot is the same as
an asynchronous robot, except that Look and Move
phases of two robots never overlap, or informally,
no robots observe other robots moving. Further-
more, a semi-synchronous robot knows its own min-
imum movable distance. We call this robot model
$S$-synchronous [4].

Note that in each model, adversarial fair schedu-
lar are assumed; we always consider a worst sched-
ule for each model on condition that, in the sched-
ule, every robot performs $Look-Compute$-Move cy-
cle at least once for large enough time span.

In Figure 1, each of FSYNCH, SSYNCH and
ASYNCH provides an instance of schedules of
$Look-Compute$-Move by three robots, each rep-
resenting $F,$ $S$ and $A$-synchronous model, respec-
tively.

$’$

Figure 1: Synchronous models

Pattern formation problem The problem of
forming a given pattern $P$ comprising of $n$ points
by $n$ mobile robots is called the pattern formation
problem; we want to design a pattern formation al-
gorithm $\psi_{P}$ with which the robots form the given
pattern $P$ in finite time from any initial positions.
Especially, we are focused on the oblivious algo-
rithm; an algorithm is said to be oblivious if

$\psi(P_{0}, P_{1}, \ldots, P_{m})=\psi(P_{m})$ , (1)

i.e., robots’ move only depend on the latest obser-
vation. The reason behind it is: oblivious algo-
rithms for the formation of $P$ tolerate any tempo-
ral crash failure (in which robots lost its memory
and stop for finite duration), granting the system
self-stabilizing property. However, such formation
algorithms (even non-oblivious one) does not exist
in general. The following Example provides such
an instance.

Example Let us consider $A$-synchronous $E_{2}^{+}-$

observation robots with right triangler initial po-
sition. Given any algorithm $\psi$ , since our robots fol-
low the same algorithm $\psi$ , by letting the adversary
always choose symmetric local coordinate systems
as well as fully synchronous schedule, we can con-
struct valid execution of $\psi$ which never form a given
target pattern, whenever the target pattern is not
right triangle itself. $\square$

This paper is concerned with pattem formation
by oblivious $A$-synchronous $E_{2}^{+}$ -observation robots.
To be more precise, we define a set of possible ex-
ecutions Ex$(\psi,\mathcal{I})$ of an algorithm $\psi$ : $\mathcal{P}_{n}arrow \mathbb{C}1$

from a set $\mathcal{I}\subseteq P_{n}$ of initial positions in the model:

Definition 1. Ex$(\psi_{)}\mathcal{I})$ is a set of $R:Narrow’\rho_{n}$ such
that: for all $i\in\{1,2, \ldots,n\}$ , there exists infinite
$t_{k}s(0=t_{0}<t_{1}<\ldots)$ such that,

1. for all $k\in N$ and $t\in[t_{k},t_{k+1}),$ $r_{i}(t+1)-$
$r_{i}(t)=a(d_{i,k}-r_{i}(t))$ with some $a\in[0,1]$ and,

2. there exists $\epsilon>0$ such that $|r_{i}(t_{k+1})-r_{i}(t_{k})$ I $\geq$

$\min\{|d_{i,k}-r_{i}(t_{k})|, \epsilon\}$ for all $k\in N$ ,

where $Z_{i,k}\in E_{2}^{+},$ $Z_{l,k}(r_{i}(t_{k}))=0,$ $R(O)\in \mathcal{I}$ and,

$d_{i,k}=\{$ $r_{i}(,0)Z_{ik}^{-1}\circ\psi(Z_{i,k}(R(t_{k})))$

otherwise.
(2)

$k=0$

lOnly oblivious algorithms are considered
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Furthermore, we define the fomation of a pat-
tem $P\in \mathcal{P}_{n}$ as foUows:

– C禍荻

Definition 2. An algorithm $\psi$ foms a pattem
$P$ ffom initial positions $\mathcal{I}$ in A-synchronous $E_{2}^{+}-$

observation model, if for all $R\in$ Ex$(\psi,\mathcal{I})$ , there
exists $t_{0}$ such that $R(t)\simeq E_{2}^{+}P$ for all $t>t_{0}$ . $P$ is

formable from $\mathcal{I}$ by A-synchronous $E_{2}^{+}$ -observation
robots, if such algorithms exist.

Since there is no algorithm $\psi_{P}$ which forms given
pattem $Phom$ all initial positions in general as we
saw in Example, in this paper, we are $\infty ncemd$

with a minimal assumption on initial position of .
robots for the formation of a pattem $P$ . In order
to characterize the symmetry, we define the sym-
metricity $\rho(P)$ of $P\in \mathcal{P}_{n}$ , by:

$\rho’(P)=\#\{Z\in E_{2}^{+}:P=Z(P)\}$

$\rho(P)=\{\begin{array}{ll}1 \rho’(P)>1\wedge \text{ョ}p\in P:p=c(P)\rho’(P) otherwise\end{array}$

$d$

$r$

and remark the $foHwing$ theorem.
$t$

Theorem 1. A pauem $P$ is fomable from ini- $($

tial positions $\mathcal{I}$ by A-syzchronous $E_{2}^{+}$ -observation 1
robots, only if $\rho(I)$ divides $\rho(P)$ for all $I\in \mathcal{I}$. $r$

$j\rfloor$

2.1 Related works

Known results about the pattem formation prob-
lem are summanized as follows: Assume $n>2$ . 1

$f$

1. A pattern $P$ is formable ffom initial positions $\mathcal{I}$ $($

by $D_{2}^{+}$-observation F-synchronous robots (and
hence by $S$ and A-synchronous robots), only if
$\rho(I)$ divides $\rho(P)$ for all $I\in \mathcal{I}[4,5]$ . $*$

:

2. A pattem $P$ is fomable from initial po- II
sitions $\mathcal{I}$ by $D_{2}^{+}$-observation A-synchronous $i$

non-oblivious robots (and hence for $S$ and F- $p$

synchronous non-oblivious robots), if $\rho(I)$ di-
vides $\rho(P)$ for all $I\in \mathcal{I}[2]$ . $M$

$m$

3. A pattem $P$ is fomable from imitial positions $w$

$\mathcal{I}$ by $D_{2}^{+}$-observation S-synchronous oblivious
robots (and hence for F-synchronous robots),

$!$if $\rho(I)$ divides $\rho(P)$ for all $I\in \mathcal{I}[5]$ ,

Figure 2: An example of the clockwise matching.

4. A pattem $P$ is formable ffom initial positions
$\mathcal{I}$ by $D_{2}^{+}$-observation A-synchronous oblivious
robots, if $\rho(I)=1$ for all $I\in \mathcal{I}[1]$ . $2$

2.2 Result

This paper is concemed with the pattem forma-
tion by $A$-synduonous $E_{2}^{+}$ -observation robots. The
$\infty ntributionof\cdot this$ paper is summarized by the fol-
lowing theorems.

Theorem 2. A pauem $PMP|>2)$ is formable
ffom initial positions $\mathcal{I}$ by oblivious A-synchronous
$E_{2}^{+}$ -observation robots if $\rho’(I)=1$ for all $I\in \mathcal{I}$ .

The “clockwise matching” is defined in the fol-
lowing section, which plays key role in our pattem
omation algorithm $\psi_{P}$ . $\psi_{P}$ and its correctness is
iscussed in section 4.

Clockwise matching

In this section, we define the “clockwise match-
ing” CWM$(A,B)$ of two pattems $A,B\in \mathcal{P}_{n}$ , which
plays a key role in our algorithm.

We consider a set $\mathcal{M}(A,B)=\arg m\dot{m}_{M}\{d(M)$ :
$M\in \mathcal{U}(A,B),\forall(a, b),$ $(c,d)\in M,\overline{ab}\not\subset$ $d\}$ of
matchings. Note that as an element of $M(A,B)$ ,
we do not allow mat&ing whose edge includes
$\overline{2Theakorithm\infty ns}iderd$ in [1] to obtain the result re-
uire to robots to move along some curves while robots in

our model only moves directly to calculated point.
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$b$

(a) $\phi)$

Figuie 3:

its another edge as in Figure 3 (a), while allow-
ing parallel edges as in Figure 3 (b). See that
$\Lambda t(A,B)\neq\emptyset$ , but not necessarily $|\mathcal{M}(A, B)|=1$ .
The clockwise matching defines a canonical match-
ing in $M(A,B)$ .

In section 3.1, a partial order $(\preceq)$ is defined on
$dM$ $:=\Lambda 4(A, B)$ . Intuitively, for $M,$ $M’\in\Lambda t,$ $M\preceq$

$M’$ means that $M$ is “closer to clockwise” than $M’$ .
Moreover, the following proposition (which will be
shown in section 3.2) states there is the clockwise
matching in $\mathcal{M}$ .

Claim 1. $(\mathcal{M}, \preceq)$ have the least element.

Thus, the clockwise matching CWM$(A, B)$ of two
patterns $A,B\in \mathcal{L}_{n}$ is defined by:

CWM$(A, B)= \min M(A, B)$ ,

where minimum is taken with respect to $(\preceq)$ .

3.1 Definition of $(\preceq)$ on $\mathcal{A}\Lambda$

Throughout this section, we consider a bipartite
graph $G$ with its vertex set $V=A\cup B(A,B\in \mathcal{L}_{n})$

and edge set $E=\cup \mathcal{A}4$ . We draw vertices of $A$

with black and vertices of $B$ with white in Figures
2-. For a plane graph $G,$ $P(G)$ expresses the set of
all edges incident to $G$’s exterior face.

Let us assume $G$ to be a plane bipartite (by re-
placing each edge $(a, b)$ with a line ab). Then,
as illustrated in Figure 4, for its two matchings
$M,$ $M’\in M$ , any edge $e\in M\oplus M’$ can be clas-
sified either as CW or CCW. Thus we define $(\preceq)$

on $\mathcal{M}$ by:

Definition 3. $M\preceq M’\Leftrightarrow^{def}$ for all $e\in P(M\oplus$

$M’)\cap M,$ $e$ is clockwise.

Indeed, we can regard $G$ to be plane graph as
follows:

Figure 4: CW edges and CCW edges

$se\mu ra\ \nearrow I$
$\nearrow^{\backslash }\backslash \backslash \eta am^{\searrow}$ $\swarrow^{m\prime\prime}$

$\swarrow^{m\ovalbox{\tt\small REJECT} a}$

Figure 5: Possible relation between two edges of $G$

Lemma 1. For any two edges $x=(a,b)$ and
$y=(a’, b’)$ of $G$, either of the following hol&: (See
Figure 5 for illustration).. (adjacent) $x$ andy share exactly one end vertex

$v$ ,

- (simple) $\overline{x}\cap\overline{y}=\{v\}$ .
$-(fold)$ not simple.. (not adjacent) $a\neq a’$ and $b\neq b’$ ,

$-(separate)\overline{x}$口-$y$
$=\emptyset$ .

$-(pamllel)a,$ $a’,$ $b,$ $b’$ reside on one line in
the order.

PProof. By triangle inequality. 口

We consider a cycle $C=e_{1}e_{2}\ldots e_{m}$ of G. Let’s
ssee, what kind of graph we can draw on the plane

Figure 6: An example of a folded-path.
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$G$ $O(G)$

$\overline{\S^{\underline{arrow-}}}\overline{\S}arrow\overline{iiiiiiiit!}$

$\mapsto^{\cdot\cdot-}$ –
Figure 7: An example of $G$ and $D(G)$ .

$P(L\cup M\cup R),$ $e\in L$ or $e\in R$. Let $e\in M\backslash (L\cup R)$ ,
and $\infty nsider$ the following cases.. Case $e\in P(L\cup M)$ and $e\in P(M\cup R)$ : By

assumption, $e$ is CW in $P(M\cup R)$ and CCW
in $P(L\cup M)$ . This contradict with $e\in P(L\cup$

$M\cup R)$ and $e\in M\backslash (L\cup R)$ .. Case $e\not\in P(L\cup M):e$ is in the inner face of
$P(L\cup M)$ , contradicting with the assumption.

as $C$ . By Lemma 1, $e_{\dot{*}}$ and $e:+1$ is either (fold) or
(simple). If it is (fold), the next edge $*+2$ must be
(parallel) with $e_{i}$ . Then, for the next edge $e_{i+3}$ , you
can choose (simple) or (fold). However in case you
choose (fold) you have to be careful not to draw
the line too long and include $e:$ , and so on, and
of course any of two edges $\infty uld$ never cross each
other.

With that observation, let us define the plane
graph representation $D(G)$ of $G$ as follow. We
cffl an altemating path $a_{1}b_{1}\ldots a_{m}b_{m}$ of $G$ which
satisfy $a_{i+1}\in\overline{a_{i}b_{1}}$ and $b_{:}\in\overline{a_{i+1}b_{*+1}}$ for all $i=$

$1\ldots m-1$ , a folded-path. Any edge is a folded-path
with length 1. A maximal folded-path is a folded-
path, which by extending the path with one more
vertex, no longer holds above condition. $D(G)$ is
a plane graph which is produced by replacing each
maximal folded-path $aPb$ of $G$ with a line $\overline{ab}$. See
that those two lines never intersect with each other
except for end points and for any perfect matching
of $D(G)$ , there is a corresponding perfect matchin$g$

of $G$ since each $aPb$ is an altemating path without
branch from inner vertices. With this correspon-
dence, we regard $G$ to be a plane graph itself.

3.2 Proof of Claim 1
In this section, we prove Claim 1. First, we show
that $\mathcal{M}$ is indeed partially ordered by $(\preceq)$ .
Lemma 2. $(\mathcal{M}, \preceq)$ is a partially ordered set i. e.,

1. $M\preceq M$ for all $M\in M$ ,

2. $M\preceq M’\wedge M’\preceq M\Rightarrow M=M’$, for all
$M,M’\in \mathcal{M}$, and

3.
$\mathcal{M}L\preceq M$

A $M\preceq R\Rightarrow L\preceq R$, for all $L,$ $M,$ $R\in$

Proof. Reflexivity and antisymmetry is clear. We
say transitivity. First we argue that for all $e\in$

. Case $e\not\in P(M\cup R)$ : Same as above.

Thus, $P(L\cup M\cup R)$ is consist of edges of $L$ and
$R$. Hence, if not $L\preceq R$ , this contradict with

$L\preceq\square$

$M\preceq R$ .

Moreover, by the fact that there is a lower bound
of any $M$ and $M’$ in $\mathcal{M}$ , we obtain Claim 1.

4 Pattern formation

4.1 Algorithm $\psi_{F}$

To give constructive proof of Theorem 2, we con-
sider the following algorithm $\psi_{P}$ for any pattem
$P$ such that all points in $P$ do not resides on sin-
gle line. (When all points in $P$ resides on single
line, the formation can be easily accomplished, thus
we omit the case.) The algorithm $\psi_{P}$ , given input
$X\in \mathcal{P}_{n},$ $\infty nsider$ the set

$C=\{$CWM$(X,$ $Z(P))|Z\in E_{2}^{+}\}$

and choose the matching $M^{*}$ which minimize its
cost (which is defined later) among all the candi-
date matchings in $C$, and $ac\infty rding$ to the matching
we let exactly one of robots move to its matched
position. We guarantee that the same matching
will be chosen even after the robot moved, by the
fact that the cost of the matching decreased by the
move is more than that of any other matchings.

Here, we consider the points of given pattem
to have coordinates as well as IDs. That is,
we consider our robots to share the coordinates
$p_{1},p_{2},$ $\ldots,p_{n}$ such that $\{p_{*}\}\simeq_{E_{2}^{+}}$ P. (This can
be done by letting $( p_{1},p_{2}, \ldots,p_{\mathfrak{n}})=\min\{P_{z}$ : $Z\in$

$E_{2}^{+}\}$ where P. is a vector obtained by sorting the
elements of $Z(P)$ in the increasing order, and the
minimum is taken with respect to the lexicograph-
$i\infty J$ order.)
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Using this labeled pattem, we define the cost
$w(M)$ of $M\in C$ by $w(M)=(w_{0},w_{1},w_{2}, \ldots,w_{n})$

where $w_{0}=d(M)$ , and $w_{1},$ $w_{2},$ $\ldots,$ $w_{n}$ is the costs
of elements of $M$ in the increasing order when the
cost $w(x, Z(f_{i}))$ of $(x, Z(f_{i}))\in M$ is defined by
$w(x, Z(f_{i}))=(h_{i}, l_{\iota’},\theta_{i},i)$ with

$l_{i}=|x-Z(f_{i})|$ ,
$\theta_{i}=\arg(f_{i}-Z^{-1}(x))$ ,

$h_{i}=\#\{(y, Z(f_{j}))\in\eta:\overline{yZ(f_{j})}\subset\vec{xZ(f_{i})}\}$ .

With these costs, let $M^{*}$ $=$ arg min$\{w(M)$ :
$M\in C\}$ and $(a^{*}, b^{*})=$ arg min$\{w(a, b)$ : $(a, b)\in$

$M^{*},w(a, b)\neq 0\}$ . Each of the above minimum is
taken with respect to the lexicographic order. Fi-
nally, $\psi_{P}(X)=b^{*}$ when $a^{*}=0$ , and $\psi_{P}(X)=0$ ,
otherwise.

4.2 Correctness of $\psi_{F}$

We prove Theorem 2. Let $C(t)$ denotes the can-
didate matchings $\psi p$ calculates at time $t$ , and $M_{0}^{*}$

denotes the matching $\psi_{P}$ calculates at time $0$ (in
$|$

the global coordinates system). $M_{0}^{*}$ is unique since
we are assuming $\rho’(R(O))=1$ .

First, we show that for any time $t,$ $\psi_{P}$ calculates
the matching $\{(r_{i}(t),M_{0}^{*}(r_{i}(0)))\}=:M_{t}^{*}.$ By the
definition of the algorithm, at time $0$ , there is ex-
actly one robot (let it be $r_{i}$ ) which moves, unless
$l_{j}(0)=0$ for an $j$ (in this case the formation is com- 1

plete). Moreover, we can assume there is no other
robot along its way blocking its movement; if there .
is such a robot $r_{j},$ $h_{j}<h_{i}$ which contradict with .the fact that $(r_{i}(0),M_{0}^{*}(r_{i}(0)))$ was the minimum
of $M_{0}^{*}$ . Let assume, without loss of generality, that
$r_{i}$ moves from time $0$ to $t$ with $\epsilon$ length. Then for
all $M_{t}\in C(t)(M_{t}\neq M_{t}^{*}),$ $w(M_{t}^{*})<w(M_{t})$ (thus
$\psi_{P}$ again choose $M_{t}^{*}$ at time $t$). This is because,
by the move, the cost of $M^{*}$ decreases from

$((h_{i_{1}}^{*}, l_{i_{1}}^{*}, \theta_{i_{1}}^{*},i_{1}), \ldots, (h_{i_{n}}^{*},l_{i_{n}}^{*},\theta_{i_{\mathfrak{n}}}^{*},i_{n})):=w(M_{0}^{*})$

to

$((h_{i_{1}}^{*},l_{i_{1}^{*}}’-\epsilon, \theta_{i_{1}}^{*}, i_{1}), \ldots, (h_{i_{n}}^{*}, l_{i_{n}}^{*},\theta_{i_{n}}^{*},i_{n}));=w(M_{t}^{*})$

$R$

while cost of other matching $M$ decreases from

$((h_{s_{1}}, l_{s_{1}},\theta_{s_{1}}, s_{1}),$
$\ldots,$

$(h_{\epsilon_{j}}, l_{s_{j}},\theta_{s_{j}}, s_{j}),$
$\ldots$ ,

$(h_{s_{n}}, l_{s_{n}},\theta_{s_{n}}, s_{n})):=w(M_{0})$

to
$((h_{s_{1}}, l_{s_{1}}, \theta_{s_{1}}, s_{1}),$

$\ldots,$
$(h, l-\delta, \theta_{j}, s_{j}),$ $\ldots$ ,

$(h_{s_{n}},l_{s_{n}},\theta_{s_{n}}, s_{n})):=w(M_{t})$

where $\delta\leq\epsilon$ (remember that $r_{i}$ moves toward
$M_{0}^{*}(r_{i}(0))$ directly, hence $\delta\leq\epsilon$ by the triangle
inequality). Adding to the fact that $M_{0}^{*}$ was the
minimum of $C(O),$ $M_{t}^{*}$ is again the minimum of
$C(t).$ FurthermQre, obviously $(r_{i}(t), M_{t}^{*}(r_{i}(t)))$ is
the minimum element of $M_{t}^{*}$ . Thus $\psi_{P}$ will choose
$r_{i}$ again unless $l_{i}(t)=0$ . When $l_{i}(t)=0$ , in-
ductively applying the same argument, eventually,
$l_{j}=0$ for all $j$ , completing the formation.

5 Discussion and conclusion
In this paper we showed that $\rho’(I)=1$ for all $I\in \mathcal{I}$

is sufficient for a pattern $P(|P|>2)$ to be formable
from initial positions $\mathcal{I}$ by oblivious A-synchronous
$E_{2}^{+}$ -observation robots.

Although we could not provide its proof, we con-
jecture that $\rho(I)$ dividing $\rho(P)$ for all $I\in \mathcal{I}$ is nec-
essary and sufficient for a pattem $P(|P|>2)$ to
be formable from initial positions $\mathcal{I}$ by oblivious $A-$

synchronous $E_{2}^{+}$-observation robots (as in the case
of S-synchronous $D_{2}^{+}$-observation robots).

Indeed, we conjecture that our algorithm $\psi_{P}$

form $P$ from initial positions $\mathcal{I}$ such that for all
$I\in \mathcal{I},$ $\rho’(I)$ divides $\rho’(P)$ . The problem is whether
or not the matching $\psi_{P}$ calculates is unique even
when $\rho’(I)\geq 2$ (as long as $\rho’(I)$ divides $\rho’(P)$ ),
which can be reduced to the following seemingly
positive conjecture:

Conjecture 1. Let $A,$ $B\in \mathcal{P}_{n}$ be two pauem such
that

1. $\rho’(A)>2$,

2. $\rho’(A)$ divides $\rho’(B)$ , and

3. all points in $B$ do not resides on single lines.
Let $B^{*} \in\arg_{B}\min\{d(A,$

$B^{\cdot}$

.
$:B’\simeq_{E_{2}^{+}}B\}.$ Then the

enter of $B^{*}\omega incides$ with that of $A$ .
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