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1 Introduction
In the classical best choice problem, a version of the secretary prob-

lem studied by Gilbert and Mosteller (1966) extensively, a fixed known
number $n$ of rankable objects (1 being the best and $n$ the worst) appear
one at a time in random order with all $n!$ permutations equally likely.
Each time an object appears, we observe only the relative rank of the
current object with respect to its predecessors. We must select one ob-
ject and find a stopping rule that maximizes the probability of selecting
the best one. The optimal rule passes over the first $s_{c}^{*}(n)-1$ objects
and stops with the first relatively best object if any, where $s_{c}^{*}(n)=$

$\min\{k\geq 1:\sum_{j=k+1^{\frac{1}{j-1}}}^{n}\leq 1\}$ . As $narrow\infty,$ $s_{c}^{*}(n)/narrow e^{-1}\approx 0.3679$

and the optimal probability of selecting the best overall also converges
to $e^{-1}.$

As a different version of the secretary problem, Ferguson, Hardwick
and Tamaki (1992) considered an optimal stopping problem called the
duration problem. Among other models, the basic one is the classical
duration problem (see their Section 2.2, in which this problem is called
the finite horizon duration problem), where we must find a stopping rule
that maximizes the expected duration of holding a relatively best object.
Clearly, we only select a relatively best object, receiving a payoff of 1
plus the number of future observations before a new relatively best object
appears or until the final stage $n$ is reached. The optimal rule passes over
the first $t_{c}^{*}(n)-1$ objects and stops with the first relatively best object
if any, where $t_{c}^{*}(n)= \min\{k\geq 1$ : $\sum_{j=k+2}^{n}\frac{1}{j-1}\sum_{i=j}^{n}\frac{1}{i}\leq\sum_{i=k+1}^{n}\frac{1}{i}\}$ . As
$narrow\infty,$ $t_{c}^{*}(n)/narrow e^{-2}\approx 0.1353$ and the optimal proportional payoff
$(=payoff/n)$ converges to $2e^{-2}\approx 0.2707.$
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The optimal stopping rule in each of the above two classical problems is
simple in a sense that it stops on the first relatively best object appearing
after a given stage. Such a simple rule is often referred to as a threshold
rule. $s_{c}^{*}(n)$ and $t_{c}^{*}(n)$ are called threshold values.

In this paper, we attempt to generalize the classical duration problem
into two directions by allowing the number of objects to be random and
also allowing the objects to appear in accordance with Bernoulli trials.
More specifically this can be stated as follows, if we call an object can-
didate when it is relatively best. Each object observed is immediately
judged either to be a candidate or not. Let $X_{j},j\geq 1$ , be the indi-
cator of the event that the $jth$ object is a candidate and suppose that
$X_{1},$ $X_{2},$

$\ldots$ be a sequence of independent Bernoulli random variables with
$P\{X_{j}=1\}=a_{j},j\geq 1$ . Let also $N$ be a bounded random variable rep-
resenting the number of available objects, i.e. length of random horizon.
It is assumed that $N$ is independent of the sequence $X_{1},$ $X_{2},$

$\ldots$ and has
a prior distribution $p_{k}=P\{N=k\}$ such that $\sum_{k=1}^{n}p_{k}=1$ and $p_{n}>0$

for a known upper bound $n$ and that the payoff is zero if no object is
chosen. This problem, referred to as the mndom hortzon duration prob-
lem, is completely specified by two sequences $\{a_{j}\}_{j=1}^{n}$ and $\{p_{k}\}_{k=1}^{n}$ , and
aims to find a stopping rule that maximizes the expected duration of
holding a candidate based on available information $X_{1},$ $X_{2},$

$\ldots,$
$X_{N}.$

The classical duration problem occurs as a special case of the random
horizon duration problem if $N$ is degenerated to $n$ , i.e. $P\{N=n\}=1$
and $a_{j}=1/j,$ $1\leq j\leq n$ , because the relative ranks $R_{1},$ $R_{2},$

$\ldots,$
$R_{n}$ of $n$

rankable objects presented one by one in random order have a property
that the $R_{j}’s$ are independent with $P\{R_{j}=i\}=1/j,$ $1\leq i\leq j$ , and the
only relevant information about $R_{j}$ is whether $R_{j}$ takes the value 1 or
not. We are said to be in the secretary case if $a_{j}=1/j,$ $1\leq j\leq n.$

In Section 2, we formulate the random horizon duration problem. This
problem can be distinguished into two models, MODEL 1 and MODEL
2, according to whether the final stage of the planning horizon is $N$ or $n.$

This distinction is related to the last candidate. That is, it is assumed
that if the chosen object is the last candidate, we can hold it until stage
$N$ in MODEL 1, whereas until stage $n$ in MODEL 2. MODELs 1 and
2 will be considered in Sections 3 and 4 respectively. It is easy to see
that the optimal rule is always a threshold rule for $n\leq 3$ . However,
for $n\geq 4$ , the form of the optimal rule heavily depends on $\{a_{j}\}_{j=1}^{n}$ and
$\{p_{k}\}_{k=1}^{n}$ , implying that the optimal rule is not necessarily a threshold
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rule. Hence, our main concem is to give a simple sufficient condition for
the optimal rule to be a threshold rule. An interesting application of
this condition appears in the secretary case. For $N$ having a uniform,
generalized uniform or curtailed geometric distribution, the optimal rule
is shown to be a threshold rule. The asymptotic results, as $narrow\infty$ , will
be also obtained for these prior distributions.

See Gnedin (2005), Samuels (2004), and Tamaki et al. (1998) for the
duration problems and Presman and Sonin (1972), Petruccelli (1983),
and Tamaki (2011) for the stopping problems with random horizon.

2 The random horizon duration problem

For the random horizon duration problem having the sequences $\{a_{j}\}_{j=1}^{n}$

and $\{p_{k}\}_{k=1}^{n}$ , we write $b_{j}=1-a_{j}=P\{X_{j}=0\},$ $1\leq j\leq n$ and intro-
duce the notations

$B_{k,i}=b_{k+1}b_{k+2}\cdots b_{i}, 0\leq k<i\leq n$

with $B_{k,k}=1$ for convenience, and

$\pi_{k}=p_{k}+p_{k+1}+\cdots+p_{n}, 1\leq k\leq n$

with $\pi_{1}=1$ and $\pi_{n}>0$ . Further define

$\sigma_{k}=\pi_{k}+(n-k)p_{k}.$

Denote by $k$ the state, where we have just observed the $kth$ object to
be a candidate, $1\leq k\leq n$ . Let $S(k)$ and $C(k)$ represent the expected
payoff earned by stopping with the current candidate in state $k$ and by
continuing observations in an optimal manner respectively. Then $V(k)=$

$\max\{S(k), C(k)\}$ represents the optimal expected payoff, provided that
we start from state $k$ . The following lemma gives the explicit form of
$S(k)$ .

Lemma 2.1. We have, for $1\leq k\leq n,$

(i) $S(k)= \frac{1}{\pi_{k}}\sum_{i=k}^{n}\pi_{i}B_{k,i}$ for MODEL 1.

(ii) $S(k)= \frac{1}{\pi_{k}}\sum_{i=k}^{n}\sigma_{i}B_{k,i}$ for MODEL 2.
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On the other hand, we have

$C(k)= \frac{1}{\pi_{k}}\sum_{j=k+1}^{n}\pi_{j}B_{k,j}r_{j}V(j)$ ,

where $r_{j}=a_{j}/b_{j},$ $1\leq j\leq n$ . Hence, the optimality equation can be
solved recursively to yield the optimal rule and the optimal payoff.

3 MODEL 1

Theorem 3.1. Let

$G(k)= \pi_{k}-r_{k+1}\sum_{i=k+1}^{n}\pi_{i}B_{k,i}, 1\leq k<n.$

Then a sufficient condition for the optimal rule to be a threshold rule is
that $G(k)$ changes its sign $from-to+at$ most once, that is,

once $G(k)\geq 0$ for some $k$ , then $G(j)\geq 0$ for all $k\leq j<n.$

Corollary 3.1. Let, for $1\leq k<n-1,$

$H(k)=(k+1)\pi_{k}-(k+2)\pi_{k+1}.$

Then, in the secretary case, a sufficient condition for the optimal rule
to be threshold rule is that $H(k)$ changes its sign $from-to+at$ most
once.

Corollary 3.1 is applicable to the following distributions.
Example 3.1 ($N$ is degenerated to $n$ ) $:p_{n}=1$ and $Pk=0,1\leq k<n.$

Example 3.2 (uniform): $p_{k}=1/n,$ $1\leq k\leq n.$

Example 3.3 (generalized uniform):

$p_{k}=\{\begin{array}{ll}0, if 1\leq k<T\frac{1}{n-T+1}, if T\leq k\leq n,\end{array}$

for a given parameter $T=1,2,$ $\ldots,$
$n.$

Example 3.4 (curtailed geometric) : $p_{k}=(1-q)q^{k-1}/(1-q^{n}),$ $1\leq k\leq$

$n$ for a given parameter $0<q<1.$
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3.1 Asymptotic results in the secretary case

Let $z^{*}$ and $v^{*}$ be the limiting threshold value and the limiting optimal
payoff respectively. We have the following asymptotic results.

Lemma 3.1.(Uniform prior.) Let $\alpha^{*}(\approx 0.0775)$ be the unique mot
$\alpha\in(0,1)$ of the equation $2(1+\sqrt{\alpha})+\log\alpha=0$ . Then

$z^{*}=\alpha^{*}, v^{*}=\alpha^{*}(1+\sqrt{\alpha^{*}})^{2}$

Lemma 3.2.(Generalized uniform prior.) Let $T$ depend on $n$ in such
a way that $T/narrow\alpha$ as $narrow\infty$ for a fixed $0<\alpha<1$ . Then the
asymptotic results are distinguished into two cases according to whether

$\alpha\leq\alpha^{*}$ or $\alpha>\alpha^{*}$ , where $\alpha^{*}$ is as defined in Lemma 3.1. (we use below
the notations $z_{\alpha}^{*}$ and $v_{\alpha}^{*}$ for $z^{*}$ and $v^{*}$ respectively to make explicit the
dependence on $\alpha$).
Case (i): $0\leq\alpha\leq\alpha^{*}$

$z_{\alpha}^{*}= \alpha^{*}, v_{\alpha}^{*}=\frac{\alpha^{*}(1+\sqrt{\alpha^{*}})^{2}}{1-\alpha}.$

Case (ii): $\alpha^{*}<\alpha<1$

$z_{\alpha}^{*}=\alpha 1-\alpha e$$\underline{\sqrt{\alpha}-\alpha}-2, v_{\alpha}^{*}=(1-\frac{\sqrt{\alpha}}{1-\alpha}\log\alpha)z_{\alpha}^{*}.$

Lemma 3.3.(Curtailed geometric prior.) Let $q$ depend on $n$ through
$q=1-c/n$ for a fixed positive value $c(<n)$ . We use the notations $z_{c}^{*}$

and $v_{c}^{*}$ for $z^{*}$ and $v^{*}$ respectively to make explicit the dependence on $c.$

Then $z_{c}^{*}$ is a unique mot $z\in(O, 1)$ of the equation

$J_{c}(z)+ \log z[I_{c}(z)+e^{-c}(1+\frac{1}{2}\log z)]=0,$

where

$I_{c}(z)= \int_{z}^{1}\frac{e^{-cx}}{x}dx, J_{c}(z)=\int_{z}^{1}\frac{e^{-cx}}{x}(1-\log x)dx.$

Moreover,

$v_{c}^{*}= \frac{z_{c}^{*}}{1-e^{-c}}[e^{-c}\log z_{c}^{*}+I_{c}(z_{c}^{*})].$
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4 MODEL 2

Theorem 4.1. Let

$G(k)= \sigma_{k}-r_{k+1}\sum_{i=k+1}^{n}\sigma_{i}B_{k,i}, 1\leq k<n.$

Then a sufficient condition for the optimal rule to be a threshold rule is
that $G(k)$ changes its sign $from-to+at$ most once, that is,

once $G(k)\geq 0$ for some $k$ , then $G(j)\geq 0$ for all $k\leq j<n.$

For the applications to the secretary case, the following corollary is
useful.
Corollary 4.1. Let

$H(k)=(k+1)\sigma_{k}-(k+2)\sigma_{k+1}, 1\leq k<n-1.$

Then, in the secretary case, a sufficient condition for the optimal rule
to be a threshold rule is that $H(k)$ changes its sign $from-to+at$ most
once

Corollary 4.1 is applicable to the distributions given in Section 3.

4.1 Asymptotic results in the secretary case

We have the following asymptotic results.
Lemma 4.1.(Uniform prior.) Let $\alpha^{*}(\approx 0.0775)$ be as defined in
Lemma 3.1. Then

$z^{*}=\alpha^{*}, v^{*}=2\alpha^{*}(1+\sqrt{\alpha^{*}})^{2}$

Lemma 4.2.(Generalized uniform prior.) The two cases are distin-
guished according to whether $\alpha\leq\alpha^{*}$ or $\alpha>\alpha^{*}$ , where $\alpha^{*}$ is as defined
in Lemma 3.1.(we use below the notations $z_{\alpha}^{*}$ and $v_{\alpha}^{*}$ for $z^{*}$ and $v^{*}$ re-
spectively).
Case (i): $0\leq\alpha\leq\alpha^{*}$ ;

$z_{\alpha}^{*}= \alpha^{*}, v_{\alpha}^{*}=\frac{2\alpha^{*}(1+\sqrt{\alpha^{*}})^{2}}{1-\alpha}.$

Case (ii): $\alpha^{*}<\alpha<1$ ; Let

$\rho=-(2+\frac{1+\alpha}{1-\alpha}\log\alpha)$ , $\sigma=1-\rho+\sqrt{1+\frac{2\rho(2+\rho)}{1+\alpha}}.$
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Then

$z_{\alpha}^{*}=e^{-\sigma}, v_{\alpha}^{*}=(\rho+\sigma)e^{-\sigma}.$

Lemma 4.3.(Curtailed geometric prior.) We use the notations $z_{c}^{*}$

and $v_{c}^{*}for$ $z^{*}$ and $v^{*}$ respectively. Then $z_{c}^{*}$ is a unique root $z\in(0,1)$ of
the equation

$e^{-cz}-e^{-c}-e^{-c} \log z(2+\frac{1}{2}\log z)$

$=(1+c)J_{c}(z)+\{1+(1+c)\log z\}I_{c}(z)$ .

Moreover,

$v_{c}^{*}= \frac{z_{c}^{*}}{1-e^{-c}}[e^{-c}-e^{-cz_{c}^{*}}+e^{-c}\log z_{c}^{*}+(1+c)I_{c}(z_{c}^{*})]$

$\neq,\vee’\doteqdot x_{t}m$
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