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Abstract

In this paper we present some bounds for stochastic performances of multi-state systems, using as-
sociatcd probability mcasurcs on statc spaccs dcfincd to bc mathcmatically partially ordcrcd scts.
These bounds are obtained by using series decomposition of systems which is well known as max-min
fomula for the binar)-state case.
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and Yu, Koren and Guo [25] presented a model of such cases and gave some properties of them, but
not fully.

A mathematical generalization to partially ordered set cases. aiming at giving a theoretical $frame-$

work of multi-state systems, is given by F.Ohi [19], giving existence theorem of series and parallel
systems and decomposition of systems structure by series systems, which is well known for the binary
case as “

$\max$ -nin” formulae with minimal path or cut sets, see Barlow and Proschan [1].
In this work, a continuation of our recent work F.Ohi [19], using associated probability measures

on partially ordered sets, see F.Ohi, S.Shinmori and T.Nishida [16], and series decomposition of
multi-state systems, we give stochastic bounds for reliability performances of multi-state systems.

Thc following scctions 2 and 3 givc a summary of thc rcsults of F.Ohi [19] which arc nccdcd for
giving stochastic bounds in section4.

2. Coherent Systems

Definition 1. (Definition of a System) $A$ system composed of $n$ components (a system of order n)
is a triplet $(\Omega_{C}, S, \varphi)$ satisfying the following conditions.

(1) $C=\{1, \cdots , n\}$ is the set of integers from 1 to $n$ , where each number is the index of each unit.
(2) $\Omega_{:}(i\in C)$ is a finite lattice set having the least and the greatest elements denoted by $m_{i}$ and

$M_{i}$ , rcspcctivcly.
(3) $\Omega_{C}=\prod_{i=1}^{n}\Omega_{i}$ is the product lattice set of $\Omega_{i}(i\in C)$ . Each element $x=(x_{1}, \cdots , x_{n})\in\Omega c,$

which is called a state vector, means a combination of states of the components as $x_{i}\in\Omega_{i}$ is the state
of the $i-$ th component.

(4) $S$ is a finite lattice set having the least and the greatest elements denoted by $m$ and $M,$

respectively.
(5) $\varphi$ is a surjection from $\Omega_{C}$ to $S$ , which is also called a structure function. For a state vector

$x\in\Omega_{C},$ $\varphi(x)$ is the state of the system.
The least and the greatest elements mean the full failure and the perfect functioning states, re-

spcctivcly.

In the sequel we sometimes use a notation for a state vector as

$(k_{i}, x)=(x_{1}, \cdots,x_{i-1)}k,x_{i+1}, \cdots, x_{n}) , k\in\Omega_{i}$

to highlight the state of the $i-$th component ae $k.$

The orders on $\Omega_{i}(i\in C),$ $S$ are denoted by the common symbol $\leqq$ , and $a<b$ is used for $a$ and $b$

of $\Omega_{i}(i\in C)$ or $S$ to mean $a\leqq b$ and $a\neq b$ . The symbols $\wedge$ and $\vee$ denote inf and $\sup$ , respectively.
For $x=(x_{1}, \cdots, x_{n})$ and $y=(y_{1}, \cdots, y_{n})$ of $\Omega_{C},$ $x\leqq y$ means $x_{i}\leqq y_{i}(\forall i\in C)$ and $x<y$ means

$x_{i}<y_{i}(\forall i\in C)$ . We notice for $x$ and $y$ of $\Omega_{C,}.x\not\leqq y$ means that $x_{i}\leqq y_{i}(\forall i\in C)$ and $x_{j}<y_{j}$ for
some $j\in C$ , and is not necessarily saane to $x<y$ . On the other hand for $x$ and $y$ of $\Omega_{i}(i\in C)$ or $S,$

$x\not\leqq y$ is equivalent to $x<y$ . Furthermore since $\Omega_{i}(i\in C)$ and $S$ are assumed to be lattice sets, then
we may define the infimum and the maximum of two state vectors $x$ and $y$ as

$x\wedge y=^{f}(x_{1}\wedge y_{1}, \cdots, x_{n}\wedge y_{n})de, x\vee y^{dej}=(x_{1}\vee y_{1, :}x_{n}\vee y_{n})_{:}$

whcrc $\wedge$ and $\vee$ mean thc infimum and thc maximum, rcspcctivcly.
A system $(\Omega_{C}, S, \varphi)$ is simply called a system $\varphi$ when there is no confusion. For a system $\varphi$ and

an element $s\in S$ , we define

$V_{\epsilon\leqq}(\varphi) def= \{x\in\Omega_{C}|\varphi(x)\geqq s\},$

$v_{\leqq s}(\varphi) def= \{x\in\Omega_{C}|\varphi(x)\leqq s\},$

$V_{s}\langle\varphi) def= \{x\in\Omega_{C}|\varphi\langle x)=s\}.$

Sometimes omitting $\varphi$ , we simply write, for example, $V.\leqq(\varphi)$ as $V_{s}\leqq.$
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For a while, we assume $A$ to be an ordered set. Generally $AII(A)$ and $MA(A)$ are the sets of
all the minimal and maximal elements of $A$ , respectively. For $a,$ $b\in A,$ $b$ is called a successor of $a$ if
$a<b$ and there is no element $c$ of $A$ such that $a\leqq c\leqq b,$ $a\neq c$ and $b\neq c$ , in which case $a$ is also
called a predecessor of $b.$ $A$ successor $b$ of $a$ is sometimes written as $a+1$ and $a$ as $b-1$ . We notice
that neither a predecessor nor a successor is uniquely detemined in genera$J$ , since the state spaces
are assumed to be lattice sets and then not necessarily to be totally ordered sets. $S(a)$ is defined to
be the set of a the successors of $a.$

For $r$ and $t$ of $A$ such that $r<t$ , a path of length $k$ from $r$ to $t$ is a series $(s_{0}, s_{1}, \cdots , s_{k})$ satisfying
$s_{0}=s<s_{1}<\cdots<s_{k}=t$ and $s_{i+1}=s_{i}+1,$ $i=0,1,$ $\cdots,$

$k.$ $d(A)$ is used to denote the longest
lcngth among thc paths from minimal to maximal clcmcnts of $A.$

Definition 2. (Increasing Property) $A$ system $\varphi$ is called increasing, when for $x$ and $y$ of $\Omega_{C:}x\leqq y$

implies $\varphi(x)\leqq\varphi(y)$ .

Definition 3. (Normal Property) $A$ system $\varphi$ is called normal when for every $s\in S,\cdot$

$\forall x\in MI(V_{s\leqq}), \varphi(x)=s$ , (1)
$\forall x\in MA(V\leqq\epsilon), \varphi(x)=s$ , (2)

in othcr words (3) is cquivalmt to $MI(V_{s\leqq})=MI(V_{\epsilon})$ and (4) to $AIA(V\leqq\epsilon)=MA(V_{\epsilon})$ .

Definition 4. (Relevant Property) (1) The component $i\in C$ is said to be relevant to the system
when the following is satisfied.

$\forall r\in S,\forall s\in S(r),$ $\exists(k_{i},x),$ $\exists(l_{i},x)$ su& that $k<l,$ $\varphi(k_{i}, x)=r,$ $\varphi(l_{i},x)=s.$

(2) $A$ system $\varphi$ is called relevant when every component is relevant to the system.

Definition 5. (Cohcrcnt Systcm) $A$ systcm $\varphi$ is callcd coherent, whcn $\varphi$ is increasing, normal and
relevant.

For an increasing system $\varphi$ , the condition in (1) of Definition 4 is equivalent to

$\forall r\in S,\forall s\in S(r), \exists x\in\Omega_{C}, \varphi\langle x)=s, \varphi(x_{i}-1, x)=r.$

Definition 6. (Weakly Relevant Property) (1) The component $i\in C$ is said to be weakly relevant
to the system when the following is satisfied.

$\exists r\in S,$ $\exists s\in S(r),$ $\exists(k_{i},x),$ $\exists(l_{i},x)$ such that $k<l,$ $\varphi(k_{i},x)=r,$ $\varphi(l_{i},x)=s.$

(2) $A$ system $\varphi$ is called weakly relevant when every component is weakly relevant.

The condition of Definition 6 is apparently weaker than that of Definition 5 and has practically no
restriction on the systems, since if the condition of Definition 6 does not hold for a component $i\in C,$

then we have
$\forall x\in\Omega_{C\backslash \{i\}},\forall k,\forall l\in\Omega_{i}, \varphi(k_{i}, x)=\varphi(l_{i}, x)$ ,

which means that the states of the component $i$ does not contribute to the performance of the system
at all and then we can delete the component $i$ from the system. In the sequel we assume $\varphi$ to be
weakly relevant without generality.

3. Series Systems and Decomposition of Systems

In this section we present a definition of series and parallel systems for the case of finite lattice,
not necessarily totally ordered sets, and a decomposition of systems by series systems is given which
is uscd in thc ncxt scction to givc stochastic bounds for rcliability pcrfomanccs of systcms.

Noticing that $\Omega_{i}(i\in C)$ and $S$ are finite lattice sets. we have infimum and supremum elements
for every subset of $\Omega_{i}(i\in C),$ $S$ and $\Omega_{C}.$
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Definition 7. (Series and Parallel Systems) Let $\varphi$ be an increasing system.
(1) $\varphi$ is called a series system if $V.\leqq$ has the least element which is simply written as $m_{s}.$

(2) $\varphi$ is called a parallel system if $V\leqq s$ has the greatest element which is simply written as $M_{s}.$

Since the parallel systems are the dual of series systems, in the sequel we focus on the series
systems.

When $\varphi$ is a series system, $\varphi\langle\min V_{8}\leqq)=s$ for every $s\in S$ , since the system $\varphi$ is $su\dot{\eta}$ective, then
the system $\varphi$ is necessarily normal.

In the following we assume $(\Omega_{C}, S, \varphi)$ to be an increasing, normal and weakly relevant system.
Letting $p=(s_{0}, s_{1:}\cdots, s_{k})$ be a path from $m$ to $M$ of $S$ , so $s_{0}=m$ and $Sk=M$, we define
$\varphi p:\Omega_{C}arrow S_{p}=\{s_{0}, s_{1,}.\cdots, s_{k}\}$ as

$x \in\Omega_{C}, \varphi p(x)=\max\{s_{l}|s_{l}\leq\varphi(x)\}.$

The parenthesis is not empty. since $\varphi(x)\geq s_{0}=m.$

Then we have $\varphi_{p}$ clearly satisfying

$\varphi(x)=s\Rightarrow\backslash \prime\rho p(x)\{\begin{array}{ll}=s if s\in S_{p},\leqq s if s\not\in S_{p}.\end{array}$ (3)

Letting $\mathcal{P}$ be the set of all the paths from $m$ to $M$ on $S$ and noticing that for every $s\in S$ there
exists a path from $m$ to $M$ which contains $s$ , from (3) we have for every $x\in\Omega_{C},$

$\varphi(x)=_{p}\max_{\epsilon \mathcal{P}}\varphi p(x)$ . (4)

Furthermore we decompose $\varphi p$ . For a path $p=$ $(s_{0}, s_{1}, \cdots , s_{k})$ from $m$ to $M$ on $S$, let $\mathcal{K}p$

be the set of all maximal paths of $\bigcup_{\epsilon\in s_{p}MIV_{S}}$ . Notice that the initia$J$ element of each path of
$\mathcal{K}p$ is $m=(m_{1}, \prime\cdot\cdot, m_{n})$ . For a sequence $k=(m, x_{1}, \cdots, x_{k})\in\kappa_{p}$ , we define a series system
$\varphi_{k}^{p}:\Omega_{C}arrow S_{p}=\{s_{0}, s_{1}, \cdots.s_{k}\}$ 下$S$

$\varphi_{k^{(x)=s}}^{pdef}$ , where $\max\{x_{l}|x_{l}\leq x\}\in MIV_{s}.$

Then we have the following formula.

$\varphi p(x)=\max\varphi_{k}^{p}(x)$ . (5)
$k\in\kappa_{P}$

Combining (4) and (5) $,$

$\backslash ve$ finally have a decomposition of the system $\varphi$ by series systems $\varphi_{k}^{p},$ $p\in$

$\mathcal{P},$ $k\in\kappa_{p}.$

Theorem 1 For every $x\in\Omega_{C},$

$\varphi(x)=\max\max\rho_{k}^{p}(x)p\in \mathcal{P}k\in \mathcal{K}p^{t’}.$

4. Stochastic Bounds for Systems

In this section we give stochastic bounds for stochastic performances of a multi-state system
$( \prod_{i=1}^{n}\Omega_{i:}S, \varphi)$ , which is a generalization of those well known for the binary-state coherent systems
expressed by using minimal path series systems.

First we give a general definition of associated probability on an ordered set before showing stochas-
tic bounds for multi-state systems.

Definition 8. (Ohi, Shinmori and Nishida [16]) $A$ probability $Q$ on an ordered set $\Omega$ is called
associated when the following condition is hold.

$\forall$ increasing subsets $A$ and $B$ of $\Omega,$ $Q(A\cap B)\geq Q(A)Q(B)$ .
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Noticing that $A\subset\Omega$ is an increasing set if and only if $A^{C}=\Omega\backslash A$ is a decreasing set, we have an
equivalent definition of an associated probability as the following.

$\forall$ decreasing subsets $A$ and $B$ of $\Omega,$ $Q(A\cap B)\geq Q(A)Q(B)$ .

Lemma 1 For an associated probability $Q$ on an ordered set $\Omega,$

$\forall$ increasing subsets $A$ and $B$ of $\Omega,$ $Q(A\cup B)\leq 1-(1-Q(A)\rangle(1-Q(B))$ .
PROOF. Sincc $A_{J}^{C}.B^{c}$ arc dccrcasing sets for increasing scts $A$ and $B$ , wc havc

$Q(AuB)=1-Q(A^{c}\cap B^{c})\leq 1-Q(A^{c})Q(B^{c})=1-(1-Q(A))(1-Q(B))$ .

Theorem 2 Let $P$ be an associated probability on $\prod_{i=1}^{n}\Omega_{i}$ , where the state spaces are finite sets,
then the power set is taken to be the $\sigma$-field. Using the decomposition of systems by series systems,
we have the folloutng inequalities.

$\prod$ $\prod P(\varphi_{k}^{P}\leq s)\leq$ $P(\varphi\leq s)$ $\leq$ min min $P(\varphi_{k}^{p}\leq s)$ ,
$p\epsilon \mathcal{P}k\epsilon\kappa_{p}$

$p\in \mathcal{P}k\in\kappa_{p}$

max max $P(\varphi_{k}^{p}\geq s)\leq$ $P(\varphi\geq s)$ $\leq 1-\prod\{1-P(\varphi^{p}\geq s)\}$

$p\in \mathcal{P}k\in\kappa_{p} p\in \mathcal{P}$

$\leq 1-\prod \prod\{1-P(\prime\varphi_{k}^{p}\geq s)\}.$

$p\epsilon \mathcal{P}k\in\kappa_{p}$

PROOF. Noticing that $\varphi_{k}^{p},$ $\varphi^{p}(p\in \mathcal{P}, k\in\kappa_{p})$ are increasing and $P$ is an associated probability
measure, the proof is easy.

$P( \varphi\leq s)=P(\epsilon\max_{\mathcal{P}}\max\varphi_{k}^{p}\leq s)=P(\bigcap_{p\in \mathcal{P}}\bigcap_{k\epsilon\kappa_{p}}\{\varphi_{k}^{p}\leq s\})\geq\prod_{p\epsilon \mathcal{P}}\prod_{k\epsilon\kappa_{p}}P(\varphi_{k}^{p}\leq s)$

Since the following relationships hold,

$\varphi(x)\leq s$ $\Leftrightarrow$ max max $\varphi_{k}^{p}(x)\leq s$ $\Leftrightarrow$ $\forall p\in \mathcal{P},$ $\forall k\in\kappa_{p},$ $\varphi_{k}^{p}(x)\leq s$

$p\epsilon \mathcal{P}k\epsilon\kappa_{p}$

and then $\forall p\in P,$ $\forall k\in\kappa_{p}$

$\varphi(x)\leq s \Rightarrow \varphi_{k}^{p}(x)\leq s.$

Hence we have the following inequality:

$P(\varphi\leq s)\leq p\in \mathcal{P}m\dot{m}\dot{m}nPk\epsilon\kappa(\varphi_{k}^{p}\leq s)$ .

The second and the third inequalities of the second inequality-chain are easily obtained by Lemma 1.
The first inequality of the chain is given by noticing the following relations.

Sincc $\varphi(x)=\max\in \mathcal{P}\max\varphi_{k}^{p}(x)$ , thcn wc havc

$\forall p\in \mathcal{P}, \forall k\in\kappa_{p}, \varphi_{k}^{p}(x)\leq\varphi(x)$

and
$\forall p\in \mathcal{P}, \forall k\in\kappa_{p}, P(\varphi_{k}^{p}\geq s)\leq P(\varphi\geq s)$ .

Thus the first inequality of the second chain holds.

Corollary 1 When the probability $P$ on $\prod_{i=1}^{n}\Omega_{i}$ is given as the product probability of associated
probabilities $P_{i}$ on $\Omega_{i}$ $(i=1_{\backslash }\cdots , n)$ , then $P$ is associated and the similar probability bounds are given
for the system.
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5. Concluding Remarks

In this paper we have given stochastic bounds for reliability perfomances of multi-state systems,
using the decomposition of system structure functions by series systems (F.Ohi [19]) and associated
probability measures on partially ordered sets $(F.Ohi, S$ Shinmori $and T.$Nishida $|16])$ . Numerical
examinations and evaluating degree of the approximation of the given bounds are remained to be a
future problem.
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