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Stochastic Evaluation of Multi-State Coherent Systems
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Abstract

In this paper we present some bounds for stochastic performances of multi-state systems, using as-
sociated probability mecasurcs on statc spaces defined to bc mathematically partially ordered scts.
These bounds are obtained by using series decomposition of systems which is well known as max-min
formula for the binary-state case.
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1. Introduction

A basic problem of reliability theory is to explain relationships among the reliability performances
of systems and the components. Using Boolean functions, Mine [11] introduced the concept of mono-
tone systems, in which all the state spaces of components and the systems were assumed to be {0, 1},
so called binary state systems, where 0 and 1 denote the failure and the functioning states, respec-
tively. ”Monotone system” means that the more the number of functioning components is, the higher
the performance level of the system is.

Mathematical aspects of binary state monotone systems have been fully explained by Birnbaum
and Esary [3], Birnbaum, et al. [4] and Esary and Proschan [6]. Barlow and Proschan [1] have
summarized the reliability studies of the binary state monotone systems. Pham [20] has compiled
recent work about rcliability engincering in which scveral formulac for solving practical rcliability
problems are given.

In many practical situations, however, systems and their components could take many other per-
formance levels from the perfectly functioning state to the complete failure state, thus multi-state
reliability models are needed for understanding and solving practical problems.

Multi-state systems were introduced in the context of cannibalization by Hirsch, Meisner and Boll
[8] and Hochberg [9]. Mathematical studies of multi-state systems were first carried out by Barlow and
Wu [2] and El-Neweihi, Proschan and Sethuraman [5]. Barlow and Wu [2] defined multi-state coherent
systems, making use of the minimal path and cut sets of binary state systems. El-Neweihi, Proschan
and Scthuraman [5] defined the multi-statc systems assuming all the statc spaces to be cxpressed
commonly as {0,1, --- , M}. Their results were almost analogous to those of binary systems. Huang,
Zuo and Fang [10] introduced the multi-state consecutive k-out-of-n systems and provided algorithms
to evaluate the performance probabilities of the systems. Zuo, Hang and Kuo [26] defined a multi-
state coherent systems assuming all the state spaces of the systems and components were the same
finite totally ordered sets as El-Neweihi, Proschan and Sethuraman [5].

Ohi and Nishida {13], Ohi [18] have defined multi-state systems, assuming that the state spaces of
components and systems are totally ordered finite sets which have not necessarily the same cardinal
numbers, where they have fully examined order and stochastic properties of multi-state systems and
almost all the concepts and results of binary-state cases arc generalized to totally ordered cases.

Yu, Koren and Guo [25] have presented some practical examples in which components and systems
have deteriorating states for which we cannot say one deteriorating state is better/worse than other
one. Then a model of reliability systems assuming partially ordered sets for the state spaces is useful,
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and Yu, Koren and Guo [25] presented a model of such cases and gave some properties of them, but
not fully.

A mathematical generalization to partially ordered set cases, aiming at giving a theoretical frame-
work of multi-state systems, is given by F.Ohi [19], giving existence theorem of series and paraliel
systems and decomposition of systems structure by series systems, which is well known for the binary
case as "max — min” formulae with minimal path or cut sets, see Barlow and Proschan [1].

In this work, a continuation of our recent work F.Ohi [19], using associated probability measures
on partially ordered sets, see F.Ohi, S.Shinmori and T.Nishida [16], and series decomposition of
multi-state systems, we give stochastic bounds for reliability performances of multi-state systems.

The following scctions 2 and 3 give a summary of the results of F.Ohi [19] which arc nceded for
giving stochastic bounds in section4.

2. Coherent Systems

Definition 1. (Definition of a System) A system composed of n components (a system of order n)

is a triplet (¢, S, ) satisfying the following conditions.

(1) C = {1,--- ,n} is the set of integers from 1 to n, where each number is the index of each unit.

(2) Q; (i € C) is a finite lattice set having the least and the greatest elements denoted by m; and
M;, respectively.

(3) Q¢ = [1;=; 9 is the product lattice set of §; (i € C). Each element z = (z1,--- , %) € Qc,
which is called a state vector, means a combination of states of the components as z; € §); is the state
of the i—th component.

(4) S is a finite lattice set having the least and the greatest elements denoted by m and M,
respectively.

(5) ¢ is a surjection from Q¢ to S, which is also called a structure function. For a state vector
z € Q¢, p(x) is the state of the system.

The least and the greatest elements mean the full failure and the perfect functioning states, re-

spectively.
In the sequel we sometimes use a notation for a state vector as
(k%z):(z‘la“' 7xi—1)kazi+1y"' 1xn)5 ke Qi

to highlight the state of the i—th component as k.

The orders on (); (i € C), S are denoted by the common symbol £, and a < b is used for a and b
of Q; (: € C) or S to mean a < b and a # b. The symbols A and V denote inf and sup, respectively.

Forz = (21, -~ ,z,) and y = (41, ,¥n) of Qc, ¢ S y means z; S y; (Vi € C) and ¢ < y means
z; < y; (Vi € C). We notice for z and y of Qc. ¢ £ y means that z; S y; (Vi € C) and z; < y; for
some j € C, and is not necessarily same to £ < y. On the other hand for z and y of Q; (i € C) or S,
z £ y is equivalent to z < y. Furthermore since §;( € C) and S are assumed to be lattice sets, then
we may define the infimum and the maximum of two state vectors € and y as

2 d
zANY __e_:f (1'1 ANyp, - yxn/\yn)7 zVy éf(wlvyly"' 7£nvyn)7

where A and V mean the infimum and the maximum, respectively.
A system (Q¢, S, ) is simply called a system @ when there is no confusion. For a system ¢ and
an element s € S, we define

Viclp) ¥ {zec @) 2s),

Velp) & {z e p(@) S s},
Vie) ¥ {z e | olx) = s}.

Sometimes omitting ¢, we simply write, for example, V,<(¢) as V<.
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For a while, we assume A to be an ordered set. Generally AfI(A) and M A(A) are the sets of
all the minimal and maximal elements of A, respectively. For a,b € A, b is called a successor of o if
a < b and there is no element ¢ of A such that a £ ¢ S b, a # ¢ and b # ¢, in which case a is also
called a predecessor of b. A successor b of a is sometimes written as a + 1 and @ as b — 1. We notice
that neither a predecessor nor a successor is uniquely determined in general, since the state spaces
are assumed to be lattice sets and then not necessarily to be totally ordered sets. S(a) is defined to
be the set of all the successors of a.

For r and t of A such that r < ¢, a path of length k from r to ¢ is a series (sg, 81, - - , 8) satisfying
30 =8< 8 <--< 8 =tand s;41 = 8;+1, ¢ =0,1,--- |k d(A) is used to denote the longest
length among the paths from minimal to maximal clements of A.

Definition 2. (Increasing Property) A system ¢ is called increasing, when for z and y of Qc. 2 S y
implies ¢(z) = ¢(y)-

Definition 3. (Normal Property) A system g is called normal when for every s € S,
vz € MI(V,g), ple) =5, 1)
Vz € A.[A(V_s_,), p(x) =s, 2
in other words (3) is cquivalent to MI(V,<) = MI(V;) and (4) to MA(Vg,) = MA(V;).

Definition 4. (Relevant Property) (1) The component ¢ € C is said to be relevant to the system
when the following is satisfied.

Vr € 8,Vs € S(r),3(k;,x),3(l;, x) such that k£ < I, ok, z) =r,¢(;)=s.
(2) A system o is called relevant when every component is relevant to the system.

Definition 5. (Cohcrent System) A system o is called coherent, when o is increcasing, normal and
relevant.

For an increasing system ¢, the condition in (1) of Definition 4 is equivalent to
Vr € 8,Vs € S(r), 3z € N¢, p(x) =35, o(z: = 1,z) =7

Definition 6. (Weakly Relevant Property) (1) The component ¢ € C is said to be weakly relevant
to the system when the following is satisfied.

3Ir € S,3s € S(r),3(ks,x),3(li, z) such that k <1, ki, z) =r,¢(li,x) = s.
(2) A system ¢ is called weakly relevant when every component is weakly relevant.

The condition of Definition 6 is apparently weaker than that of Definition 5 and has practically no
restriction on the systems, since if the condition of Definition 6 does not hold for a component i € C,

then we have
Vz € QC\{'L}:Vk7Vl € Qi: (P(ki, E) = (P(l,',iz),

which means that the states of the component 7 does not contribute to the performance of the system
at all and then we can delete the component ¢ from the system. In the sequel we assume ¢ to be
weakly relevant without generality.

3. Series Systems and Decomposition of Systems

In this section we present a definition of series and parallel systems for the case of finite lattice,
not necessarily totally ordered sets, and a decomposition of systems by series systems is given which
is used in the next scetion to give stochastic bounds for rcliability performances of systcms.

Noticing that Q; (i € C) and S are finite lattice sets, we have infimum and supremum elements
for every subset of ; (i € C), S and Q¢.
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Definition 7. (Series and Parallel Systems) Let ¢ be an increasing system.
(1) ¢ is called a series system if V,< has the least element which is simply written as m,.
(2) p is called a parallel system if V¢, has the greatest element which is simply written as M,.

Since the parallel systems are the dual of series systems, in the sequel we focus on the series
systems.

When g is a series system, (min V,<) = s for every s € S, since the system ¢ is surjective, then
the system ¢ is necessarily normal. -

In the following we assume ()¢, S, ¢) to be an increasing, normal and weakly relevant system.
Letting p = (sg,81, - ,8k) be a path from m to M of S, so s = m and s = M, we define
©p :QC - Sp = {So,sl,'“ ,Sk} as

z € Qc, pp(x) =max{ s | s, < p(x) } .

The parenthesis is not empty. since p(x) > s =m .
Then we have @p clearly satisfying

o@=s =e@{ 2t § 5P ®

Letting P be the set of all the paths from m to M on § and noticing that for every s € S there
exists a path from m to M which contains s, from (3) we have for every & € Qc,

= x). 4

#(z) = max op( ) (4)

Furthermore we decompose @p. For a path p = (sg,s1 , -+ , 5x) from m to M on S, let Kp

be the set of all maximal paths of UsespM IV,. Notice that the initial element of each path of
Kp is m = (my,--- ,my). For a sequence k = (m,x1, -+ ,xx) € Kp, we define a series system

g&z : QC — Sp = {50,81,"‘ ,Sk} as
ga'Z(m) def s, where max{ z; | &, <x } € MIV,.
Then we have the following formula.

ep(z) = max o (x) . (5)

Combining (4) and (5), we finally have a decomposition of the system ¢ by series systems goz, pE
P,k e ’Cp.

Theorem 1 For every x € Q¢,
plz) = max ’:nax <,9k(z)

4. Stochastic Bounds for Systems

In this section we give stochastic bounds for stochastic performances of a multi-state system
(TT7=; 4. S, ), which is a generalization of those well known for the binary-state coherent systems
expressed by using minimal path series systems.

First we give a general definition of associated probability on an ordered set before showing stochas-
tic bounds for multi-state systems.

Definition 8. (Ohi, Shinmori and Nishida [16]) A probability Q on an ordered set § is called
associated when the following condition is hold.

V increasing subsets A and Bof Q, Q(ANB) > Q(4)Q(B) .



204

Noticing that A C Q is an increasing set if and only if A° = Q\A is a decreasing set, we have an
equivalent definition of an associated probability as the following.

V decreasing subsets A and Bof 2, Q(ANB) > Q(A)Q(B) .

Lemma 1 For an associated probability Q on an ordered set Q,
Y increasing subsets A and B of @, Q(AUB)<1-(1-Q(A4))(1-Q(B)).
PROOF. Since A€, B¢ are decreasing sets for increasing scts A and B, we have
Q(AUB)=1-Q(A°NB°) <1-Q(A°)Q(B°) =1-(1-Q(4))(1 - Q(B)) .

Theorem 2 Let P be an associated probability on [}, i, where the state spaces are finite sets,
then the power set is taken to be the o—field . Using the decomposition of systems by series systems,
we have the following inequalities.

P(AB<s) < Plp<s) < minmin P <s),
I (4e0) < Pivso) < g2 (4
ggg’:r;%:;P(w',:Zs)s P(p>2s) < l—pl;IP{I—P(so”z's)}

<1-T[ 11 {1—P(¢£zs)}.
pepkeﬁp

PROOF. Noticing that <pz , P (p € P, k € Kp) are increasing and P is an associated probability
measure, the proof is easy.

P(¢S3)=P(maxmaxgo£5.s)=P ﬂ n {gags.s} ZH HP(gazs.s).

P
PeP kexp PEP kexp PePkexp

Since the following relationships hold,

< : < <
plx)<s gglzreux%wz(z)_s = VPGP,VkeICp,soz(z)_s

and then Vp € P, Vk € Kp
p)<s = ¢h@)<s.

Hence we have the following inequality:

P(p<s)< glei;;'xgleigP(epst).

The second and the third inequalities of the second inequality-chain are easily obtained by Lemma 1.
The first inequality of the chain is given by noticing the following relations.
Since p(x) = maxpep maxy,, kp goz (x), then we have

Vp € P, Vk € Kp, oh(@) < ¢()
and
Vp € P, Vk € Kp, P(<pz23) <P(p>53).
Thus the first inequality of the second chain holds.

Corollary 1 When the probability P on [],., Q: is given as the product probebility of associated
probabilities P; on Q; (i = 1,--- ,n), then P is associated and the similar probability bounds are given

for the system.



5. Concluding Remarks

In this paper we have given stochastic bounds for reliability performances of multi-state systems,
using the decomposition of system structure functions by series systems (F.Ohi {19]) and associated
probability measures on partially ordered sets (F.Ohi, S Shinmori and T.Nishida {16]). Numerical
examinations and evaluating degree of the approximation of the given bounds are remained to be a
future problem.
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