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1 Introduction

Throughout this paper we consider optimal stopping problems

$\sup_{0\leq\tau\leq T}EU(\frac{S_{\tau}}{0^{\max_{\leq t\leq T}S_{t}}})$ (1)

and

$\inf_{0\leq\tau\leq T}EU(\frac{0\leq t\leq T\max S_{t}}{S_{\tau}})$ , (2)

where process $S=(S_{t})_{t\leq T},$ $T<\infty$ , is an exponential L\’evy process; $S_{t}=e^{H_{t}}$ and $U=U(x)$

is an utility function. These two problems were discussed primarily in papers [5], [16] and
[26] in connection with stochastic problem of optimal liquidation of stock.

If $U(x)=\log x$ and $S$ is the exponential of the Brownian motion with randomly changing

drift, solution of (1) and (2) leads to an optimal detection problem, see [5] and [13]. For
utility function $U(x)=x$ , problems (1) and (2) were discussed firstly in [16] and [26]. In

both papers it it supposed that stock price $S$ is evaluated as a geometric Brownian motion,

$dS_{t}=rS_{t}dt+\sigma S_{t}dB_{t},$ $S_{0}=1,$ $t\leq T$, where $B=(B_{t})_{t\leq T}$ is a standard Brownian motion.

In [26], authors consider problem (1) in cases $r\geq\sigma^{2}$ and $r\leq\sigma^{2}/2$ . In the first case, the

solution of (1), i. e. a stopping moment $0\leq\tau^{*}\leq T$ such that

$\sup_{0\leq\tau\leq T}EU(\frac{S_{\tau}}{0\max_{\leq t\leq T}S_{t}})=EU(\frac{S_{\tau^{*}}}{0\leq t\leq T\max S_{t}})$ ,

is $\tau^{*}=T$ , and the optimal liquidation strategy is “buy and hold” here. If $r\leq\sigma^{2}/2$ , then
$\tau^{*}=0$ and the optimal strategy is “stop immediately”. The authors of [16] discuss the case
$\sigma^{2}/2\leq r\leq\sigma^{2}$ in (1), obtaining that the solution is $\tau^{*}=T$ as well. Moreover, they consider
problem (2) for all ratios of $r$ and $\sigma$ deriving that its solution $\tau_{*}=T$ if $r\geq\sigma^{2},$ $\tau_{*}=0$ if
$r\leq\sigma^{2}/2$ and there exists an increasing random boundary function which determines the
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optimal stopping moment if $\sigma^{2}/2<r<\sigma^{2}$ . In [7], authors extend these results to a problem

of optimal buying of an asset, considering the minimum of the process together with its

maximum. Conceming other works at the same direction, let us mention a paper [10], where

geometric and arithmetic averages are discussed instead of the maximum in the problems (1)

and (2), and works [8] and [9], in which authors solve an infinite time horizon problem of

stopping as close as possible to the zero hitting time considering a mean-reverting diffusion

process. As we mentioned above, instead of the geometric Brownian motion, in this paper we

discuss exponential L\’evy processes, which are very popular as a model of dynamics of assets

(among others, see, for example, recent papers [1], [6], [15], [17], [18], [28] on pricing and

hedging theory). The results relate to the exponentials of the L\’evy processes, both problems

(1) and (2), logarithmic and linear utilities. On empiric tests which support a suggestion

that $\log$-returns of assets have $\alpha$-stable or generalized hyperbolic distributions, see papers

[3], [11], [19], [22].

The paper is constructed as follows. Section 2 is dedicated to $\alpha$-stable L\’evy processes

with drift and problem (1) is solved for linear utility in a case of a nonnegative drift. All

$0<\alpha\leq 2$ are discussed. Our result extends the result of [26] $(a$ Brownian motion, $\alpha=2)$ .

In Section 3, we consider a time-changed Brownian motion. The results give full solution of

problem (1) and extend results on (2) for geometric Brownian motion. Section 4 discusses a

simpler case of logarithmic utility. Proofs are set in Section 5. The paper is completed by a

list of literature.

2 $\alpha$-stable L\’evy processes

Let $Z=(Z_{t})_{t\leq T}$ be a symmetric $\alpha$-stable L\’evy process with characteristic function, $\varphi_{t}(\theta)=$

$Ee^{i\theta Z_{t}}=e^{-t|\theta|^{\alpha}}$ , where $0<\alpha<2$ . If $X^{(\alpha)}$ is the positive random variable with Laplace

transform, $Ee^{-\lambda X^{(\alpha)}}=e^{-\lambda^{\alpha}},$ $\lambda>0,0<\alpha<1$ , it is not difficult to prove (see e. g. [25])

$Z_{t}=B_{\tilde{T}(t)}, t\leq T$ , (3)

where $\tilde{T}(t)$ an $\alpha/2$ -stable subordinator with

Law $(\tilde{T}(1))=Law(X^{(\alpha/2)})$ . (4)

Throughout this section, we model the price process of the asset $S$ by the exponential L\’evy

process of the symmetric $\alpha$-stable L\’evy process with drift, i.e.,

$H_{t}=Z_{t}+\mu t, \mu\in \mathbb{R}$. (5)

For reasons of using of $H$ as a model of evolution of $\log$-returns of stock prices, we refer to

[22]. Recalling proofs of results for the geometric Brownian motion ([16] and [26]), one can

see that it is based on exploiting the closed form expression of the density of the maximum
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of the Brownian motion. However, some results which concem stable L\’evy processes could
be obtained without using of such forms.

Theorem 1 Assume that $H$ is an $\alpha$ -stable symmetric L\’evy process with $0<\alpha\leq 2$ and

drift $\mu$ . If $\mu\geq 0$ , the solution of (1) for $U(x)=x$ is time $T.$

Example 1. If $\alpha=2$ , the 2-stable symmetric L\’evy process is a Brownian motion $B=$

$(B_{t})_{t\leq T}$ . As it is mentioned above, if the price of asset is supposed to be a geometric Brownian
motion, i.e., $S_{t}=e^{\mu t+B_{t}}$ , it was established (see [16] and [26]) that for $\mu\leq 0$ the optimal
stopping moment is $\tau^{*}=0$ and for $\mu\geq 0\tau^{*}=T$ in (1). Therefore, the result of theorem 1

extends this result of [16] and [26] if $\mu\geq 0.$

3 Time-changed Brownian motion

Let $H=(H_{t})_{t\leq T}$ be a time-changed Brownian motion with drift, i.e.,

$H_{t}=\beta\gamma(t)+\sigma B_{\gamma(t)}$ , (6)

where $\beta\in \mathbb{R},$ $\sigma>0$ and random change of time (in sense of definition $(a)-(b)$ , p.109, [24]) $\gamma$

is independent with $B$ and satisfies condition $P(\gamma(T)<\infty)=$ l.The next theorem follows.

Theorem 2 Let $U(x)=x$. The solution of (1) is $\tau^{*}=T$ if $\beta\geq 0$ and $\tau^{*}=0$ if $\beta<0$ . For
problem (2), solution $\tau_{*}=T$ if $\beta\geq\sigma^{2}/2$ and $\tau_{*}=0$ if $\beta\leq 0.$

Example 2. Normal-inverse Gaussian process. $A$ normal-inverse Gaussian distribution
(NIG), introduced in [2] (see also [3] and [25]), is a normal variance-mean mixture where

the mixing density is an independent inverse Gaussian distribution, i.e., the NIG random
variable $H=H(\alpha, \beta, \delta)$ is defined ae $H=\beta X+\sqrt{X}N$, where $N$ is normally distributed and
the density of $X$ is

$p_{X}(x)= \sqrt{\frac{b}{2\pi}}e^{\sqrt{ab}}\frac{1}{x^{3/2}}\exp(-\frac{1}{2}(ax+\frac{b}{x}))$ ,

where $a=\alpha^{2}-\beta^{2},$ $b=\delta^{2}$ . Parameters $\alpha,$
$\beta,$ $\delta$ are suggested to satisfy conditions; $\alpha>0,0\leq$

$|\beta|<\alpha$ and $\delta\geq 0$ .The density function $f$ of $H$ is

$f(x)= \frac{\alpha\delta K_{1}(\alpha\sqrt{\delta^{2}+x^{2}})}{\pi\sqrt{\delta^{2}+x^{2}}}e^{\delta\sqrt{\alpha^{2}-\beta^{2}}+\beta x}$ , (7)

where $K_{1}$ is modified Bessel function of the second type. The NIG process $H_{t}$ is defined
as a L\’evy process such that $H_{1}$ has density (7). It is known, see for details [25], that for
a Brownian motion $\tilde{B}=(\tilde{B}_{s})_{s\geq 0}$ , a change of time, $\tilde{T}(t)=\inf\{s>0 : \tilde{B}_{s}+\sqrt{a}s\geq\sqrt{b}t\}$

and an independent Brownian motion $B=(B_{t})_{t\geq 0}$ process $H_{t}$ can be represented in form
$H_{t}=B_{T^{-}(t)}+\beta\tilde{T}(t)$ . Therefore, solutions of (1) and (2) for a NIG process do not depend on
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parameters $\alpha$ and $\delta$ , due to theorem 2.

Example 3. Variance-gamma process. $A$ variance-gamma ($VG$ ) process $Y=(Y_{t})_{t\leq T}$

can be written (see e. g. [21]) as a time-changed Brownian motion $B=(B_{t})_{t\geq 0}$ , where the

random time change follows a gamma process $\Gamma(t;1, \nu),$ $\nu>0$ , i.e., $Y_{t}=\beta\Gamma(t;1, \nu)+\sigma B_{\Gamma(t;1,\nu)}.$

Despite the fact that parameters $\beta\in \mathbb{R},$ $\sigma>0$ and $\nu$ reflect only indirectly such parameters

of the $VG$ distribution as variance, skewness and kurtosis (it can be shown by straightforward

calculation of moments of $Y$ ), we immediately use such parametrization of the $VG$ process

as above since it is usually used in literature, see [14], [19], [21] $)$ . As a model of distribution

of market retums, the symmetric $VG$ distribution was primarily studied in [19] and [20]. In

[21], the general case of $VG$ process with application to option pricing was discussed. For

further investigations on the $VG$ process, see [14] and [27].

In context of theorem 2, we have solutions of (1) and (2) for a $VG$ process with respect to

value of parameter $\beta.$

4 Logarithmic utility

In case of logarithmic utility, problems (1) and (2) can be rewritten as

$\sup_{0\leq\tau\leq T}E(H_{\tau}-\overline{H}_{T})^{q}$ and $\inf_{0\leq\tau\leq T}E(\overline{H}_{T}-H_{\tau})^{q},$

respectively, with $q=1$ . For $q=2$ these problems were discussed in [12] for a Brownian

motion. Their result was extended to all $q>0$ by [23]. For $q=1$ and a Brownian motion

with spontaneously changing drift, see [5] and [13].

Assume that $H$ is a L\’evy process which has decomposition

$H_{t}=\mu t+\beta\varphi(t)+\sigma B_{\varphi(t)}$ , (8)

where $\mu\in \mathbb{R},$ $\beta\in \mathbb{R},$ $\sigma>0$ and stochastic change of time (in sense of definition $(a)-(b)$ , p.109,

[24] $)$
$\varphi$ satisfies condition $E\sqrt{\varphi(T)}<\infty$ . Since $H$ is a L\’evy process (8), it is submartingale

if $EH_{t}\geq 0$ and it is supermartingale if $EH_{t}\leq 0$ . Keeping in mind Hunt’s stopping time

theorem (($A$ .2), p.60, [24]) and Wald identity ((3.2.5), p.61, [24]), we conclude that solution

of both problems (1) and (2) for logarithmic utility here is

$\tau^{*}=\tau_{*}=T$ if $E\varphi(1)\geq-\frac{\mu}{\beta}and\tau^{*}=\tau_{*}=T$ if $E\varphi(1)\leq-\frac{\mu}{\beta}.$

In particular, for the $VG$ process the solutions are time $T$ if $\beta\geq-\mu$ and time $T$ if $\beta\leq-\mu.$

5 Proofs

Proof of theorem 1. Set

$\overline{H}_{t}=0\leq u\leq t\max H_{u}$ and $\overline{S}_{t}=0\max_{\leq u\leq t}S_{u}=e^{\overline{H}_{t}}$ . (9)
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Then problem (1) can be rewritten as $\sup_{0\leq\tau\leq T}E(S_{\tau}/\overline{S}_{T})$ . Let $(\tilde{\Omega},\tilde{\mathcal{F}}, (\tilde{\mathcal{F}}_{t})_{t\leq T})$ be a mea-
surable space with filtration generated by $\alpha/2$-stable subordinator $\tilde{T}(t)$ defined by (4), i.e.,
$\tilde{\mathcal{F}}_{t}=\sigma(\tilde{T}(s),$ $s\leq t)$ . Then due to (3) and (5) for any $\tau\leq T$

$E(S_{\tau}/\overline{S}_{T})=E(E(_{\overline{\overline{S}_{T}}}^{S_{\tau}}|\tilde{\mathcal{F}}_{T}))$ (10)

and for $\tilde{\omega}\in\tilde{\Omega},$

$E(_{\overline{\overline{S}_{T}}}^{S_{\tau}}|\tilde{\mathcal{F}}_{T})=E(\exp(H_{\tau}-\overline{H}_{T})|\tilde{\mathcal{F}}_{T})=E(\exp(B_{T^{-}(\tau)}+\mu\tau-\max_{t\leq T}(B_{\tilde{T}(t)}+\mu t)))(\tilde{\omega})$.

One could observe that for a fixed $\tilde{\omega}\in\tilde{\Omega}$ there is bijection, $t\ovalbox{\tt\small REJECT}\tilde{T}(t)$ and we can define a
time-deterministic for a.a. fixed $\tilde{\omega}$ process $\xi(s)=\mu\frac{\tilde{T}^{-1}(s)}{s},$ $s\leq\tilde{T}(T)$ . Next, for a deterministic
drift $\lambda(t)$ and Brownian motion $B$ set $B_{t}^{\lambda}=B_{t}+\lambda(t)t$ and $\overline{B}_{t}^{\lambda}=\max_{u\leq t}(B_{u}+\lambda(u)u)$ and define

by $(\Omega, \mathcal{F}, (\mathcal{F}_{t})_{t\geq 0})$ a meaeurable space which is determined by Brownian motion $(B_{t})_{t\geq 0}$ . Then

$E(\exp(B_{T^{-}(\tau)}+\mu\tau-\max(B_{\tilde{T}(t)}t\leq T+\mu t)))(\tilde{\omega})$

$= E(\exp(B_{T^{-}(\tau)}+\xi(\tilde{T}(\tau))\tilde{T}(\tau)-\max(B_{\tilde{T}(t)}t\leq T+\xi(\tilde{T}(t))\tilde{T}(t))))(\tilde{\omega})$

$= E(\exp(B_{T^{-}(\tau)}+\xi(\tilde{T}(\tau))\tilde{T}(\tau)-\max_{\leq t\tilde{T}(T)}(B_{t}+\xi(t)t)))(\tilde{\omega})$

$= EE(\min\{e^{B_{\tilde{T}(\tau)}^{\xi}-\overline{B}_{T(\tau)T^{-}(\tau)\leq t\leq\tilde{T}(T)}^{\xi_{-}}}, e^{-\max(B_{t}^{\xi}-B_{T(\tau)}^{\underline{\xi}})}\}|\mathcal{F}_{\tilde{T}(\tau)})(\tilde{\omega})$.

Set

$G^{\xi}(t, x)= E(\min\{e^{-x}, e^{-\max_{t\leq u\leq\tilde{T}(T)}(B_{u}^{\xi}-B_{t}^{\xi})}\})(\tilde{\omega})$.

Then

$E(\exp(H_{\tau}-\overline{H}_{T})|\tilde{\mathcal{F}}_{T})=E(G^{\xi}(\tilde{T}(\tau),\overline{B}_{T^{-}(\tau)}^{\xi}-B_{\tilde{T}(\tau)}^{\xi}))$ . (11)

At first, one can notice that for any $x\geq 0$ , some positive time-dependent drift $\eta=(\eta(s))_{s\geq 0}$

and $t\leq\tilde{T}(T)$

$G^{\xi}(t, x)= E(\min\{e^{-x}, e^{-\max_{t\leq u\leq T^{-}(T)}(B_{u}^{\xi}-B_{t}^{\xi})}\})(\tilde{\omega})=$

$E(\min\{e^{-x}, e^{-B_{\overline{T^{-}}(T)-t}}\})(\tilde{\omega})\leq E(\min\{e^{-x}, e^{-\overline{B}_{\tilde{T}(T)-t}}\})(\tilde{\omega})=G(t, x)$ , (12)

where $G(t, x)$ is defined by the last equality in (12) $(and$ actually $G(t, x)=G^{0}(t, x)$ ). Next,

as long as

$G^{\xi}( \tilde{T}(T), \overline{B}_{\tilde{T}(T)}^{\xi}-B_{T(T)}^{\underline{\xi}})=\min\{e^{B_{T^{-}(T)}^{\xi}-\overline{B}_{T(T)}^{\xi_{-}}}, 1\}(\tilde{\omega})\geq$

$\min\{e^{B_{T^{-}(T)}-\overline{B}_{\tilde{T}(T)}}, 1\}(\tilde{\omega})=G(\tilde{T}(T), \overline{B}_{\tilde{T}(T)}-B_{T^{-}(T)})$ ,
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we conclude that

$E(G^{\xi}(\tilde{T}(T),\overline{B}_{T^{-}(T)}^{\xi}-B_{\tilde{T}(T)}^{\xi})|\overline{B}_{t}^{\xi}-B_{t}^{\xi}=x)\geq E(G(\tilde{T}(T),\overline{B}_{T^{-}(T)}-B_{T^{-}(T)})|\overline{B}_{t}-B_{t}=x)$ .
(13)

Note that Proposition (i), Theorem 2.1, [26] ensures that

$E(G(\tilde{T}(T),\overline{B}_{\tilde{T}(T)}-B_{\tilde{T}(T)})|\overline{B}_{t}-B_{t}=x)\geq G(t, x)$ .

Therefore, exploiting (12) and (13), we get that

$E(G^{\xi}(\tilde{T}(T), \overline{B}_{\tilde{T}(T)}^{\xi}-B_{\tilde{T}(T)}^{\xi})|\overline{B}_{t}^{\xi}-B_{t}^{\xi}=x)\geq G^{\xi}(t, x)$. (14)

It follows from (14) that for all stopping times $\theta\leq\tilde{T}(T)$

$E(G^{\xi}(\tilde{T}(T),\overline{B}_{\tilde{T}(T)}^{\xi}-B_{\tilde{T}(T)}^{\xi})|\overline{B}_{\theta}^{\xi}-B_{\theta}^{\xi})\geq G^{\xi}(\theta,\overline{B}_{\theta}^{\xi}-B_{\theta}^{\xi})$ . (15)

holds. Therefore, we have from (11) that for all $\tau\leq T$

$E(\exp(H_{T}-\overline{H}_{T})|\tilde{\mathcal{F}}\tau)\geq E(\exp(H_{\tau}-\overline{H}_{T})|\tilde{\mathcal{F}}\tau)$

which concludes our proof because of (10). $\square$

Proof of theorem 2. We omit it, because of the restriction of total pages.
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