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Abstract: We consider multiclass classification for high-dimensional and
non-Gaussian data. We consider a distance-based classifier given by
Yata and Aoshima (2012b). We show that the classifier is verified
by the asymptotic normality as $parrow\infty$ either when $n_{i}s$ are fixed or
$n_{i}arrow\infty$ for some $i$ . We give a simulation result of the classifier under
high-dimensional settings.
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1. Introduction
High-dimensional data situations occur in many areas of modern science such as

genetic microarrays, medical imaging, text recognition, finance, chemometrics, and so
on. $A$ common feature of high-dimensional data is that the data dimension is high,
however, the sample size is relatively small. This is the so-called “HDLSS” or “large $p,$

small $n$
” situation where $p/narrow\infty$ ; here $p$ is the data dimension and $n$ is the sample

size. The asymptotic behaviors of high-dimensional, low-sample-size (HDLSS) data were
studied by Hall et al. (2005), Ahn et al. (2007) and Yata and Aoshima (2012a) when
$parrow\infty$ while $n$ is fixed. They explored conditions to give a geometric representation
of HDLSS data. The HDLSS asymptotic study usually assumes either the normality
for the population distribution or a $\rho-$-mixing condition for the dependency of random
variables in a sphered data matrix. See also Jung and Marron (2009). However, Yata
and Aoshima (2009) succeeded in investigating consistency properties of both eigenval-
ues and eigenvectors of the sample covariance matrix in general settings including the
case when all eigenvalues are in the range of sphericity. In addition, Yata and Aoshima
$(2010a,b)$ created the cross-data-matrix $(CDM)$ methodolo9y that provides effective in-
ference on the eigenspace of HDLSS data. Recently, Aoshima and Yata (2011a,b) have
developed a variety of inference for high-dimensional data along with sample size de-
termination to assure prespecified accuracy. Aoshima and Yata (2011c) applied those
inference procedures to microarray studies.

Suppose we have independent and $p-$-variate populations, $\pi_{i},$ $i=1,$ $\ldots,$

$k$ , having un-
known mean vector $\mu_{i}=(\mu_{i1}, \ldots, \mu_{ip})^{T}$ and unknown covariance matrix $\Sigma_{i}(>O)$ for
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each $i$ . We do not assume that $\Sigma_{1}=\cdots=\Sigma_{k}$ . Let $\theta=(\mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k})$ . The
eigen-decomposition of $\Sigma_{i}$ is given by $\Sigma_{i}=H_{i}\Lambda_{i}H_{i}^{T}$ , where $\Lambda_{i}$ is a diagonal matrix
of eigenvalues, $\lambda_{i1}\geq\cdots\geq\lambda_{ip}>0$ , and $H_{i}=(h_{i1}, \ldots, h_{ip})$ is an orthogonal matrix
of the corresponding eigenvectors. We have independent and identically distributed ob-
servations, $x_{i1},$

$\ldots,$ $x_{in_{i}}$ , from each $\pi_{i}$ , where $x_{ij}=(x_{i1j}, \ldots, x_{ipj})^{T},$ $j=1,$ $\ldots,$
$n_{i}$ . We

assume $n_{i}\geq 2,$ $i=1,$ $\ldots,$

$k$ . Then, $z_{ij}=\Lambda_{i}^{-1/2}H_{i}^{T}(x_{ij}-\mu_{i})$ is a sphered data vec-
tor from a distribution with the identity covariance matrix. Here, we write $z_{ij}=$

$(z_{i1j}, \ldots, z_{ipj})^{T},$ $j=1,$ $\ldots,$
$n_{i};i=1,$

$\ldots,$

$k$ . Note that $E(z_{ijl}^{2})=1$ and $E(z_{ijl}z_{ij’l})=0$

for $i=1,$ $\ldots,$
$k;j(\neq j’)=1,$ $\ldots,p;l=1,$

$\ldots,$
$n_{i}$ . We assume for $i=1,$ $\ldots,$

$k$ , that the
fourth moments of each variable in $z_{ij}$ are uniformly bounded. We assume the following
assumptions for $\Sigma_{i}s$ as necessary:

($A$-i) $\frac{tr(\Sigma_{i}^{2}\Sigma_{j}^{2})}{tr(\Sigma_{i}\Sigma_{j})^{2}}arrow 0$ and $\frac{tr(\Sigma_{i}\Sigma_{l})}{tr(\Sigma_{j}^{2})}\in(0, \infty)$ as $parrow\infty$ for $i,j,$ $l=1,$
$\ldots,$

$k.$

Here, $f(p)\in(O, \infty)$ ae $parrow\infty$ denotes that $\lim\inf_{parrow\infty}f(p)>0$ and $\lim\sup_{parrow\infty}f(p)<$

$\infty$ for a function $f(\cdot)$ .

Remark 1.1. If all $\lambda_{ij}s$ are bounded such as $\lambda_{ij}\in(0, \infty)$ as $parrow\infty$ , ( $A$-i) trivially holds.
For a spiked model such as $\lambda_{\dot{x}j}=a_{ij}p^{\alpha_{ij}}(j=1, \ldots, r_{i})$ and $\lambda_{ij}=c_{ij}(j=r_{i}+1, \ldots,p)$

with positive constants, $a_{ij}s,$ $q_{j}s$ and $\alpha_{ij}s$ , and positive integers $r_{i}s$ , ($A$-i) holds under
the condition that $\alpha_{ij}<1/2$ for $j=1,$ $\ldots,$

$r_{i}(<\infty);i=1,$
$\ldots,$

$k$ . See Yata and Aoshima
(2010b) for the details of a spiked model. As an interesting example, ($A$-i) holds for
$\Sigma_{i’}=q/(\rho_{i}^{|i-j|^{q_{i’}}}),$ $i’=1,$

$\ldots,$

$k$ , where $q/$ and $q_{i’}$ are positive constants and $0<\rho_{i’}<1.$

Let $x_{0}$ be an observation vector of an individual belonging to one of the $k$ populations.
We estimate $\mu_{i}$ and $\Sigma_{i}$ by $\overline{x}_{in_{i}}=\sum_{j=1}^{n_{i}}x_{ij}/n_{i}$ and $S_{in_{i}}= \sum_{j=1}^{n_{i}}(x_{ij}-\overline{x}_{in_{i}})(x_{ij}-$

$\overline{x}_{in_{i}})^{T}/(n_{i}-1)$ . When $k=2$ , a typical classffication rule is that one classifies an
individual into $\pi_{1}$ if

$(x_{0}- \overline{x}_{1n_{1}})^{T}S_{1n_{1}}^{-1}(x_{0}-\overline{x}_{1n_{1}})-\log\{\frac{\det(S_{2n_{2}})}{\det(S_{1n_{1}})}\}$

$<(x_{0}-\overline{x}_{2n_{2}})^{T}S_{2n_{2}}^{-1}(x_{0}-\overline{x}_{2n_{2}})$ , (1.1)

and into $\pi_{2}$ otherwise. However, the inverse matrix of $S_{in_{i}}$ does not exist in the HDLSS
context $(p>n_{i})$ . When $\Sigma_{1}=\Sigma_{2}$ , Saranadasa (1993) considered substituting the identity
matrix $I_{p}$ for $S_{in_{i}}$ . Bickel and Levina (2004) considered the inverse matrix defined by
only diagonal elements of the pooled sample covariance matrix. Yata and Aoshima
$(2012a)$ considered using a ridge-type inverse covariance matrix derived by the noise
reduction methodology. When $\Sigma_{1}\neq\Sigma_{2}$ , Dudoit et al. (2002) considered using the inverse
matrix defined by only diagonal elements of $S_{in_{i}}$ . Aoshima and Yata (2011a) proposed
a quadratic classffication rule substituting $(tr(S_{in_{i}})/p)I_{p}$ for $S_{in_{i}}$ followed by a bias
correction and showed the asymptotic normality of the classffier so that the sample size
can be determined to assure prespecffied accuracy. On the other hand, Hall et al. (2005,
2008), Ahn et al. (2007), and Chan and Hall (2009) considered distance-based classifiers.
The above literatures mainly discussed two-class classification in high-dimensional, low
sample size settings.
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Recently, Yata and Aoshima (2012b) considered a classification rule given by using
the identity matrix $I_{p}$ instead of $S_{in_{i}}$ in (1.1) as follows: One classifies an individual
into $\pi_{1}$ if

$(x_{0}- \frac{\overline{x}_{1n_{1}}+\overline{x}_{2n_{2}}}{2})^{T}(\overline{x}_{2n_{2}}-\overline{x}_{1n_{1}})-\frac{tr(S_{1n_{1}})}{2n_{1}}+\frac{tr(S_{2n_{2}})}{2n_{2}}<0$ (1.2)

and into $\pi_{2}$ otherwise. Here, $-tr(S_{1n_{1}})/(2n_{1})+$ tr $(S_{2n_{2}})/(2n_{2})$ is a bias-correction term.
They showed the asymptotic normality of the classifier and gave a sample size determi-
nation so as to control misclassffication rates being no more than a prespecffied value.
They further developed the classffier to multiclass classification when $k\geq 3.$

Remark 1.2. Chan and Hall (2009) considered a scale adjusted distance-based classifier
as follows: One classifies an individual into $\pi_{1}$ if

$\sum_{j=1}^{n_{1}}\frac{||x_{0}-x_{1j}||^{2}}{n_{1}}-\sum_{j=1}^{n_{2}}\frac{||x_{0}-x_{2j}||^{2}}{n_{2}}-\sum_{i=1}^{n_{1}}\sum_{j=1}^{n_{1}}\frac{||x_{1i}-x_{1j}||^{2}}{2n_{1}(n_{1}-1)}$

$+ \sum_{i=1}^{n_{2}}\sum_{j=1}^{n_{2}}\frac{||x_{2i}-x_{2j}||^{2}}{2n_{2}(n_{2}-1)}<0$ (1.3)

and into $\pi_{2}$ otherwise. We note that the classffier given by (1.2) is equivalent to the one
given by (1.3), though the description of (1.2) is much simpler than (1.3).

In this paper, we assume the following assumption for $\pi_{i}s$ as necessary:

($A$-ii) $z_{ijl},$ $j=1,$ $\ldots,p$ , are independent for $i=1,$ $\ldots,$
$k.$

Yata and Aoshima (2012b) gave the asymptotic normality of the classifier given by (1.2)
as $parrow\infty$ and $n_{i}arrow\infty,$ $i=1,2$ , under a condition milder than ($A$-ii). In the present
paper, under ($A$-ii), we show the asymptotic normality of the classifier holds as $parrow\infty$

even either when $n_{i}s$ are fixed or $n_{i}arrow\infty$ for some $i$ . We evaluate asymptotic error
rates for the classifier by using the asymptotic normality. Further, we verify that similar
arguments can be applied in multiclass classification when $k\geq 3.$

2. Asymptotic properties for two-class classification
We denote the error of misclassifying an individual from $\pi_{1}$ (into $\pi_{2}$ ) or $\pi_{2}$ (into $\pi_{1}$ )

by $e(2|1)$ or $e(1|2)$ , respectively. Let $\Delta=||\mu_{1}-\mu_{2}||^{2}$ and

$w(x_{0}|n_{1}, n_{2})=(x_{0}- \frac{\overline{x}_{1n_{1}}+\overline{x}_{2n_{2}}}{2})^{T}(\overline{x}_{2n_{2}}-\overline{x}_{1n_{1}})-\frac{tr(S_{1n_{1}})}{2n_{1}}+\frac{tr(S_{2n_{2}})}{2n_{2}}.$

Yata and Aoshima (2012b) considered asymptotic properties of $w(x_{0}|n_{1}, n_{2})$ under the
following assumptions:

($A$-iii) $\frac{(\mu_{1}-\mu_{2})^{T}\Sigma_{i}(\mu_{1}-\mu_{2})}{\triangle^{2}}arrow 0$ as $parrow\infty$ for $i=1,2$ ;
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($A$-iv) $\frac{\max_{j--1,2}tr(\Sigma_{j}^{2})}{n_{i}\triangle^{2}}arrow 0$ as $parrow\infty$ either when $n_{i}$ is fixed or $n_{i}arrow\infty$ for
$i=1,2.$

Then, they gave the asymptotic consistency:

Theorem 2.1 $(Yata and$ Aoshima, $2012b)$ . Assume ($A$ -iii) and ($A$ -iv). It holds as
$parrow\infty$ that

$\frac{w(x_{0}|n_{1},n_{2})}{\triangle}=\frac{(-1)^{i}}{2}+o_{p}(1)$ when $x_{0}\in\pi_{i}$

for $i=1,2$ . Then, the classification rule given by (1.2) has as $parrow\infty$ that

$e(2|1)arrow 0$ and $e(1|2)arrow 0$ . (2.1)

Remark 2.1. Under the condition that $\max_{j=1,2}\{tr(\Sigma_{j}^{2})\}/\triangle^{2}arrow 0$ as $parrow\infty$ , one can
claim Theorem 2.1 when either $n_{i}$ is fixed or $n_{i}arrow\infty$ for $i=1,2.$

Remark 2.2. Chan and Hall (2009) gave (2.1) for a different distance-based classffier
under different assumptions.

We have for $x_{0}\in\pi_{i},$ $i=1,2$ , that

$Var_{\theta}\{w(x_{0}|n_{1}, n_{2})\}=\frac{tr(\Sigma_{i}^{2})}{n_{i}}+\frac{tr(\Sigma_{1}\Sigma_{2})}{n_{j}}+\sum_{i=1}^{2}\frac{tr(\Sigma_{i}^{2})}{2n_{i}(n_{i}-1)}$

$+(\mu_{1}-\mu_{2})^{T}(\Sigma_{i}+\Sigma_{j}/n_{j})(\mu_{1}-\mu_{2}) (=\kappa_{i}, say)$ ,

where $j\neq i$ . We assume the following assumption:

($A$-v) $\frac{(\mu_{1}-\mu_{2})^{T}\Sigma_{i}(\mu_{1}-\mu_{2})}{\kappa_{i}}=o(1)$ for $i=1,2.$

Then, we have the following result.

Theorem 2.2. Assume ($A$ -i), ($A$ -ii) and ($A$ -v). We have as $parrow\infty$ and at least one:
$n_{1}arrow\infty$ or $n_{2}arrow\infty$ , that

$\frac{w(x_{0}|n_{1},n_{2})-(-1)^{i}\triangle/2}{\sqrt{\kappa_{i}}}\Rightarrow N(0,1)$ when $x_{0}\in\pi_{i}$ for $i=1,2$ , (2.2)

where $\Rightarrow$
” denotes the convergence in distribution and $N(O, 1)$ denotes a mndom variable

distributed as the standard normal distribution.

We assume extra assumptions for $H_{i}=(h_{i1}, \ldots, h_{ip}),$ $i=1,2$ :

( $A$-vi) $\frac{\sum_{j=1}^{p}\lambda_{ij}^{2}\{(\mu_{1}-\mu_{2})^{T}h_{ij}\}^{4}}{\kappa_{i}^{2}}=0(1)$ for $i=1,2$ ;

($A$-vii) There exists a permutation $\psi$ : $\{$ 1, $\ldots,p\}\mapsto\{1, \ldots,p\}$ such that $|h_{1j}^{T}h_{2\psi(j)}|$

$=1$ for $j=1,$ $\ldots,p.$
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Note that ($A$-v) implies ($A$-vi) from the fact that $\sum_{j=1}^{p}\lambda_{ij}^{2}\{(\mu_{1}-\mu_{2})^{T}h_{ij}\}^{4}\leq\{(\mu_{1}-$

$\mu_{2})^{T}\Sigma_{i}(\mu_{1}-\mu_{2})\}^{2}$ . If $H_{1}=H_{2}$ , ( $A$-vii) holds. Thus, ($A$-vii) naturally follows when
$\Sigma_{1}=c\Sigma_{2}$ with a positive constant $c$ . Then, we have the following result.

Corollary 2.1. Assume ($A$ -i), ($A$ -ii), ($A$ -vi) and ($A$ -vii). Then, we have (2.2) as
$parrow\infty$ either when $n_{i}$ is fixed or $n_{i}arrow\infty$ for $i=1,2.$

Remark 2.3. From Theorem 2.2, for the classifier given by (1.2), we have as $parrow\infty$

and at least one: $n_{1}arrow\infty$ or $n_{2}arrow\infty$ , that

$e(2|1)= \Phi(\frac{-\triangle}{2\sqrt{\kappa_{1}}})+o(1)$ and $e(1|2)= \Phi(\frac{-\triangle}{2\sqrt{\kappa_{2}}})+o(1)$ (2.3)

under ($A$-i), ( $A$-ii) and ($A$-v), where $\Phi(\cdot)$ denotes the cumulative distribution function of
a $N(O, 1)$ random variable. Further, if one can assume ($A$-i), ( $A$-ii), ($A$-vi) and ($A$-vii),
it holds (2.3) as $parrow\infty$ either when $n_{i}$ is fixed or $n_{i}arrow\infty$ for $i=1,2.$

Remark 2.4. Chan and Hall (2009) gave the asymptotic normality for the distance-
based classffier given by (1.3) (or (1.2)) under different assumptions.

Let us consider an easy example such as $\pi_{i}$ : $N_{p}(\mu_{i}, \Sigma_{i}),$ $i=1,2$ , with $\mu_{1}=0,$

$\mu_{2}=(p^{-1/6}, \ldots,p^{-1/6}),$ $\Sigma_{1}=(0.3^{|i-j|^{1/3}})$ and $\Sigma_{2}=1.2(0.3^{|i-j|^{1/3}})$ . Note that $\Delta=||\mu_{1}-$

$\mu_{2}||^{2}=p^{2/3}$ and tr $(\Sigma_{i}^{2})=O(p),$ $i=1,2$ . One can check that ($A$-i), ( $A$-ii), ($A$-v) and
($A$-vii) hold for fixed $n_{i}s$ . We considered the cases of $p=2^{s},$ $s=1,$ $\ldots,$

$10$ . We set $n_{1}=5$

and $n_{2}=10$ . Independent pseudorandom observations of $w(x_{0}|n_{1}, n_{2})$ were generated
2000 $(=R, say)$ times when $x_{0}\in\pi_{1}$ or $\pi_{2}$ , respectively. In the end of the rth replication,
we checked whether the rule (1.2) does (or does not) classify $x_{0}$ correctly (or not) and
defined $P_{ir}=0$ (or 1) accordingly for each $\pi_{i}$ . We calculated $\overline{e}(2|1)=R^{-1}\sum_{r=1}^{R}P_{1r}$ and
$\overline{e}(1|2)=R^{-1}\sum_{r=1}^{R}P_{2r}$ for the estimates of $e(2|1)$ and $e(1|2)$ . Note that the standard
deviation of the estimates are less than 0.011. In Figure 2.1, we plotted $\overline{e}(2|1)$ and $\overline{e}(1|2)$

together with $\Phi\{-\triangle/(2\sqrt{\kappa_{i}})\},$ $i=1,2$ , for each $p$ . Here, we calculated $\Phi\{-\Delta/(2\sqrt{\kappa_{1}})\}$

and $\Phi\{-\triangle/(2\sqrt{\kappa_{2}})\}$ from Remark 2.3. As expected theoretically, we observed that the
plots became close to $\Phi\{-\triangle/(2\sqrt{\kappa_{i}})\}$ as $p$ increases.

3. Asymptotic properties for multiclass classification
In this section, we consider $k(\geq 3)$-class classification for high-dimensional data. Let

$Y_{i}(x_{0}|n_{i})=||x_{0}- \overline{x}_{in_{i}}||^{2}-\frac{tr(S_{in_{i}})}{n_{i}}$

for $i=1,$ $\ldots,$

$k$ . We consider a classffication rule given by Yata and Aoshima $(2012b)$ :
One classifies an individual into $\pi_{i}$ if

$\max\{\arg\min_{1j=,\ldots,k}Y_{j}(x_{0}|n_{j})\}=i$. (3.1)

When it holds that $\arg\min_{j=1,\ldots,k}Y_{j}(x_{0}|n_{j})=\{i_{1}, \ldots, i_{l}\}$ with integers $l\in[2, k]$ and
$i_{1}<\cdots<i_{l}$ , we have $\max\{\arg\min_{j=1,\ldots,k}Y_{j}(x_{0}|n_{j})\}=i_{l}$ . Note that the difference,
$Y_{1}(x_{0}|n_{1})/2-Y_{2}(x_{0}|n_{2})/2$ , coincides with the classifier, $w(x_{0}|n_{1}, n_{2})$ , given in Section
2. Let $\Delta_{ij}=||\mu_{i}-\mu_{j}||^{2}$ for $i,j=1,$ $\ldots,$

$k;i\neq j$ . Yata and Aoshima (2012b) considered
the following assumptions:
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Figure 2.1: When $n_{1}=5$ and $n_{2}=10$ , the left panel displays $\overline{e}(2|1)$ (dashed
line) and $\Phi\{-\Delta/(2\sqrt{\kappa_{1}})\}$ (solid line) for $p=2^{S}(s=1, \ldots, 10)$ and the right panel
displays $\overline{e}(1|2)$ (dashed line) and $\Phi\{-\triangle/(2\sqrt{\kappa_{2}})\}$ (solid line) for $p=2^{s}(s=$
$1,$

$\ldots,$
$10)$ .

( $A$-viii) $\frac{(\mu_{i}-\mu_{j})^{T}\Sigma_{i}(\mu_{i}-\mu_{j})}{\triangle_{ij}^{2}}arrow 0$ ae $parrow\infty$ for $i,j=1,$ $\ldots,$
$k;i\neq j$ ;

( $A$-ix) $\frac{\max_{i’=1,\ldots,k}tr(\Sigma_{i}^{2},)}{n_{i}\Delta_{ij}^{2}}arrow 0$ as $parrow\infty$ either when $n_{i}$ is fixed or $n_{i}arrow\infty$ for

$i,j=1,$ $\ldots,$
$k;i\neq j.$

We denote the error of misclassifying an individual from $\pi_{i}$ (into another class) by $e(i)$ .
Then, they gave the consistency property.

Theorem 3.1. $(Yata and$ Aoshima, $2012b)$ . Assume ($A$ -viii) and ($A$ -iv). Then,
the classification rule given by (3.1) has as $parrow\infty$ that

$e(i)arrow 0 fori=1, \ldots, k.$

Remark 3.1. Under the condition that $\max_{i’=1,\ldots,k}$ {tr $(\Sigma_{i}^{2},)$ } $/\Delta_{ij}^{2}arrow 0$ as $parrow\infty$ for
$i,j=1,$ $\ldots,$

$k;i\neq j$ , one can claim Theorem 3.1 when either $n_{i}$ is fixed or $n_{i}arrow\infty$ for
$i=1,$ $\ldots,$

$k.$

We have for $x_{0}\in\pi_{i},$ $i=1,$ $\ldots,$

$k$ , and for $j(\neq i)=1,$
$\ldots,$

$k$ , that

$Var_{\theta}\{Y_{i}(x_{0}|n_{i})/2-Y_{j}(x_{0}|n_{j})/2\}$

$= \frac{tr(\Sigma_{i}^{2})}{n_{i}}+\frac{tr(\Sigma_{i}\Sigma_{j})}{n_{j}}+\frac{tr(\Sigma_{i}^{2})}{2n_{i}(n_{i}-1)}+\frac{tr(\Sigma_{j}^{2})}{2n_{j}(n_{j}-1)}$

$+(\mu_{i}-\mu_{j})^{T}(\Sigma_{i}+\Sigma_{j}/n_{j})(\mu_{i}-\mu_{j}) (=\kappa_{ij}, say)$ .

We assume the following assumption:

($A$-x) $\frac{(\mu_{i}-\mu_{j})^{\tau_{\Sigma_{i}}}(\mu_{i}-\mu_{j})}{\kappa_{ij}}=o(1)$ for $i,j=1,$ $\ldots,$
$k;i\neq j.$
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Then, we have the following results under at least $k-1$ out of the $k$ conditions that
$n_{i}arrow\infty,$ $i=1,$ $\ldots,$

$k$ , that is, one of the $n_{i}s$ might be fixed.

Theorem 3.2. Assume ($A$ -i), ($A$ -ii) and ($A$ -x). We have that

$\frac{Y_{i}(x_{0}|n_{i})-Y_{j}(x_{0}|n_{j})+\triangle_{ij}}{2\sqrt{\kappa_{ij}}}\Rightarrow N(0,1)$ when $x_{0}\in\pi_{i}$

for $i,j=1,$ $\ldots,$
$k;i\neq j$ , as $parrow\infty$ under at least $k-1$ out of the $k$ conditions that

$n_{i}arrow\infty,$ $i=1,$
$\ldots,$

$k.$

Corollary 3.1. Assume ($A$ -i), ($A$ -ii) and ($A$ -x). For the classification rule given by
(3.1), we have that

$e(i) \leq\sum_{j(\neq i)=1}^{k}\Phi(\frac{-\triangle_{ij}}{2\sqrt{\kappa_{ij}}})+o(1)$ for $i=1,$
$\ldots,$

$k$ (3.2)

$a\mathcal{S}parrow\infty$ under at least $k-1$ out of the $k$ conditions that $n_{i}arrow\infty,$ $i=1,$ $\ldots,$
$k.$

We assume extra assumptions for $H_{i}=(h_{i1}, \ldots, h_{ip}),$ $i=1,$
$\ldots,$

$k$ :

( $A$-xi) $\frac{\sum_{l=1}^{p}\lambda_{il}^{2}\{(\mu_{i}-\mu_{j})^{T}h_{il}\}^{4}}{\kappa_{ij}^{2}}=o(1)$ for $i,j=1,$ $\ldots,$
$k;i\neq j$ ;

($A$-xii) There exists a permutation $\psi_{ij}$ : $\{$ 1, $\ldots,p\}\mapsto\{1, \ldots,p\}$ such that $|h_{il}^{T}h_{j\psi_{ij}(l)}|$

$=1,$ $l=1,$ $\ldots,p$ , for $i,j=1,$ $\ldots,$
$k;i\neq j.$

Note that ( $A$-x) implies ($A$-xi). If $H_{1}=\cdots=H_{k}$ , ( $A$-xii) holds. Then, we have the
following result.

Corollary 3.2. Assume ($A$ -i), ($A$ -ii), ($A$ -xi) and ($A$ -xii). Then, no matter whether $n_{i}$

$i\mathcal{S}$ fixed or $n_{i}arrow\infty$ for $i=1,$
$\ldots,$

$k$ , one can claim the results given by Theorem 3.2 and
Corollary 3.1.

Remark 3.3. Yata and Aoshima (2012b) gave the asymptotic normality and (3.2) for
(3.1) under different assumptions.

Appendix

Proof of Theorem 2.2. We assume $x_{0}\in\pi_{1}$ without loss of generality. We first
consider the case when $n_{1},$ $n_{2}arrow\infty$ . We have from ($A$-i) and ($A$-v) that

$w(x_{0}|n_{1}, n_{2})+\Delta/2=(x_{0}-\mu_{1})^{T}\{(\overline{x}_{2n_{2}}-\mu_{2})-(\overline{x}_{1n_{1}}-\mu_{1})\}+o_{p}(\kappa_{1}^{1/2})$ . ( $A$ .1)

Let us write that $H_{1}^{T}(x_{0}-\mu_{1})=(\lambda_{11}^{1/2}z_{01}, \ldots, \lambda_{1p}^{1/2}z_{0p})^{T}$ . Then, we have that $(x_{0}-$

$\mu_{1})^{T}\{(\overline{x}_{2n_{2}}-\mu_{2})-(\overline{x}_{1n_{1}}-\mu_{1})\}=\sum_{j=1}^{p}\lambda_{1j}^{1/2}z_{0j}\{h_{1j}^{T}(\overline{x}_{2n_{2}}-\mu_{2})-\lambda_{1j}^{1/2}\overline{z}_{1jn_{1}}\}$ , where
$\overline{z}_{ijn_{i}}=\sum_{l=1}^{n_{i}}z_{ijl}/n_{i}$. Let

$v_{j}= \frac{\lambda_{1j}^{1/2}z_{0j}\{h_{1j}^{T}(\overline{x}_{2n_{2}}-\mu_{2})-\lambda_{1j}^{1/2}\overline{z}_{1jn_{1}}\}}{\{tr(\Sigma_{1}^{2})/n_{1}+tr(\Sigma_{1}\Sigma_{2})/n_{2}\}^{1/2}}, j=1, \ldots,p.$
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Then, it holds for $j=2,$ $\ldots,p$ , that $E_{\theta}(v_{j}|v_{j-1}, \ldots, v_{1})=0$ under ($A$-ii). Note that
$\sum_{j=1}^{p}E_{\theta}(v_{j}^{2})=1$ . We consider applying the martingale central limit theorem. Refer
to Section 2.6 in Ghosh et al. (1997) for the details of the martingale central limit
theorem. Let $I(\cdot)$ be the indicator function. Note that $E_{\theta}[\{h_{1j}^{T}(\overline{x}_{2n_{2}}-\mu_{2})\}^{4}]=$

$O\{(h_{1j}^{T}\Sigma_{2}h_{1j})^{2}/n_{2}^{2}\}$ . Note that tr $(\Sigma_{1}\Sigma_{2}\Sigma_{1}\Sigma_{2})\leq$ tr $(\Sigma_{1}^{2}\Sigma_{2}^{2}),$ $\sum_{j=1}^{p}\lambda_{1j}^{2}(h_{1j}^{T}\Sigma_{2}h_{1j})^{2}$

$\leq$ tr $(\Sigma_{1}^{2}\Sigma_{2}^{2})$ , and tr $(\Sigma_{1}^{3}\Sigma_{2})\leq\{$tr $(\Sigma_{1}^{4})$tr $(\Sigma_{1}^{2}\Sigma_{2}^{2})\}^{1/2}$ . Then, by using Chebyshev’s in-
equality and Schwarz’s inequality, from ($A$-i), we have for Lindeberg’s condition that

$\sum_{j=1}^{p}E_{\theta}\{v_{j}^{2}I(v_{j}^{2}\geq\tau)\}$

$\leq\sum_{j=1}^{p}\frac{E_{\theta}(v_{j}^{4})}{\tau}=\sum_{j=1}^{p}O[\frac{\lambda_{1j}^{2}(h_{1j}^{T}\Sigma_{2}h_{1j}/n_{2}+\lambda_{1j}/n_{1})^{2}}{\{tr(\Sigma_{1}^{2})/n_{1}+tr(\Sigma_{1}\Sigma_{2})/n_{2}\}^{2}}]$

$=O[ \frac{tr(\Sigma_{1}^{4})/n_{1}^{2}+tr(\Sigma_{1}^{3}\Sigma_{2})/(n_{1}n_{2})+tr(\Sigma_{1}^{2}\Sigma_{2}^{2})/n_{2}^{2}}{\{tr(\Sigma_{1}^{2})/n_{1}+tr(\Sigma_{1}\Sigma_{2})/n_{2}\}^{2}}]arrow 0$ ( $A$ .2)

for any $\tau>0$ . Here, in a way similar to ( $A$ .2), we claim that

$P_{\theta}(| \sum_{j=1}^{p}v_{j}^{2}-1|\geq\tau)\leq\tau^{-2}E_{\theta}\{(\sum_{j=1}^{p}v_{j}^{2}-1)^{2}\}arrow 0$

for any $\tau>0$ . Thus it holds that $\sum_{j=1}^{p}v_{j}^{2}=1+o_{p}(1)$ . Hence, by using the martingale
central limit theorem, we obtain that

$\sum_{j=1}^{p}v_{j}\Rightarrow N(0,1)$ . ( $A$ .3)

Note that $\kappa_{1}/\{tr(\Sigma_{1}^{2})/n_{1}+ tr(\Sigma_{1}\Sigma_{2})/n_{2}\}arrow 1$ under ( $A$-i) and ($A$-v). Then, by com-
bining ($A$ .1) with ($A$ .3), we conclude the result when $x_{0}\in\pi_{1}$ and $n_{1},$ $n_{2}arrow\infty.$

Next, we consider the case when $n_{1}arrow\infty$ but $n_{2}$ is fixed. We have that

$w(x_{0}|n_{1}, n_{2})+ \frac{\triangle}{2}$

$=(x_{0}- \mu_{1})^{T}(\overline{x}_{2n_{2}}-\mu_{2})-\frac{\sum_{i\neq i’}(x_{2i})(x_{2i’}-\mu_{2})}{21)}+o_{p}(\kappa_{1}^{1/2})$

$= \sum_{j=1}^{p}h_{2j}^{T}(x_{0}-\mu_{1})\lambda_{2j}^{1/2}\overline{z}_{2jn_{2}}-\sum_{j=1}^{p}\frac{\sum_{i\neq i’}\lambda_{2j}z_{2ji^{Z}2ji’}}{2n_{2}(n_{2}-1)}+o_{p}(\kappa_{1}^{1/2})$.

Let us rewrite that

$v_{j}= \frac{h_{2j}^{T}(x_{0}-\mu_{1})\lambda_{2j}^{1/2}\overline{z}_{2jn_{2}}-\sum_{i\neq i’}\lambda_{2j}z_{2ji}z_{2ji’}\{2n_{2}(n_{2}-1)\}^{-1}}{[tr(\Sigma_{2}^{2})/\{2n_{2}(n_{2}-1)\}+tr(\Sigma_{1}\Sigma_{2})/n_{2}]^{1/2}},$ $j=1,$ $\ldots,p.$
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Then, it holds for $j=2,$ $\ldots,p$ , that $E_{\theta}(v_{j}|v_{j-1}, \ldots, v_{1})=0$ under ($A$-ii). Note that
$\sum_{j=1}^{p}E_{\theta}(v_{j}^{2})=1$ . Also, note that

$| \sum_{j=1}^{p}E_{\theta}[\{h_{2j}^{T}(x_{0}-\mu_{1})\lambda_{2j}^{1/2}\overline{z}_{2jn_{2}}\}^{3}\sum_{i\neq i’}\lambda_{2j}z_{2ji}z_{2ji’}]|=O\{$ tr $(\Sigma_{1}^{3/2}\Sigma_{2}^{5/2})\}$

$=O\{tr(\Sigma_{1}^{3}\Sigma_{2})^{1/2}tr(\Sigma_{2}^{4})^{1/2}\}=O$ [ $\{$tr $(\Sigma_{1}^{6})$tr $(\Sigma_{2}^{2})\}^{1/4}$tr $(\Sigma_{2}^{4})^{1/2}$]
$=O\{tr(\Sigma_{1}^{2})^{3/4}tr(\Sigma_{2}^{2})^{1/4}tr(\Sigma_{2}^{4})^{1/2}\}=0$ {tr $(\Sigma_{2}^{2})^{2}$ }

under ($A$-i) from the fact that $|E_{\theta}(z_{ijl}^{3})|<\infty,$ $i=1,2;j=1,$ $\ldots,p$ . Then, similar to
the case when $n_{1},$ $n_{2}arrow\infty$ , we can claim the result. For the case when $n_{1}$ is fixed but
$n_{2}arrow\infty$ , similar arguments follow. The proof is completed.

Proof of Corollary 2.1. We assume $x_{0}\in\pi_{1}$ without loss of generality. Under ($A$-vii),
we assume that $h_{1j}^{T}h_{2\psi(j)}=1$ for $j=1,$ $\ldots,p$ , without loss of generality. Under ($A$-vii),
we have that

$w(x_{0}|n_{1}, n_{2})+\triangle/2$

$=(x_{0}-\mu_{1})^{T}\{(\overline{x}_{2n_{2}}-\mu_{2})-(\overline{x}_{1n_{1}}-\mu_{1})\}+(\mu_{1}-\mu_{2})^{T}(\overline{x}_{2n_{2}}-\mu_{2}-x_{0}+\mu_{1})$

$+ \frac{\sum_{i\neq i’}(x_{1i}-\mu_{1})^{T}(x_{1i’}-\mu_{1})}{2n_{1}(n_{1}-1)}-\frac{\sum_{i\neq i’}(x_{2i}-\mu_{2})^{T}(x_{2i’}-\mu_{2})}{2n_{2}(n_{2}-1)}$

$= \sum_{j=1}^{p}\lambda_{1j}^{1/2}z_{0j}(\lambda_{2\psi(j)}^{1/2}\overline{z}_{2\psi(j)n_{2}}-\lambda_{1j}^{1/2}\overline{z}_{1jn_{1}})+\sum_{j=1}^{p}\frac{\sum_{i\neq i’}\lambda_{1j}z_{1ji^{Z}1ji’}}{2n_{1}(n_{1}-1)}$

$- \sum_{j=1}^{p}\frac{\sum_{i\neq i’}\lambda_{2\psi(j)}z_{2\psi(j)i^{Z}2\psi(j)i’}}{2n_{2}(n_{2}-1)}+\sum_{j=1}^{p}(\mu_{1}-\mu_{2})^{T}h_{1j}(\lambda_{2\psi(j)}^{1/2}\overline{z}_{2\psi(j)n_{2}}-\lambda_{1j}^{1/2}z_{0j}),$ $(A.4)$

where $\overline{z}_{1jn_{1}}$ and $z_{0j}s$ are the ones given in the proof of Theorem 2.2 and $\overline{z}_{2\psi(j)n_{2}}=$

$\sum_{l=1}^{n_{2}}z_{2\psi(j)l}/n_{2}$ . Let

$u_{j}= \{\lambda_{1j}^{1/2}z_{0j}(\lambda_{2\psi(j)^{\overline{Z}_{2\psi(j)n_{2}}}}^{1/2}-\lambda_{1j}^{1/2}\overline{z}_{1jn_{1}})-\frac{\sum_{i\neq i’}\lambda_{2\psi(j)^{Z}2\psi(j)i^{Z}2\psi(j)i’}}{2n_{2}(n_{2}-1)}$

$+ \frac{\sum_{i\neq i’}\lambda_{1j}z_{1ji^{Z}1ji’}}{2n_{1}(n_{1}-1)}+(\mu_{1}-\mu_{2})^{T}h_{1j}(\lambda_{2\psi(j)}^{1/2}\overline{z}_{2\psi(j)n_{2}}-\lambda_{1j}^{1/2}z_{0j})\}/\kappa_{1}^{1/2},$

$j=1,$ $\ldots,p$ . Note that $E_{\theta}(u_{j})=0,$ $j=1,$ $\ldots,p$ , and $Var_{\theta}(\sum_{j=1}^{p}u_{j})=1$ . Note that
$u_{j},$ $j=1,$ $\ldots,p$ , are independent under ($A$-ii). In a way similar to ($A$ .2), from ($A$-i) and
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($A$-vi), we have for Lyapunov’s condition that

$\sum_{j=1}^{p}E_{\theta}(u_{j}^{4})$

$=\kappa_{1}^{-2}\cross O[tr(\Sigma_{1}^{4})/n_{1}^{2}+$ tr $(\Sigma_{2}^{4})/n_{2}^{4}+$ tr $(\Sigma_{1}^{3}\Sigma_{2})/(n_{1}n_{2})+$ tr $(\Sigma_{1}^{2}\Sigma_{2}^{2})/n_{2}^{2}$

$+ \sum_{j=1}^{p}\{(\mu_{1}-\mu_{2})^{T}h_{1j}\}^{4}(\lambda_{2\psi(j)}^{2}/n_{2}^{2}+\lambda_{1j}^{2}+\lambda_{1j}\lambda_{2\psi(j)}/n_{2})]$

$=\kappa_{1}^{-2}\cross O[tr(\Sigma_{1}^{4})/n_{1}^{2}+$ tr $(\Sigma_{2}^{4})/n_{2}^{4}+$ tr $(\Sigma_{1}^{2}\Sigma_{2}^{2})/n_{2}^{2}$

$+ \sum_{j=1}^{p}\{(\mu_{1}-\mu_{2})^{T}h_{1j}\}^{4}\lambda_{1j}^{2}+\sum_{j=1}^{p}\{(\mu_{1}-\mu_{2})^{T}h_{2j}\}^{4}\lambda_{2j}^{2}/n_{2}^{2}]arrow 0$ as $parrow\infty$

from the fact that

$\kappa_{1}^{-2}\sum_{j=1}^{p}\{(\mu_{1}-\mu_{2})^{T}h_{2j}\}^{4}\lambda_{2j}^{2}/n_{2}^{2}=O[\kappa_{2}^{-2}\sum_{j=1}^{p}\{(\mu_{1}-\mu_{2})^{T}h_{2j}\}^{4}\lambda_{2j}^{2}].$

Hence, by using Lyapunov’s central limit theorem, it holds that

$\sum_{j=1}^{p}u_{j}\Rightarrow N(0,1)$ ( $A$ .5)

as $parrow\infty$ either when $n_{i}$ is fixed or $n_{i}arrow\infty$ for $i=1,2$ . Then, by combining ($A$ .4) with
($A$ .5), we conclude the results. The proof is completed.

Proofs of Theorem 3.2 and Corollary 3.1. $\mathbb{R}om$ Theorem 2.2, we have under ($A$-i),
($A$-ii) and ($A$-x) that $\{Y_{i}(x_{0}|n_{i})-Y_{j}(x_{0}|n_{j})+\Delta_{ij}\}/(2\kappa_{ij}^{1/2})\Rightarrow N(0,1)$ when $x_{0}\in\pi_{\dot{t}}$

for $j=1,$ $\ldots,$
$k;j\neq i$ . Then, from Bonferroni’s inequality, it holds that $1-e(i)\geq$

$1- \sum_{j(\neq i)=1}^{k}\Phi\{-\triangle_{ij}/(2\kappa_{ij}^{1/2})\}+o(1)$ when $x_{0}\in\pi_{i}$ . This concludes the proofs.

Proof of Corollary 3.2. In a way similar to the proof of Corollary 2.1, we can conclude
the results.
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