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1 Introduction

In $1910s$ , H. Bohr initiated the investigation of value distribution of the Riemann zeta function

$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{s}}=\prod_{p}(1-\frac{1}{p^{s}})^{-1}$ for $\sigma>1,$

where $s=\sigma+it$ denotes a complex variable and the symbol $p$ denotes a prime number as usual. Bohr
and R. Courant [4] showed that for any fixed $1/2<\sigma_{0}<1$ the set

$\{\zeta(\sigma_{0}+it)\in \mathbb{C}|t\in \mathbb{R}\}$

is dense in the set $\mathbb{C}$ of all complex numbers. In 1975, S. M. Voronin [15] extended this denseness result
to the infinite dimensional space, that is, the functional space and obtained the remarkable universality
theorem. To state it in modern form which was established by B. Bagchi [1], we define a probability
measure on $\mathbb{R}$ . Let $\mu$ be the Lebesgue measure on the set $\mathbb{R}$ of all real numbers. For $T>0$ define

$\nu_{T}(\cdots)=\frac{1}{T}\mu\{\tau\in[0, T]:\cdots\},$

where in place of dots we write some conditions satisfied by a real number $\mathcal{T}.$

Theorem 1 (Voronin, [15]). Let $K$ be a compact subset in the strip $\frac{1}{2}<\sigma<1$ with connected
complement and $h(s)$ be a non-vanishing and continuous function on $K$ which is analytic in the interior

of K. Then for any small positive number $\epsilon$ we have

$\lim_{Tarrow}\inf_{\infty}\nu_{T}(\max_{s\in K}|\zeta(s+i\tau)-h(s)|<\epsilon)>0.$

This theorem asserts roughly that any analytic function can be approximated uniformly by suitable
vertical translation of $\zeta(s)$ . In order to prove the theorem, we need several analytic properties of the
Riemann zeta function. Above all, the Euler product expression plays an essential role. In fact, for
major zeta functions with Euler product the universality theorems have been established. The details
will be described in \S 31ater.

After Theorem 1, Voronin [16], S. M. Gonek [6] and Bagchi [2] independently obtained the following
joint universality theorem for Dirichlet $L$-functions

Theorem 2 (Voronin[16], Gonek[6], Bagchi[2]). Let $\chi_{1}\chi_{r}$ be pairwise non-equivalent Dinchlet
characters. For each $1\leq j\leq r$ , let $K_{j}$ be a compact subset in $\frac{1}{2}<\sigma<1$ with connected complement
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and $h_{j}(s)$ be a non-vanishing and continuous function on $K_{j}$ which is analytic in the interior of $K_{j}.$

Then for any small positive number $\epsilon$ we have

$\lim_{Tarrow}\inf_{\infty}\frac{1}{T}\mu\{\tau\in[0, T]$

l $\leq$j $\leq$ r $s\in K_{j}$

max $msx|L(s+i\tau, \chi_{j})-h_{j}(s)|<\epsilon\}>0.$

The above inequality imphes that for a collection of Dirichlet $L$-functions the corresponding uni-

versalily properties hold simultaneously. Therefore the joint universality theorem is interpretted as the
statistical independence of value distribution of Dirichlet $L$-functions. In the proof of this theorem,

the periodicity of Dirichlet characters

$\chi_{i}(n_{1})=\chi_{i}(n_{2})$ if $n_{1}\equiv n_{2}$ $(mod Q)$ ,

where $Q$ is the least common multiple of modulus $q_{i}’ s$ , and the orthogonality of the characters

$\frac{1}{\varphi(Q)}\sum_{n=1}^{Q}\chi_{i}(n)\overline{\chi_{j}(n)}=\{\begin{array}{l}1 (i=j) ,0 (i\neq j) ,\end{array}$

play essential roles. Similar properties also hold for a set of $\mathbb{C}$-linearly independent characters of
$Gal(K/\mathbb{Q})$ , where $K/\mathbb{Q}$ is an arbitrary finite Galois extension. H. Bauer [3] paid attention to this fact
proved a joint universality theorem for a set of Artin $L$-functions associated with these charachters.
In 2004, A. Laurin\v{c}ikas and K. Matsumoto [7] obtained a joint universality theorem for automorphic
$I_{\lrcorner}-$-functions which are associated with a single holomorphic newform and twisted by non-equivalent

Dirichlet characters.
In this paper we give a new method to prove joint universality theorems without the need for the

periodicity of coefficients. In particular, we will prove ajoint universality theorem for pairs consisting
of the Riemann zeta-function and the following two types of automorphic $L$-functions.

For an even positive integer $k$ , let $\mathcal{F}_{k}$ denote the set of holomorphic Hecke eigen cusp forms of
weight $k$ for the full modular group $SL_{2}(\mathbb{Z})$ . Put $\mathcal{F}=\bigcup_{k}\mathcal{F}_{k}$ . For $f\in \mathcal{F}_{k}$ and $n\in \mathbb{N}$ , let $\hat{\lambda}_{f}(n)$ be

the n-th Fourier coefficient of $f$ and put $\lambda_{f}(n)=\hat{\lambda}_{f}(n)n^{-z}\underline{k}-\underline{1}$ . For each prime $p$ the coefficient $\lambda_{f}(p)$

is a real number satisfying Deligne’s estimate $|\lambda_{f}(p)|\leq 2$ . Therefore there exist complex numbers
$\alpha_{f^{1}},(p),$ $\alpha_{f^{2}},(p)$ such that

$\alpha_{f,1}(p)+\alpha_{f,2}(p)=\lambda_{f}(p)$ , and $|\alpha_{f,1}(p)|=|\alpha_{f^{2}},(p)|=1$ . (1)

Then the automorphic $L$-function $L(s, f)$ is given by

$L(s, f)= \prod_{p}\prod_{i=1,2}(1-\frac{\alpha_{f,i}(p)}{p^{s}})^{-1}=\prod_{p}(1-\frac{\lambda_{f}(p)}{p^{s}}+\frac{1}{p^{2\epsilon}})^{-1}$

for $\sigma>1$ . The universality theorem for $L(s, f)$ was obtained by Laurin\v{c}ikas and Matsumoto [7]. As
we stated above, Laurin\v{c}ikas and Matsumoto [8] also established the joint universality theorem for a
set of twisted automorphic $L$-functions

$L(s, f, \chi_{j})=\prod_{p}\prod_{i=1,2}(1-\frac{\alpha_{f,i}(p)\chi_{j}(p)}{p^{s}})^{-1} (1\leq j\leq r)$ ,

where $f$ is a fixed holomorphic newform and $\chi_{j}(1\leq j\leq r)$ are non-equivalent Dirichlet characters.
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For cusp forms $f,$ $g\in \mathcal{F}$ , the Rankin-Selberg $L$-function $L(s, f\otimes g)$ is defined by

$L(s, f \otimes g)=\prod_{p}\prod_{i=1j}^{2}\prod_{=1}^{2}(1-\frac{\alpha_{f,i}(p)\alpha_{g,j}(p)}{p^{s}})^{-1}$ for $\sigma>1,$

where numbers $\alpha_{f,i}(p),$ $\alpha_{g,j}(p)$ are given by (1). The universality property for $L(s, f\otimes g)$ holds in the
narrow strip $\frac{3}{4}<\sigma<1$ , which was shown by Matsumoto [9] when $f=g$ , and by Nagoshi [11] when
$f\neq g.$

Now we state our main results. In the following, denote by $D_{1}$ the strip $\{s\in \mathbb{C}|1/2<\sigma<1\}$ and
by $D_{2}$ the strip $\{s\in \mathbb{C}|3/4<\sigma<1\}.$

Theorem 3. The joint universality theorem holds for the following pairs of zeta functions:

(i) $\zeta(s)$ and $L(s, f)$ ,

(ii) $L(s, f)$ and $L(s, g)$ $(f\neq g)$ ,

(iii) $\zeta(s)$ and $L(s, f\otimes g)$ ,

(iv) $L(s, f)$ and $L(s, f\otimes g)$ .

The joint universality for the pairs (i) and (ii) hold in the strip $D_{1}$ . The joint universality for the

pairs (iii) and (iv) hold in the strip $D_{2}.$

2 Outline of the proof of Theorem 3

In this section, we sketch the proof of the joint universality theorem for $\zeta(s)$ and $L(s, f)$ .
Let $D_{1}$ be the same strip as in \S 1. Let $H(D_{1})$ be the space of analytic functions on $D_{1}$ equipped with

the topology of uniform convergence on compacta. Put $H(D_{1})^{2}=H(D_{1})\cross H(D_{1})$ . For a topological
space $X$ , let $\mathcal{B}(X)$ be the class of Borel subsets of $X$ . For $T>0$ define a probability measure $P_{T}$ on
the probability space $(H(D_{1})^{2}, \mathcal{B}(H(D_{1})^{2}))$ by

$P_{T}(A)=\nu_{T}((\zeta(s+i\tau), L(s+i\tau, f))\in A)$ ,

for $A\in \mathcal{B}(H(D_{1})^{2}\prime)$ . $i\mathbb{R}om$ Theorem 12.1 in [14], which is the joint limit theorem for a set of zeta
functions with polynomial Euler products, we have the following limit theorem.

Lemma 1. There exists the probability measure $P$ on the space $(H(D_{1})^{2}, \mathcal{B}(H(D_{1})^{2}))$ such that the
measure $P_{T}$ converges weakly to $P$ as $Tarrow\infty.$

The hmit measure $P$ is given as follows. Let $\gamma$ be the unit circle $\{s\in \mathbb{C}||s|=1\}$ and

$\Omega=\prod_{p}\gamma_{p},$

where $\gamma_{p}=\gamma$ for each prime $p$ . With the product topology and pointwise multiplication $\Omega$ is a compact

Abelian group. Let $m_{H}$ be the probability Haar measure on $(\Omega, \mathcal{B}(\Omega))$ . Let $\omega=\{\omega(p)\}\in\Omega$ . Put
$\omega(1)=1$ and

$\omega(n)=\prod_{p^{\alpha}\Vert n}\omega(p)^{\alpha}\in\gamma$
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for a positive integer $n$ . For $\omega\in\Omega$ and $s\in D_{1}$ , define

$\zeta(s,\omega)=\prod_{p}(1-\frac{\omega(p)}{p^{S}})^{-1}$

and

$L(s, f, \omega)=\prod_{p}\prod_{i=1}^{2}(1-\frac{\alpha_{f,i}(p)\omega(p)}{p^{S}})^{-1}$

For almost $\omega\in\Omega$ , these infinite products converge uniformly on compact subsets of $D_{1}$ . Therefore the
products are considered as $H(D_{1})$-valued random elements. The hmit measure $P$ is the distribution
of a pair of these random elements. Namely,

$P(A)=m_{H}(\{\omega\in\Omega|(\zeta(s,\omega), L(s, f,\omega))\in A\})$ ,

for $A\in \mathcal{B}(H(D_{1})^{2})$ .
For $\sigma>\frac{1}{2}$ and $\omega\in\Omega$ we define functions $g_{p}$ and $h_{p}$ by

$\log(1-\frac{\omega(p)}{p^{s}})^{-1}=\frac{\omega(p)}{p^{s}}+g_{p}(s)$

and

$\log\prod_{i=1}^{2}(1-\frac{\alpha_{f^{i}},(p)\omega(p)}{p^{\epsilon}})^{-1}=\frac{\lambda_{f}(p)\omega(p)}{p^{s}}+h_{p}(s)$.

Then for all $s\in D_{1}$ and almost all $\omega\in\Omega$

$( \log\zeta(s,\omega), \log L(s, f,\omega))=\sum_{p}(\frac{\omega(p)}{p^{\epsilon}}, \lambda_{f}(p)\omega(p)p^{s})+\sum_{p}(g_{p}(s), h_{p}(s))$,

where the sum is taken over all prime numbers. Remark that the series $\sum_{p}(g_{p}(s), h_{p}(s))$ converges
umiformly for $\omega\in\Omega$ and on any compact subset of $D_{1}$ . For each prime $p$ we set

$f_{p}(s)=( \frac{1}{p^{s}}, \frac{\lambda_{j}(p)}{p^{s}})\in H(D_{1})^{2}.$

Lemma 2 (Joint denseness lemma). The set of convergent series

$\{\sum_{p}\omega(p)f_{p}(s)\in H^{2}(D_{1})|\omega\in\Omega\}$

$\iota s$ dense in $H(D_{1})^{2}.$

This lemma implies that the set $\{(\zeta(s, \omega), L(s, f, \omega))\in H(D_{1})^{2}|\omega\in\Omega\}$ is also dense in the space
$H(D_{1})^{2}.$ $iRom$ Lemma 1 and Lemma 2, the joint universality follows immediately.

Proof of Lemma 2. Let $U$ be a bounded simply connected region in $D_{1}$ . Let $\mathcal{H}$ be the Hardy space
on $U$ , which is the set of analytic and second integrable functions on $U$ . Let $\mathcal{H}^{2}=\mathcal{H}\cross \mathcal{H}$ . The space
$\mathcal{H}$ becomes a complex Hilbert space with the inner product

$\langle g_{1}, g_{2}\rangle=\int\int_{U}g_{1}(s)\overline{g_{2}(s)}d\sigma dt.$

We will prove that the set $\{\sum_{p}a_{p}f_{p}(s)\in \mathcal{H}^{2}||a_{p}|=1\}$ is dense in $\mathcal{H}^{2}$ by using the following general
denseness lemma, which was essentially obtained by Voronin [15].
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Lemma 3. Let $H$ be a complex Hilbert space with the inner product $\langle\cdot,$ $\cdot\rangle$ and the norm $\Vert\cdot\Vert$ . Suppose
that a sequence $\{u_{n}\}\subset H$ satisfies

(i) $\sum_{n}\Vert u_{n}\Vert^{2}<\infty,$

(ii) for any non-zero element $u\in H$

$\sum_{n}|\langle u_{n}, u\rangle|=\infty.$

Then for any $m>0$ the set

$\{\sum_{n\geq m}a_{n}u_{n}\in H||a_{n}|=1\}$

is dense in $H.$

We retum to the proof of Lemma 2. Let $\sigma_{0}=\min\{\Re s|s\in\overline{U}\}>\frac{1}{2}$ . Then

$\sum_{p}\Vert f_{p}(s)\Vert^{2}=\sum_{p}\int\int_{U}\frac{1+|\lambda_{f}(p)|^{2}}{p^{2\sigma}}d\sigma dt\ll U\sum_{p}\frac{1}{p^{2\sigma_{0}}}<\infty.$

Therefore the sequence $\{f_{p}(s)\}$ satisfies condition (i) in Lemma 3. For $g(s)=(g_{1}(s),g_{2}(s))\in \mathcal{H}^{2}$ we
have

$\langle f_{p}(s), g(s)\rangle=\int\int_{U}\frac{1}{p^{s}}\overline{g_{1}(s)}d\sigma dt+\int\int_{U}\frac{\lambda_{f}(p)}{p^{S}}\overline{g_{2}(s)}d\sigma dt$

$=\Delta_{1}(\log p)+\lambda_{f}(p)\Delta_{2}(\log p)$ ,

where we set
$\triangle_{j}(z)=\int\int_{U}e^{-sz}\overline{g_{j}(s)}d\sigma dt$

for $z\in \mathbb{C}$ and $j=1,2$ . It is enough to prove the following lemma.

Lemma 4. Let $g(s)=(g_{1}(s),g_{2}(s))$ be a non-zero element of $\mathcal{H}^{2}$ . Then

$\sum_{p}|\Delta_{1}(\log p)+\lambda_{f}(p)\Delta_{2}(\log p)|=\infty$
. (2)

To prove Lemma 4, we need the following lemmas, which play key roles in our new method.

Lemma 5. Let $z_{1}$ and $z_{2}$ be complex numbers,

1. If $\Re z_{1}$ and $\Re z_{2}$ have the same sign, then

$|z_{1}+z_{2}|\geq|\Re z_{1}|.$

2. If $\Im z_{1}$ and $\Im z_{2}$ have the same sign, then

$|z_{1}+z_{2}|\geq|\Im z_{1}|.$

Lemma 6. Assume that $g_{1}$ and $g_{2}$ are non-zero element in $\mathcal{H}$ . Then there exists a sequence of intervals
$I_{n}=[x_{n}, x_{n}+y_{n}]$ such that

(I) $x_{n}arrow\infty(narrow\infty)$ and $y_{n}\sim x_{n}^{-38}.$
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(II) For each $n\in \mathbb{N},$

$| \Re\Delta_{1}(x)|\geq\frac{1}{4}e^{-\sigma_{2}x_{n}}$ , or, $| \Im\Delta_{1}(x)|\geq\frac{1}{4}e^{-\sigma_{2}x_{n}},$

holds for $x\in I_{n}$ , where $\sigma_{2}=\max\{\Re s|s\in U\}<1.$

(III) For each $n\in \mathbb{N}$ , the functions $\Re\Delta_{2}(x)$ and $\Im\triangle_{2}(x)$ have no zeros on the interval $I_{n}.$

Proof Assertions (I) and (II) were obtained by Voronin [15] essentially. Assertion (III) was estab-

lished by the author recently. $\square$

Now we prove Lemma 4. The divergence of series (2) was established by Voronin [15] when $g_{2}=0$

and by Laurin\v{c}ikas and Matsumoto [7] when $g_{1}=0$ , respectively. Therefore we may assume that
$g_{1}$ and $g_{2}$ are non-zero elements. For each $n\in \mathbb{N}$ , define a set $\mathbb{P}_{n}$ of prime numbers. Let $\{I_{n}\}$ be a
sequence of intervals as in Lemma 6. If $n$ is an integer for which

$\Re\Delta_{1}(x)>\frac{1}{4}e^{-\sigma_{2}x}>0 (x\in I_{n})$ , (3)

holds, define

$\mathbb{P}_{n}=\{\begin{array}{l}\{p|\log p\in I_{n}, \lambda_{f}(p)\geq 0\} (if \Re\Delta_{2}>0 on I_{n}) ,\{p|\log p\in I_{n}, \lambda_{f}(p)<0\} (if \Re\Delta_{2}<0 on I_{n}) .\end{array}$

Then from Lemma 5 and Lemma 6, we have

$\sum_{p\in P_{n}}|\Delta_{1}(\log p)+\lambda_{f}(p)\Delta_{2}(\log p)|\geq\sum_{p\in P_{n}}|\Re\Delta_{1}(\log p)|\gg e^{-\sigma_{2}x_{n}}\cdot\#\mathbb{P}_{n}.$

Applying Deligne’s estimate $|\lambda_{f}(p)|\leq 2$ and the following estimates

$\sum_{p\leq x}\lambda_{f}(p)=O(x\exp(-c\sqrt{\log x}))$
,

and

$\sum_{p\leq x}|\lambda_{f}(p)|^{2}=li(x)+O(x\exp(-c\sqrt{\log x}))$
,

we obtain
$\#\mathbb{P}_{n}\gg\frac{e^{x_{n}}}{x_{n}^{39}}.$

Hence we have
$\sum_{p\in P_{n}}|\Delta_{1}(\log p)+\lambda_{f}(p)\Delta_{2}(\log p)|\gg\frac{e^{(1-\sigma_{2})x_{n}}}{x_{n}^{39}}.$

Remark that even if $n$ is a sufficiently large integer for which inequality (3) does not hold, we can
define set $\mathbb{P}_{n}$ for which the above estimate holds. Since $\sigma_{2}<1$ , this sub-series diverges ae $narrow\infty.$

This completes the proof of Lemma 4.

3 A Conjecture

In 1989, A. Selberg [13] introduced a rather wide class of Dirichlet series with some arithmetic prop-
erties. The Selberg class $S$ consists of all Dirichlet series

$L(s)= \sum_{n=1}^{\infty}\frac{a(n)}{n^{s}}$
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having the Euler product over prime numbers, analytic continuation to the whole complex plane, a
functional equation of Riemann type and some analytic axioms. It is expected that all major zeta
functions are contained in the class $S$ . Recently Nagoshi and Steuding [12] showed that if a zeta
function $L(s)= \sum_{n}a(n)n^{-s}\in S$ satisfies an estimate type of the prime number theorem

$\lim_{xarrow\infty}\frac{1}{\pi(x)}\sum_{p\leq x}|a(p)|^{2}=\kappa$ , (4)

where $\pi(x)=\#\{p\leq x|p$ : prime $\}$ and $\kappa$ is some positive constant, then $L(s)$ has universality property
in the strip $\sigma_{L}<\sigma<1$ , where the number $\sigma_{l}$ is determined from the corresponding functional equation.

In Chapter 12 of book [14], Steuding deals with joint universality for a set of zeta functions

$L_{j}(s)= \sum_{n=1}^{\infty}\frac{a_{j}(n)}{n^{s}}\in S (1\leq j\leq r)$ .

First he generalized the proof of the joint universality for Dirichlet $L$-functions and obtained Theorem
12.8 in [14], which is the joint universality theorem for $\{L_{j}(s)\}$ in the case that for each $1\leq j\leq r,$

$a_{j}(n)=a(n)\chi_{j}(n)$ for all $n\geq 1$

holds, where $a(n)$ are Dirichet coefficients of a certain zeta function with universality property, and
$\chi_{j}(n)$ are pairwise non-equivalent Dirichlet characters. Furthermore, Steuding predicts a necessary
and sufficient condition that a given set $\{L_{j}(s)\}$ becomes joint universal. To describe it, we recall the
Selberg conjecture on the class $S$ . Since all zeta functions which belong to $S$ have Euler product, the
class $S$ is closed under multiplication. $A$ zeta function $L(s)\in S$ is called primitive if when

$L(s)=L_{1}(s)L_{2}(s) L_{1}, L_{2}\in S,$

holds, then $L=L_{1}$ or $L=L_{2}$ . Regarding primitive zeta functions, Selberg [13] gives the following
conjecture:

(1) Let $L(s)= \sum_{n}a(n)n^{-s}$ be a zeta function in $S$ such that $L\not\equiv 1$ . Then there exists a positive
integer $n_{L}$ such that

$\sum_{p\leq x}\frac{|a(p)|^{2}}{p}=n_{L}$ log log $x+O(1)$ .

(2) For any primitive functions $L_{j}(s)= \sum_{n}a_{j}(n)n^{-s}(j=1,2)$ ,

$\sum_{p\leq x}\frac{a_{1}(p)\overline{a_{2}(p)}}{p}=\{\begin{array}{ll}log log x+O(1) if L_{1}=L_{2},O(1) otherwise.\end{array}$

Remark that assertion (1) of the conjecture implies that condition (4) must hold for any zeta functions
in $S$ . Therefore the conjecture yields that the universality theorems hold for arbitrary zeta functions
in $S$ . Assertion (2) means that the set of Dirichlet coefficients $\{a_{j}(n)\}$ has an orthogonality similarly
to that of Dirichlet characters. In other words, primitive zeta functions are expected to form an
orthonormal system of $S$ . E. Bombieri and D. A. Hejahl [5] proved that if we assume a strong version
of the Selberg conjecture and some analytic conditions for zeta functions $L_{j}(s)$ , then the statistical
independence of zero distribution of $L_{j}(s)$ holds. Steuding take the result one step further and gives
the following conjecture.
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Conjecture 1 (Steuding, [14]). Any primitive zeta functions $L_{1}(s)$ and $L_{2}(s)$ become jointly universal
if and only if

$\sum_{p\leq x}\frac{a_{1}(p)\overline{a_{2}}(p)}{p}=O(1)$ .

This conjecture, roughly speaking, yields that thejoint universality for a given pair of zeta functions
follows from the orthogonality of the Dirichlet coefficients, even if the periodicity of the coefficients
does not hold.

Applying Lemma 5 and Lemma 6, we have succeeded in proving the joint universality theorem for
automorphic $L-$-functions without using the periodicity of the coefficients. However, our new method
is insufficient to solve Steuding’s conjecture. As we know, all Dirichlet coefficients of the automorphic
$L$-functions are real numbers. This fact is indispensable to apply Lemma 5. Our method can not be
applied to zeta functions with non-periodic and non-real coefficients. For instance, we have not proved
the joint universality theorem for a set of Hecke $L$-functions over algebraic number fields associated
with Gr\"ossenccharacters.

References

[1] B. Bagchi, The statistical behavior and universality properties of the Riemann zeta-function and
other allied Dirichlet series, Ph. D. Thesis. Calcutta, Indian StatisticaJ Institute, 1981.

[2] B. Bagchi, A joint universality theorem for Dirichlet $L$ -functions, Math. Zeitschrift, 181(3), 319
-334, 1982.

[3] H. Bauer, The value distribution of Artin $L$ -senes and zeros of zeta-functions, J. Number Theory,
98(2), 254-279, 2003.

[4] H. Bohr and R. Courant, Neue Anwendungen der Theorie der Diophantischen auf die Rie-
mannsche Zetafunktion, J. Reine Angew. Math., 144, 249-274, 1914.

[5] E. Bombieri and D. A. Hejahl, On the distribu tion of zeros of linear combinations ofEuler products,
Duke Math. J., 80, 821-862, 1995.

[6] S. M. Gonek, Analytic properties of zeta and $L$ -functions, Thesis, Univ. of Michigan, 1979.

[7] A. Laurin\v{c}ikas and K. Matsumoto, The universality of zeta functions attached to certain cusp
$fo\ovalbox{\tt\small REJECT} s$ , Acta Arith., 98, 345-359, 2001.

[8] A. Laurin\v{c}ikas and K. Matsumoto, The joint universality of twisted automorphic $L$ -functions, J.
Math. Soc. Japan, 56, 923-939, 2004.

[9] K. Matsumoto, The mean values and the universality of Rankin-Seblerg $L$ -functions, Number
theory, The Proceedings of the Turku Symposium on Number Theory in Memory of Kustaa
Inkeri, Walter de Gruyter, 201-221, 2001.

[10] H. Mishou and H. Nagoshi, Functional distribution of $L(s, \chi_{d})$ with real chamcters and denseness

of quadratic class numbers, Trans. Amer. Math. Soc. 358(10), 4343-4366, 2006.

8



[11] H. Nagoshi, Value-distribution of Rankin-Selberg $L$ -functions, New directions in value-distribution
theory of zeta and $L$-functions, Shaker Verlag, 275-287, 2009.

[12] H. Nagoshi and J. Steuding, Universality for $L$ -functions in the Selberg class, Lithuanian. Math.
J., 50(3), 293-311, 2010.

[13] A. Selbarg, Old and new conjectures and results about a class of Dirichlet series, Proceedings of
the Amalfi Conference on Analytic Number Theory (Maiori, 1989), 367-385, Univ. Salemo, 1992.

[14] J. Steuding, Value-distribution of $L$ -functions, Lecture Notes in Math., vol.1877, Springer, 2007.

[15] S. M. Voronin, Theorem on the universality of the Riemann zeta function, Izv. Acad. Nauk. SSSR
Ser. Mat. 39, 475-486 (in Russian); Math. USSR Izv. 9(1975), 443-453.

[16] S. M. Voronin, Analytic properties of Dirichlet generating fUnctions of amthmetic objects, Math.
Notes, 24(6), 966-969, 1978.

UBE NATIONAL COLLEGE OF TECHNOLOGY,
2-14-1 TOKIWADAI, UBE-ClTY, YAMAGUCHI, 755-8555, JAPAN
$E$-mail address: mishou@ube-k.ac.jp

9


