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Dynamics and weights of polynomial skew
products on C?
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Abstract

We study the dynamics of polynomial skew products on C2?. By
using suitable weights, we prove the existence of several types of Green
functions. Largely, continuity and plurisubharmonicity follow. More-
over, it relates to the dynamics of the rational extensions to weighted
projective spaces. '

1 Introduction

A polynomial skew product on C? is a polynomial map of the form f(z,w) =
(p(2), q(z,w)) such that p(z) = az® + O(z*7!) and q(z,w) = b(z)w* +
O,(w* ). Let v = degb. We assume that § > 2 and d > 2. Then we
may assume that polynomials p and b are monic by taking an affine conju-
gate; p(z) = 22+ 0(2°1) and b(z) = 27+ O(2" ). Let A = max{4, d}, which
coincides with the dynamical degree of f.

The dynamics of f consists of the dynamics on the base space and the
dynamics on the fibers. The first component p defines the dynamics on the
base space C. Note that f preserves the set of vertical lines in C2. For this
reason, we often use the notation g¢,(w) instead of g(z,w). The restriction
of f* to the vertical line {2} x C can be viewed as the composition of n
polynomials on C, gpr-1(;) © -+ © Gp(z) © ¢e-

A useful tool in the study of the dynamics of p on the base space is the
Green function G, of p,

1 .
Gy(2) = lim = log* [p"(2)].
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It is well known that G, is defined, continuous and subharmonic on C. More
precisely, G, is harmonic and positive on A, and zero on K, and Gp(z) =
log|z| +0(1) as 2 — oco. Here A, = {z : p"(2) — oo} and K, = {z :
{p™(2) }n>1 bounded}. By definition, G,(p(2)) = 6G,(z). In a similar fashion,

we consider the fiberwise Green function of f,
1 1
Go(w) = lim —1log" |Q7(w)]| or GA(w) = lim — log" |Q(w)|.

where QF = gyr-1(;) © - 0 gy(z) © g;. By definition, Gp,)(g.(w)) = dG,(w) if
it exists. Since G, exists on C, the existence of G, implies that of the Green
function Gy of f,

1
Gr(z,w) = lim —log" [f"(z,w)],

where |(z, w)| = max{|z|, |w|}. Favre and Guedj proved the existence of G,
on K, x C in [1, Theorem 6.1], which is continuous and plurisubharmonic
if b1(0) N K, = 0. Hence the remaining problem lies in investigating the
existence of G, on A, x C. In [2], with the assumption v = 0, we studied the
existence of G, and concluded that the weighted Green function G of f,

G3(2,w) = lim <= log" /" (2, w)l
where |(z,w)|, = max{|z|% |w|}, is defined, continuous and plurisubhar-
monic on C? for a suitable rational number o > 0. Moreover, f extends to
an algebraically stable map on a weighted projective space, whose dynamics
relates to G%.

In this report, assuming v # 0, we investigate the existence of G, on
A, x C, which implies the existence of G and G¢%. Although the dynamics
becomes much more difficult without the condition v = 0, the idea of im-
posing suitable weights is still effective. We also show the existence of other
Green functions such as

Q7 (w)
()"

+ | QF(w)
p"(2)"

in the cases § # d and ¢ = d, respectively.

and G(z,w) = lim C—Z—E log
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2 Weights

Let g(z,w) = 2"w? 4+ 3 c;z™w™, where c; # 0, and define o as
e min{l € Q:16 > v+ 1d and l§ > n; + Im; for any j} if 6 > d,
e min{l € Q:v+1d>16and v+ ld > n; + Im; for any j} if § < d,
o inf{leQ:y+1d>n,+Im,foranyj}if6=d.

Since q has only finitely many terms, we can take the minimum if § # d. In
the case § = d, we can replace inf by min if g(z, w) # b(z)w?, and @ = —0
if g(z,w) = b(z)w?. Let Wg = {|z| > R, |w| > R|2|*}. We then obtain the
following main lemma from the definition of a.

Lemma 2.1. If§ > d and a = /(6 — d), or 6 < d, then q(z,w) ~ z"w? on
Wg for large R > 0; that is, the ratio of ¢ and 2Yw® on Wg tends to 1 as
R — oo0. Moreover, f preserves Wpg; that is, f(Wg) C Wg.

Since p(z) ~ z° as z — oo, this lemma implies that f(z,w) ~ (2%, 2Yw?)
on Wi as R — o0o. Let Af = U,>of "(Wg). This lemma induces the
existence, continuity and pluriharmonicity of the Green functions on Ay; the
results are written in the next section.

We explain the importance of a and Lemma 2.1 in terms of the weighted
homogeneous part of g. Let us define the weight of a monomial z"w™ as
n + am, and let A be the weighted homogeneous part of g of highest weight.
In the case § > d, the polynomial A may not contain z?w?. However, if
a = /(6 — d), then h contains 2”w?. On the other hand, h always contains
27w? in the case § < d.

In addition, it is useful to consider the dynamics of the rational extensions
of f to weighted projective spaces. Let r and s be any two positive integers.
We denote a point in the weighted projective space P(r,s,1) by weighted
homogeneous coordinates [z : w : t]. It follows that f extends to a rational

map f on P(r,s,1),

flz:w:t] = [p(g)t'\T3Q(§,%)t’\s:t)‘].

Let Lo be the line at infinity {t = 0}, and let I; be the indeterminacy set

of f. Because v # 0, the point p,, = [0 : 1 : 0] is always an indeterminacy
point. In the case § > d, the point py is the unique indeterminacy point,



and [ is algebraically stable if s/r > a. More precisely, if s/r = o then the
dynamics on L — {poo} is induced by the polynomial h(1,w), and if s/r > o
then f contracts Lo, — {poo} to the attracting fixed point [1:0:0]. On the
other hand, f contracts Lo, — I 7 t0 peo in the case § < d. Therefore, if § > d
and a = v/(6 —d), or if § < d, then p,, is attracting in some sense. For these
cases, Wg is included in the attracting basin of p.,, and Ay is the restriction
of the attracting basin of py, to A, x C.

3 Results on Green functions

Now we state our results on the existence, continuity and plurisubharmonicity
of the Green functions of f. This section divides into three subsections: the
cases 0 > d, 0 < d and § = d. Since o can be negative unlike the case v = 0,
we redefine |(z, w)|, as max{|z|™>{®0} |y|}. See [3] for the proofs and more
details.

3.1‘ The case 6 > d

Observing the dynamics of f on P(r,s,1), where s/r > «a, we obtain the
following upper estimate of G,.

Proposition 3.1. If § > d, then G} < oG, on A, x C, where G =
lim sup,,_,,, A" log™ |Q7].

Corollary 3.2. If 6 > d, then G% = aG, on C2.
Now we apply Lemma 2.1 to show the existence of G2.

Theorem 3.3. If 6 > d and a = v/(§ — d), then the limit G is defined,
continuous and pluriharmonic on As. Moreover, :

|G2(w) —log |2™%w|| < Ck,

where Cg tends to 0 as R — oo, G ~ log|w| as w — oo for ﬁa:ed z in Ap,
and GZ tends to 0 as (z,w) in Ay tends to 0Af — J, x C.

Let By = A, x C — Af. Since G2 = 0 on By, this theorem implies the
existence of G¢ on A4, x C.
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Corollary 3.4. If§ > d and o = v/(6 — d), then G 1is defined, continuous
and plurisubharmonic on A, x C. Moreover, it is pluriharmonic on Ay and

ntB f-
Theorem 3.3 also implies the existence of G2 and G on Aj.

Corollary 3.5. If § > d and a = v/(6 — d), then G} = aG, and Gy =
- max{e, 1}G, on (Kp x C) U Ay

We end this subsection with a claim on the uniform convergence to G2
and the asymptotics of G® near infinity. Let h(c) := h(1,c). Because h
and G} have some symmetries related to the denominator of a, the Green

function G,(2~%*w) is well defined.

Proposition 3.6. If§ > d and a = /(6 —d), then the convergence to G is
uniform on V x C, where V C A,, and G%(w) = Gy, (z7%w)+0(1) as z — oo.

3.2 Thecased<d

Lemma 2.1 induces the existence of G,.

Theorem 3.7. If 6 < d, then the limit G, is defined, continuous and pluri-
harmonic on As. Moreover,

IGZ(w) — log |z7/(d_a)w|| < Cgr on Wk,

where Cr tends to 0 as R — 0o, G, ~ log|w| as w — oo for fized z in Ap,
and G, tends to 0 as (z,w) in Ay tends to 0A5 — J, x C.

Since G, = 0 on By, this theorem implies the following corollary.

Corollary 3.8. If§ < d, then G, is defined on C?, which is continuous and
plurisubharmonic on A, x C. Moreover, G, = Gy = G$ on C? and G, = G
on Ap x C.

The convergence to G, seems not to be uniform on Wg. However, one
can prove that the convergence to G2 is uniform on W if a = v/(d — d).

Proposition 3.9. If§ < d and a = v/(6 —d), then the convergence to G7 is
uniform on V x C, where V C Ap, and G2(w) = Gp(z~*w) +o0(1) as z — 0.



3.3 The case 6 =d

The dynamics of f differs depending on whether v = 0 or v # 0. See [2] for
the case v = 0; if 0 = d and v = 0 then f extends to holomorphic maps on
weighted projective spaces. Assuming v # 0, we obtain the following three
theorems from Lemma 2.1.

Theorem 3.10. If 6 = d and v # 0, then G, = oo on A; and G, <
max{a,0}G, on By, where G, = limsup,,_,,, d "log™* |Q7|.

Corollary 3.11. If § =d and v # 0, then

00 on Ay

Cilzw) = {max{a,O}Gp(z) on By.

Theorem 3.12. If § =d and v # 0, then

lim log™ | (2, w)| = lim log™ Q2 (w)|

n—oo nydn—1 n—o0 nfyd"—l
) Gu(2)  on (K, xC)U Ay
o on Bj.

Theorem 3.13. If 6 =d and v # 0, then the limit G is defined, continuous
and plurtharmonic on As. Moreover,

|G(z,w) — log |w|| < Cr on Wk,

where the constant Cr > 0 tends to 0 as R — oo, G ~ log|w| as w — oo
for fized z in Ay, and G tends to —oco as (z,w) in As tends to any point in
BAf — Jp x C.

Since G = —oo on By, this theorem implies the following corollary.

Corollary 3.14. If 6 = d and vy # 0, then G is defined and plurisubharmonic
on A, x C if we admit minus infinity.
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