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ABSTRACT. We consider the family of rational maps of the complex plane given
by $P_{d,c}(z)$ $:=z^{d}+c$ where $c\in \mathbb{C}$ is a parameter and $d\in \mathbb{N}\backslash \{1\}$ . The generalized
Mandelbrot set is the set of all $c\in \mathbb{C}$ such that the forward orbit of $0$ under $P_{d,c}$

is bounded. Let $f_{d}:\mathbb{D}arrow \mathbb{C}\backslash \{1/z:z\in \mathcal{M}_{d}\}$ and $\Psi_{d}:\hat{\mathbb{C}}\backslash \overline{\mathbb{D}}arrow\hat{\mathbb{C}}\backslash \mathcal{M}_{d}$ be the
Riemann mapping functions and let their expansions be $f_{d}(z)=z+ \sum_{m=2}^{\infty}a_{d,m}z^{m}$

and $\Psi_{d}(z)=z+\sum_{m=0}^{\infty}b_{d,m}z^{-m}$ , respectively. We investigate several properties of
the coefficients $a_{d,m}$ and $b_{d,m}$ . In this paper, we concentrate on the zero coefficients
of $f_{d}$ . Detailed statements and proofs will be presented in [13].

1. INTRODUCTION
Let $\mathbb{D}$ be the open unit disk, $\mathbb{D}^{*}$ the exterior of the closed unit disk, $\mathbb{C}$ the complex

plane and $\hat{\mathbb{C}}$ the Riemann sphere. Furthermore let $G\subsetneq \mathbb{C}$ be a simply connected
domain with $0\in G$ and $G’\subsetneq\hat{\mathbb{C}}$ be a simply connected domain with $\infty\in G’$ which
has more than one boundary point. In particular, there exist unique conformal
mappings $f$ : $\mathbb{D}arrow G$ such that $f(O)=0,$ $f’(O)>0$ and $g$ : $\mathbb{D}^{*}arrow G’$ with
$g(\infty)=\infty,$ $\lim_{zarrow\infty}g(z)/z>0$ . We call $f$ and $g$ the normalized Riemann mapping
function of $G$ and $G’.$

Let $c\in \mathbb{C},$ $n\in \mathbb{N}\cup\{0\}$ and $P_{c}(z)$ $:=z^{2}+c$ . We denote the n-th iteration of
$P_{c}$ by $P_{c}^{on}$ which is defined inductively by $P_{C}^{on+1}=P_{c}oP_{c}^{on}$ with $P_{c}^{00}(z)=z$ . For
each fixed $c$ , the filled-in Julia set of $P_{c}(z)$ consists of those values $z$ , which remain
bounded under iteration. The boundary of the filled-in Julia set is called the Julia
set. The Mandelbrot set $\mathcal{M}$ is the set of all parameters $c\in \mathbb{C}$ for which the Julia set
of $P_{c}(z)$ is connected. It is known that $\mathcal{M}=$ { $c\in \mathbb{C}$ : $\{P_{\mathring{c}}^{n}(0)\}_{n=0}^{\infty}$ is bounded} is
compact and is contained in the closed disk of radius 2 with center $0$ . Furthermore,
$\mathcal{M}$ is connected. We want to note, that there is an important conjecture which
states that $\mathcal{M}$ is locally connected (see [2]).

Douady and Hubbard demonstrated the connectedness of the Mandelbrot set
by constructing a conformal isomorphism $\Phi$ : $\hat{\mathbb{C}}\backslash \mathcal{M}arrow \mathbb{D}^{*}$ . If the inverse map
$\Phi^{-1}(z)=:\Psi(z)=z+\sum_{m=0}^{\infty}b_{d,m}z^{-m}$ extends continuously to the unit circle, then
the Mandelbrot set is locally connected, according to Carath\’eodory’s continuity
theorem. This is a motivation of our study.

Jungreis presented an method to compute the coefficients $b_{m}$ of $\Psi(z)$ in [7]. Sev-
eral detailed studies of $b_{m}$ are given in [1, 3, 4, 9]. An analysis of the dynamics
of $P_{d,c}(z);=z^{d}+c$ with an integer $d\geq 2$ is presented in [15]. The generalized
Mandelbrot set is defined as $\mathcal{M}_{d}$ $:=$ { $c\in \mathbb{C}$ : $\{P_{d,c}^{on}(0)\}_{n=0}^{\infty}$ is bounded}, which is
the connected locus of the Julia set of $P_{d,c}$ (see [10]). $\mathcal{M}_{d}$ is also connected, com-
pact and contained in the closed disk of radius $2^{1/(d-1)}$ (see [8, 15]). Constmcting
the normalized Riemann mapping function $\Psi_{d}(z)=z+\sum_{m=0}^{\infty}b_{d,m}z^{-m}$ of $\hat{\mathbb{C}}\backslash \mathcal{M}_{d},$

Yamashita [15] analyzed the coefficients $b_{d,m}.$
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In addition, Ewing and Schober studied the coefficients $a_{m}$ of the Taylor series
expansion of the function $f(z)$ $:=1/\Psi(1/z)$ at the origin in [5]. The function $f$

is the normalized Riemann mapping function of the exterior of the reciprocal of
the Mandelbrot set $\mathcal{R}$ $:=\{1/z:z\in \mathcal{M}\}$ . If $f$ has a continuous extension to the
boundary, the Mandelbrot set is locally connected.

In [14], we investigated properties of the coefficients $a_{d,m}$ of the normalized Rie-
mann mapping function $f_{d}(z)=z+ \sum_{m=2}^{\infty}a_{d,m}z^{m}$ for the exterior of the reciprocal
of the generalized Mandelbrot set $\mathcal{R}_{d}$ $:=\{1/z : z\in \mathcal{M}_{d}\}$ and $b_{d,m}$ . In this pa-
per, we present several properties of $a_{d,m}$ . In particular, we concentrate on the
zero-coefficients.

2. COMPUTATION OF THE COEFFICIENTS $b_{d,m}$ AND $a_{d,m}$

In this section, we present a method how to compute the coefficients $a_{d,m}$ and $b_{d,m}$

with $d\geq 2$ . First we recall the construction of the inverse map of the normalized
Riemann mapping function of $\hat{\mathbb{C}}\backslash \mathcal{M}_{d}$ (see [1, 2, 7, 15]).

Theorem 1. The map $\Phi_{d}:\hat{\mathbb{C}}\backslash \mathcal{M}_{d}arrow \mathbb{D}^{*}$ defined as

$\Phi_{d}(z):=z\prod_{k=1}^{\infty}(1+\frac{z}{P_{d,z}^{ok-1}(z)^{d}})1{}_{\overline{d}}F$

is a conformal isomorphism which satisfies $\Phi_{d}(z)/zarrow 1(zarrow\infty)$ .

We set $\Psi_{d}$ $:=\Phi_{d}^{-1}$ which is the normalized Riemann mapping function of $\hat{\mathbb{C}}\backslash \mathcal{M}_{d}.$

It follows immediately that $f_{d}(z)$ $:=1/\Psi_{d}(1/z)$ is the normalized Riemann mapping
function of $\mathbb{C}\backslash \mathcal{R}_{d}.$ $\Psi_{d}(z)$ has the following property.

Proposition 2. Let $n\in \mathbb{N}\cup\{0\}$ and $A_{d,n}(c)$ $:=P_{\mathring{d},c}^{n}(c)$ . Then

$A_{d,n}(\Psi_{d}(z))=z^{d^{n}}+O(1/z^{d^{n+1}-d^{n}-1})$ as $zarrow\infty.$

This proposition leads to the next method, given by Jungreis in [7], to compute
$b_{d,m}.$

Let $j\in \mathbb{N}$ be fixed. Assume that the values of $b_{d,0},$ $b_{d,1},$
$\ldots,$

$b_{d,j-1}$ are known.
Set $\hat{\Psi}_{d}(z)$ $:=z+ \sum_{i=0}^{j}b_{d,i}z^{-i}$ . Take $n\in \mathbb{N}$ large enough such that $j\leq d^{n+1}-3$

is satisfied. Considering the definition of $A_{d,m}$ and the multinominal theorem, we
obtain
$A_{d,n}(\hat{\Psi}_{d}(z))$ $=$ $z^{d^{n}}+(d^{n}b_{d,0}+C)z^{d^{n}-1}$

$+ \sum_{i=1}^{j}(d^{n}b_{d,i}+q_{d,n,i-1}(b_{d,0}, b_{d,1}, \ldots, b_{d,i-1}))z^{d^{n}-i-1}+O(z^{d^{n}-j-2})$

as $zarrow\infty$ , where $C$ is a constant, and $q_{d,n,i-1}(b_{d,1}, b_{d,2}, \cdots, b_{d,i-1})$ is a polynomial
of $b_{d,1},$ $b_{d,2},$ $\cdots,$ $b_{d,i-1}$ which has integer coefficients. According to Proposition 2,
the coefficients of $z^{d^{n}-j-1}$ are zero. The desired $b_{d,j}$ is the solution of the algebraic
equation

$d^{n}b_{d,j}+q_{d,n,i-1}(b_{d,1}, b_{d,2}, \cdots, b_{d,j-1})=0.$

Considering $a_{d,m}=-b_{d,m-2}- \sum_{j=2}^{m-1}a_{d_{J}’},b_{d,m-1-j}$ for $m\in \mathbb{N}\backslash \{1\}$ , we get $a_{d,m}$ . In
addition, we obtain the following lemma.
Lemma 3. The coefficients $a_{d,m}$ and $b_{d,m}$ are $d$-adic mtional numbers.
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Building a program to compute the exact values of $b_{2,m}$ and $a_{2,m}$ by using the $C$

programing language with multiple precision arithmetic library GMP [6], we get the
first 30000 exact values of $a_{2,m}$ . Some of these values (numerator, exponent of 2 for
the denominator) are presented in Table 1 of Section 5.

3. COEFFICIENT FORMULA
In this section, we introduce a generalization of the coefficient formula presented

in [5].

Theorem 4. Let $n\in \mathbb{N},$ $2\leq m\leq d^{n+1}-1$ and $r$ sufficiently large. Then

$ma_{d,m}= \frac{1}{2\pi i}\int_{|w|=r}P_{d,w}^{on}(w)^{m/d^{n}}\frac{dw}{w^{2}}.$

This formula shows that $a_{d,m}$ is the coefficient of degree 1 of the Laurent series
expansion of $P_{d,w}^{on}(w)^{m/d^{n}}$ at $\infty$ . Using Mathematica, we calculate the exact values
of $a_{3,m},$ $a_{4,m},$ $a_{5,m},$ $a_{6,m}$ and $a_{7,m}$ . Part of these values (numerator, exponent of each
factor for the denominator) are presented in Tables 2, 3, 4, 5 and 6 of Section 5. In
these tables, we omit the zero $co$efficients indicated in Corollary 6.

The next lemma follows from this theorem. Let $C_{j}(a)$ be the general binomial
coefficient, i.e. for a real number $a$ and $|x|<1$ it is $(1+x)^{a}= \sum_{j=0}^{\infty}C_{j}(a)x^{j}.$

Lemma 5. Let $n,$ $N\in \mathbb{N},$ $2\leq m\leq d^{n+1}-1$ and $1\leq N\leq n$ . We obtain that $ma_{d,m}$

is the coefficient of $w$ in the Laurent series of the expression

$\sum_{j_{1}=0}^{\infty}\cdots\sum_{j_{N}=0}^{\infty} C_{j_{1}}(\frac{m}{d^{n}})C_{j_{2}}(\frac{m}{d^{n-1}}-dj_{1})C_{j_{3}}(\frac{m}{d^{n-2}}-d^{2}j_{1}-dj_{2})$

. . . $C_{j_{N}}( \frac{m}{d^{n-N+1}}-d^{N-1}j_{1}-d^{N-2}j_{2}-\cdots-dj_{N-1})$

$\cross w^{j_{1}+\cdots+j_{n}}P_{d,w}^{\circ n-N}(w)^{m/-dj_{N}}d^{n-N}-d^{N}j_{1}-d^{N-1}j_{2}.$

Setting $N=n$ and considering $P_{d,w}^{00}(w)=w$ leads to the next corollary.

Corollary 6. Let $n\in \mathbb{N}$ and $2\leq m\leq d^{n+1}-1$ . Then

$ma_{d,m}= \sum C_{j_{1}}(\frac{m}{d^{n}})C_{j_{2}}(\frac{m}{d^{n-1}}-dj_{1})C_{j_{3}}(\frac{m}{d^{n-2}}-d^{2}j_{1}-dj_{2})$

. . . $C_{j_{n}}( \frac{m}{d}-d^{n-1}j_{1}-d^{n-2}j_{2}-\cdots-dj_{n-1})$ ,

where the sum is over all non-negative indices $j_{1},$ $\ldots,j_{n}$ such that $(d^{n}-1)j_{1}+(d^{n-1}-$

$1)j_{2}+(d^{n-2}-1)j_{3}+\cdots+(d-1)j_{n}=m-1.$

4. ZERO COEFFICIENTS
Ewing and Schober proved the following theorem conceming these coefficients for

$d=2.$

Theorem 7 (see [5]). For any integers $k$ and $\nu$ satisfying $k\geq 1$ and $2^{\nu}\geq k+1$ , let
$m=(2k+1)2^{\nu}$ . Then $a_{2,m}=0.$

It is unknown whether the converse is true. They reported that their computation
of 1000 terms of $a_{2,m}$ has not produced a zero-coefficient besides those indicated in
the theorem [5]. The next statement is a generalization of the above.

Theorem 8. Suppose the positive integers $k,$ $\nu$ satisfy $\nu\geq 1,2\leq k\leq d^{\nu+1}-1$ and
$k\not\equiv O(modd)$ . Then $a_{d,m}=0$ for $m=kd^{\nu}.$
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For $d=3$ , if $m$ is even, then $a_{d,m}=0$ . In addition, when $d=4$, if $m\not\equiv$

$1(mod 3)$ , then $a_{d,m}=0$ . This phenomena is caused by the rotation symmetry of
the generalized Mandelbrot set (see [8, 15]). We gave a short proof in [13].

Corollary 9. Suppose $d\geq 3$ and $m\not\equiv 1(mod d-1)$ . Then $a_{d,m}=0.$

Furthermore there are other zero-coefficients for $d\geq 3$ . For example, $d=3$ and
$m=39$ . Some of these can be determined as follows:
Theorem 10. Suppose $d\geq 3$ and the positive integers $k,$ $\nu$ satisfy $\nu\geq 1,2\leq k\leq$

$2(d^{\nu+1}-1),$ $k\not\equiv 0(modd)andk\not\equiv-1(modd)$ . Then $a_{d,m}=0$ for $m=kd^{\mu}.$

5. TABLES
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