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1. CHARACTER VARIETY AND MAPPING CLASS GROUP

In this section, we briefly introduce the notion of character variety and the actions on
it.

1.1. Character variety. Let $\pi$ be a finitely generated group, and $G$ a Lie group. Let
us consider the representation space $Hom(\pi, G)$ . Note that $G$ acts on $Hom(\pi, G)$ by
post-composition of conjugation, that is, for $g\in G$ and $\rho\in Hom(\pi, G),$ $g(\rho)$ $:=\iota_{g}0\rho,$

where $\iota_{g}:x\mapsto gxg^{-1}.$

The chamcter variety is the (categorical) quotient of $Hom(\pi, G)$ by this $G$ action and
denoted by $\mathcal{X}=\mathcal{X}(\pi)=Hom(\pi, G)/G.$

Each element $\alpha$ of the automorphism group Aut $(\pi)$ of $\pi$ also acts on the representation
space $Hom(\pi, G)$ by pre-composition $\alpha(\rho)$ $:=\rho 0\alpha^{-1}$ . Note that the inner-automorphism
group Inn $(\pi)$ acts trivially on the quotient $Hom(\pi, G)/G$ . Thus, the outer-automorphism
group

Out $(\pi)$ $:=$ Aut $(\pi)/$ Inn $(\pi)$

acts on the character variety.
We are interested in the dynamics of this action.

1.2. Surface groups and mapping class groups. From now on, we assume that the
group $\pi$ is the fundamental group of a surface $\Sigma$ , that is $\pi=\pi_{1}(\Sigma)$ . The mapping class
group MCG $(\Sigma)$ $:=\pi_{0}(Diff^{+}(\Sigma))$ of $\Sigma$ is a index two subgroup of Out $(\pi)$ .

When $\Sigma$ has $n>0$ boundaries $\partial_{1},$ $\partial_{2},$

$\ldots,$
$\partial_{n}$ , there is a boundary restriction map

$Hom(\pi_{1}(\Sigma), G)/Garrow\prod_{i}^{n}Hom(\pi_{1}(\partial_{i}), G)/G$

The fibers of this map are called relative character variety. $Now$ , We have:

Proposition 1.1. The action of MCG $(\Sigma)$ on $Hom(\pi_{1}(\Sigma), G)/G$ preserves the fibers.
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2. ONE-HOLED TORUS AND SL $(2, \mathbb{C})$ -CHARACTER VARIETY

In this section, we consider the caee when $\Sigma$ is a one-holed torus $\Sigma_{1,1}$ and $G=SL(2, \mathbb{C})$ .
Then, $\pi=\pi_{1}(\Sigma_{1,1})=F_{2}$ , the free group of rank two. We fix a standard generators for
$F_{2}=\langle X,$ $Y\rangle$ , so that the commutator $XYX^{-1}Y^{-1}$ corresponds to the boundary (hole).
Then the character variety is identified with $\mathbb{C}^{3}$ by the following identification:

$\chi:Hom(\pi, G)/Garrow \mathbb{C}^{3}$

$\chi([\rho])\mapsto(tr(\rho(X)), tr(\rho(Y)), tr(\rho(XY)))$ .

Remark 2.1. Let us consider the lift of the identification map: $\tilde{\chi}:Hom(\pi, G)arrow \mathbb{C}^{3}$ so
that $\tilde{\chi}(p)$ $:=(tr(\rho(X)), tr(\rho(Y)), tr(\rho(XY)))$ .

(1) If $\chi(\rho)=\chi(\rho’)=(x, y, z)$ with $\kappa(x, y, z)\neq 2$ , then $g(\rho)=\rho’$ for some $g\in G.$

(Recall that $g$ acts on the representation space by post-composition of conjugation.)
(2) Let us identify $Hom(\pi, G)$ with $G\cross G$ using the standard generating system. If

$f$ : $Hom(\pi, G)=G\cross Garrow \mathbb{C}$ is a regular function which is invariant under the $G$ action
on $Hom(\pi, G)=G\cross G$ , then there exists a polynomial function $F(x, y, z)\in \mathbb{C}[x, y, z]$

such that $f(\xi, \eta)=F(tr(\xi), tr(\eta), tr(\xi\eta)).)$

After this identification, the boundary restriction map is given as:
$Hom(\pi, G)/G\cong \mathbb{C}^{3}\mapsto Hom(\partial, G)/G\cong \mathbb{C}$

$\kappa(x, y, z)=x^{2}+y^{2}+z^{2}-xyz-2.$

The (extended) mapping class group is generated by two Dehn twist maps and an
involution. The following is the corresponding actions on $\pi=\pi_{1}(\Sigma_{1,1})$ .

$T_{X}:X\mapsto X, Y\mapsto YX,$

$T_{Y}:X\mapsto XY^{-1}, Y\mapsto Y,$

$\iota:X\mapsto X^{-1}, Y\mapsto Y.$

This induces the polynomial automorphisms on $\mathbb{C}^{3}.$

$\phi_{X}:(x, y, z)\mapsto(x, z, zx-y)$

$\phi_{Y}:(x, y, z)\mapsto(xy-z, y, x)$

$\phi_{\iota}:(x, y, z)\mapsto(x, y, xy-z)$

Remark 2.2. Let Aut $(\kappa)$ be the group of polynomial automorphisms of $\mathbb{C}^{3}$ which leave
invariant the fibers of $\kappa(x, y, z)=x^{2}+y^{2}+z^{2}-xyz-2$ constant. By Proposition 1.1,
we see that MCG $(\Sigma_{1,1})\subset$ Aut $(\kappa)$ . In fact, it is known that MCG $(\Sigma)$ is commensurable
with Aut $(\kappa)$ . Therefore, our study in this note can be considered as a study of dynamical
system Aut $(\kappa)$ . See [2] for the dynamics of Aut $(\kappa)$ .

3. THREE DECOMPOSITIONS OF THE CHARACTER VARIETY

In this section, we assume that the group $\pi$ is a free group of rank $n$ . The Lie group
$G$ is always equal to $SL(2, \mathbb{C})$ .
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3.1. Geometric decomposition. Let $\mathcal{D}(F_{n})$ be the set of characters corresponding to
discrete faithful representations and $\mathcal{E}(F_{n})$ the set of characters corresponding to repre-
sentations with dense image in $G$ . Then, the following fact is known:

Fact 3.1. (1) $\mathcal{E}(F_{n})$ is nonempty and open.
(2) $\mathcal{D}(F_{n})$ is closed.
(3) $\mathcal{X}(F_{n})\backslash (\mathcal{D}(F_{n})\cup \mathcal{E}(F_{n}))$ has measure $0.$

(4) This decomposition is Out $(F_{n})$ -invariant.

Thus, we can say that $\mathcal{E}(F_{n})$ and $\mathcal{D}(F_{n})$ give geometric decomposition of the character
variety. In Kleinian group theory, we study $\mathcal{D}(F_{n})$ .

In order to describe $\mathcal{D}(F_{n})$ , let us introduce one notion from Kleinian group theory.

Definition 3.2. Suppose that $D_{1},$ $D_{1}’,$
$\ldots,$

$D_{n},$ $D_{n}’$ are $2n$ disjoint closed topological disks
in $\partial \mathbb{H}^{3}=\mathbb{C}$ and $g_{1},$ $\ldots,$

$g_{n}\in$ PSL $(2, \mathbb{C})$ are isometries such that $g_{i}(D_{i})$ is the closure of
the complement of $D_{i}’$ . Then $[g_{1}, \ldots, g_{n}]$ genemte a free discrete group of rank $n$ , called
$a$ Schottky group.

The representation sending $x_{i}\mapsto g_{i}$ is discrete and faithful, and moreover, an open
neighborhood of it in $Hom(F_{n}, G)$ consists of similar representations. We let $S(F_{n})$ denote
the open set of all characters of Schottky representations.

Proposition 3.3. $S(F_{n})$ is the interior of $\mathcal{D}(F_{n})$ .

Note that Out $(F_{n})$ acts properly discontinuously on $S(F_{n})$ , i.e., $\{\phi\in$ Out $(F_{n})|\psi(K)\cap$

$K\neq\emptyset\}$ is finite for any compact $K\subset S(F_{n})$ .

3.2. Dynamical decomposition. Minsky [4] and Lubotzky introduced another decom-
position of $\mathcal{X}(F_{n})$ by primitive stable $(\mathcal{P}S(F_{n}))$ and redundant $(\mathcal{R}(F_{n}))$ characters. (See
also [3]. $)$

Remark 3.4. It is not known whether $\mathcal{X}(F_{n})\backslash (\mathcal{P}S(F_{n})\cup \mathcal{R}(F_{n}))$ has measure zero in
$\mathcal{X}(F_{n})$ or not.

Out $(F_{n})$ acts ergodically on $\mathcal{R}(F_{n})$ and acts properly discontinuously on $\mathcal{P}S(F_{n})$ . (Ge-
lander, Minsky). This is why this decomposition is called dynamical decomposition.

Now, following Minsky [4], let us define primitive stableness. We fix the standard
generating system $F_{n}=\langle X_{1},$

$\ldots,$
$X_{n}\rangle$ . We denote by $X$ the set of generators and inverses

$\{X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}\}.$

Let $\Gamma$ be the Cayley graph of $F_{n}=\langle X_{1},$ $\ldots.X_{n}\rangle$ , i.e., the graph with vertex set $\Gamma$

and edge set $\{(w_{1}, w_{2})\in\Gamma\cross\Gamma|w_{1}x=w_{2}$ for some $x\in X\}$ . An element of $F_{n}$ is called
primitive if it is the image of an element in $X$ by some element of Aut $(F_{n})$ . Any primitive
element can be expressed as a cyclically reduced word. Using any cyclically reduced $wo$rd
$w$ , we can define a bi-infinite reduced word $\cdots www\cdots$ by repeating infinitely many times
in both direction. Set $P=$ { $\cdots www\cdots|w$ is a primitive word in $F_{n}$ }.

Given a representation $\rho$ : $F_{n}arrow SL(2, \mathbb{C})$ and a basepoint $x\in \mathbb{H}^{3}$ , there is a unique
map $\tau_{\rho,x}$ : $\Gammaarrow \mathbb{H}^{3}$ mapping the origin of $\Gamma$ to $x,$ $\rho$-equivariant, and mapping each edge to
a geodesic segment. More explicitly, if a vertex $v$ of $\Gamma$ corresponds to a word $X_{i_{i}}X_{i_{2}}\ldots X_{i_{k}}$

in $F_{n}$ , then,
$\tau_{\rho,x}(v)=\rho(X_{i_{k}})\circ\cdots\circ\rho(X_{i_{1}})(x)$ .
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(Note that the order of the elements $X_{i_{j}}$ is reversed.) Here, an element of $SL(2, \mathbb{C})$ is
understood to act on $\mathbb{H}^{3}$ by Poincar\’e extension.

By this map $\tau_{\rho,x}$ , every element of $P$ is mapped to $a$ (family of) broken geodesic path(s)
in $\mathbb{H}^{3}.$

Recall that a map $f$ : $\mathbb{R}arrow X$ is called $(K, \delta)$-quasigeodesic if

$\frac{1}{K}d(x, y)-\delta\leq d(f(x), f(y))\leq Kd(x, y)+\delta$

for any $x,$ $y\in X$ . Here is the definition of the primitive stableness.

Definition 3.5. $A$ representation $\rho$ : $F_{n}arrow SL(2, \mathbb{C})$ is primitive-stable if there are
constants $K,$ $\delta$ and a basepoint $x\in \mathbb{H}^{3}$ such that $\tau_{\rho,x}$ takes all elements of $P$ to $(K, \delta)-$

quasigeodesics.

We denote by $\mathcal{P}S(F_{n})$ the set of primitive stable characters in $\mathcal{X}(F_{n})$ .
Here is a brief summary of results of Minsky’s paper [4].

Theorem 3.6 (Minsky [4]). (1) If $\rho$ is Schottky, then it is primitive-stable.
(2) Primitive-stability is an open condition in $\mathcal{X}(F_{n})$ .
(3) $\mathcal{P}S(F_{n})$ contains a point on the boundary of the Schottky space.
(4) The action of Out $(F_{n})$ on $\mathcal{P}S(F_{n})$ is properly discontinuous.
(5) $\mathcal{P}S(F_{n})$ is strictly larger than the set of Schottky chamcters, which is Out $(F_{n})$

invariant, and on which Out $(F_{n})$ acts properly discontinuously.

The last statement is quite surprising and this was the main result of [4].

3.3. Bowditch’s $Q$-condition. In this subsection, we consider only the free group of
rank two. In other words, $\pi=\pi_{1}(\Sigma_{1,1})$ .

Bowditch defined the following condition on $[\rho]\in \mathcal{X}(F_{2})[1]$ , which Tan-Wong-Zhang
call condition $BQ[5]$ :

(1) $\rho(x)$ is loxodromic for all primitive $x\in F_{2}.$

(2) The number of conjugacy classes of primitive elements $x$ such that $|$ tr $(\rho(x))|\leq 2$

is finite.
The following is a quite interesting conjecture.

Conjecture 3.7 (Bowditch[l]). $BQ\cap\kappa^{-1}(-2)$ is exactly the set of quasi-fuchsian groups
(punctured torus groups).

Roughly speaking, the above conjecture states that the geometric decomposition and
the condition $BQ$ coincides in the relative character variety $\kappa^{-1}(-2)$ .

3.4. Questions. We want to investigate the relations among three decompositions of the
character variety. ( $BQ$ is defined only in $F_{2}.$ )

Here is a part of the specific questions that Minsky asked in [4].
(1) Is $\mathcal{P}S(F_{2})$ dense in $\mathcal{X}(F_{2})$ ?
(2) Is $BQ$ equal to $\mathcal{P}S(F_{2})$ ?
(3) How do we produce computer pictures of $\mathcal{P}S(F_{n})$?
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FIGURE 1. Bowdit$ch$ ’s $Q$-condition: Diagonal slice

4. A COMPUTER EXPERIMENT

4.1. Pictures. In this section, we show some computer pictures of $\mathcal{P}S(F_{2})$ . The details
of the algorithm will be described elsewhere in the future. This gives (a first step to) a
partial answer to the question (3) by Minsky.

We call $\{(x, y, z)|x=y=z\}\subset Hom(\pi_{1}(\Sigma_{1,1})$ , $SL(2, \mathbb{C}))=\mathbb{C}^{3}$ the diagonal slice. Also,
for a constant $C\in \mathbb{C}$ , we call $\{(x, y, z)|\kappa(x, y, z)=-2, x=C\}\subset \mathbb{C}^{3}$ a linear slice with
$x=C.$

Remark 4.1. For linear slices, we can change the constant value of $\kappa(x, y, z)$ if we want.
But, $\kappa(x, y, z)=-2$ is the case most studied.

Figure 1 is a picture of the diagonal slice for Bowditch’s $Q$-condition and Figure 2 is a
picture of the diagonal slice for primitive stableness. In both pictures, the (center) black
regions correspond to “NOT BQ” and “Not primitive stable” parts.

Figure 3 is a picture of the linear slice with $X=100$ for Bowditch’s $Q$-condition and
Figure 4 is a picture of the linear slice with $x=100$ for primitive stableness. In both
pictures, the black regions correspond to “NOT BQ” and “Not primitive stable” parts.

4.2. Some observations. By comparing these pictures naively by our eyes, the pictures
for Bowditch’s $Q$-condition and for primitive stable look almost the same. $We’ d$ like to
say that this suggests that the answer to the Minsky’s question (2) seems to be positive.

Also, we believe that these pictures suggest that $\mathcal{P}S(F_{2})$ is not dense in $\mathcal{X}(F_{2})$ . That
is, the answer to Minsky’s question (1) should be no in this case.
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FIGURE 2. Primitive stable: Diagonal slice

FIGURE 3. Bowditch’s $Q$-condition: linear slice
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FIGURE 4. Primitive stable: linear slice
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