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Abstract

The maximum of the shortest cycle length of Eulerian circuits of an Eulerian
graph is called the Eulerian recurrent length of the graph. Let n be a positive odd
integer, and let ERL(n) denote the Eulerian recurrent length of the complete graph
K, with n vertices. Previously, the following conjecture has been proposed by the
author et al: For any odd integer n 2 7, ERL(n) < n — 2 holds. In this paper,
improvements of the algorithm to seek evidence for the conjecture are described.
With the algorithm improved, ERL(21) < 19 has been proved. Furthermore, a new
conjecture on Eulerian recurrent lengths of complete graphs is proposed. The aim
of the new conjecture is to help solve the previous one.

KEYWORDS. Eulerian circuit, complete graph, shortest cycle length, computational
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1 Introduction

It is well known that finding an Eulerian circuit of a graph is a fundamental problem since
the dawn of graph theory. It is easy to determine whether a graph given has an Eulerian
circuit, that is, the graph is Eulerian, or not. Methods for finding an Eulerian circuit of
an Eulerian graph given is also known and easy. We call the length of a shortest subcycle
in the Eulerian circuit the shortest cycle length of the Eulerian circuit. We also define
the Eulerian recurrent length of a graph as the maximum of the shortest cycle length of
Eulerian circuits of the graph.

Finding the Eulerian recurrent length of graphs is useful to the following situation.
Assume that there is a set of samples and that it is necessary to test a number of pairs
of those samples with some inspection device. Furthermore, assume the following: there
is some cost to input a sample to the device; a sample is effected by the device, where,
the larger the effect is, the worse the accuracy of the test is, and the effects decrease as
time passes. We consider the whole test a graph. Each sample corresponds to a vertex,
and each pair of samples to test with the device corresponds to an edge. If cutting down
the cost takes precedence over everything else, and the graph is an Eulerian graph, then
the process of the whole test should make an Eulerian circuit. Furthermore, since it
is desirable for inaccuracy of the result to decrease as small as possible, the Eulerian
recurrent length of the graph should be found. |

In this paper, we investigate the Eulerian recurrent length of complete graphs with
odd numbers of vertices. Previously, we proposed the following conjecture.
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Conjecture 1 The Eulerian recurrent length of a complete graph with n vertices, Ky, is
at most n — 3, where n is a positive odd integer withn 2 7.

The conjecture has not been proved yet as far as we know. We, therefore, have verified the
conjecture by computational experiments. In current experiments, we have succeeded in
verifying that Conjecture 1 holds for n = 21. Furthermore, we propose a new conjecture
to approach the proof of Conjecture 1. In this paper, we describe the mechanisms of the
algorithm used in the computational experiments for verifying Conjecture 1 and the new
conjecture.

In the next section, we shall define several notions necessary for the arguments that
follow. In Section 3, we shall describe known results and conjectures on the Eulerian re-
current length of complete graphs. In Section 4, we shall describe the improved algorithm
to verify the conjectures made in our previous work, and present a new conjecture based
on the results of computational experiments with the improved algorithm. The aim of
the new conjecture is to help solve one of the previous conjectures. In the last section,
we provide a suggestion to further improve the computational experiments.

2 Definitions

The order and size of a graph are the number of vertices and edges of the graph, respec-
tively. A walk is an alternating sequence of vertices and edges such that the end vertices
of each edge are the vertices next to the edge on the walk. A trail is a walk such that all its
edges are distinct. Every graph that appears in this paper is a simple undirected graph.
We may, therefore, express a walk W with only its vertices as vo = v1 — -+ — vp,
where vp is the initial vertex and v,, the terminal vertex. The walk W is said to be a
V-V, walk, or a walk from vy to v,. The length of a walk is the number of edges on
the walk, even if the walk is closed. If a walk is closed, then the walk is expressed as
W=vg—=v1 = = Un = V. A closed trail is said to be a circuit. A path is a walk
such that all its vertices are distinct except that the initial and terminal vertices may be
identical. A closed path of positive length is said to be a cycle . A circuit in a graph G
containing all the edges is said to be an Eulerian circuit of G. A graph is Eulerian if it
has an Eulerian circuit. It is a well known fact that a graph is Eulerian if and only if
each vertex of the graph has even degree. Let G be a graph, and W; and W, walks in
G. If Wy is a subsequence of W5, then W) is said to be a subwalk of W5. Terms subtrail,
subcircuit, subpath, and subcycle are defined as the same manner.

We call the length of a shortest subcycle in a trail the shortest cycle length of the trail.
Here, the trail may be non-closed. However, if the trail is a path and is not closed, then
the shortest cycle length of the trail cannot be defined. Clearly, the shortest cycle length
of an Eulerian circuit is always defined. We call the maximum of the shortest cycle length
of the Eulerian circuits in an Eulerian graph G the Eulerian recurrent length (ERL) of G.
The Eulerian recurrent length of G is denoted by ERL(G). Note that, since the length of
any cycle in G is not greater than the order of G, the order of G is an upper bound on
the Eulerian recurrent length of G.

The number of elements in a finite set S is denoted by |S|. The vertex set and edge
set of a graph G are denoted by V(G) and E(G), respectively. The order and size of a
graph G are, therefore, denoted by |V(G)| and |E(G)|, respectively. For simplicity, we



usually assume that the vertex set of a graph G consists of consecutive integers that stars
from 0, that is, the vertex set is {0,1,...,|V(G)| — 1}.

Let S be a set of vertices of G, T a set of edges of G. The subgraph of G obtained by
deleting all vertices in S is denoted by G — S. The subgraph of G obtained by deleting
all edges in T is also denoted by G — T'. Furthermore, if v and e denote a vertex and an
edge of G, then G — v and G — e denote G — {v} and G — {e}, respectively.

3 Conjectures on the Eulerian recurrent lengths of
complete graphs

It is clear that if a complete graph is Eulerian then the order is odd. As the following
theorem states, the Eulerian recurrent length of a complete graph is very close to its
order[3]. ,

Theorem 1 Let n be an odd integer with n = 11. Then, there is an Eulerian circuit C
of K, such that the shortest cycle length of C is exactly n — 4 if there is an integer m
with n = 4m + 3, and ezactly n — 6 otherwise.

Theorem 1 is proved by decomposition of the edge set of K, into Hamiltonian cycles
Hi — n — 1, where H;, is a Hamiltonian path for £k = 0,1,2,...,n — 2 described as in
Figure 1. To construct the Eulerian circuit in Theorem 1, if (n —1)/2 is odd then (n —
1)/2 Hamiltonian cycles Ho, Ho, Hy, ..., Hp—3 are used, else Hy, Ha, Hy, ..., Hin-1)/2)-2,
H((n-1)/2)+1 H((n~1)/2)+3, - - - » Hn—2 used. The decomposition above is described by
Bollobés [1].

k+1‘-\‘ ',,,-jkwL‘((n—l) /2)

n-1)/2 S .
((n-1)/2) VR

Figure 1: Structure of Hamiltonian path H.
The following theorem slightly improves the trivial upper bound on ERL(K,)[3].

Theorem 2 Let n be an odd integer with n 2 5. Then, every Eulerian circuit of K, has
a subcycle of length at most n — 2. v

You could expect that the upper bound on ERL(K,) in Theorem 2 will be improved by
using similar techniques in the known proof more elaborately. However, we are pessimistic
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about the achievement of such an improvement because of the following facts. Let H
denote the trail of K, with length [E(Kp,)| — 1 defined by

H=Hy— Hy = - = Hn-1)/2)-1,

where H;’s are defined above. Then, the shortest cycle length of H is n — 2. However,
the Eulerian circuit H — n — 1 contains a trianglen —2 ->n—-1—->0—n - 2.

We have obtained that ERL(K5) = ERL(K3) = 3, and ERL(K,) = n — 3 for every
n € {7,9,11,13}, by computational experiments. The following are examples of Eulerian
circuits of K7, Ky, K11, and K3 such that, for each example, the shortest cycle length of
the Eulerian circuit is equal to the Eulerian recurrent length of the complete graph.

An example of Eulerian circuit of K; with the shortest cycle length 4:

0192232495562 002—24>5123—25—-22—>
6—24—20—-25—-21—-6—-3->0.

An example of Eulerian circuit of Ky with the shortest cycle length 6:

0515293234252 0—-26—-1—
3752202421258 526—
7445298253202 725—22—
6>24—-8-2721-5-3—-6—-8—0.

An example of Eulerian circuit of K;; with the shortest cycle length 8:

05125225324 -552627>028—>1—
3499294562025 127—-8—>10—
954-50-252—-255—-953-26—-21021>54—>58—>
9509327222 102528—26>1>9—
744210332 8—22—26—-9—-5-—-7—10—0.

An example of Eulerian circuit of K;3 with the shortest cycle length 10:

0152233949352 62728—29-0-2100—1—
3511922456285 020721-12-10—2—>
956—-511—-8—>20—-3—25—-12—-27>21024—->9—>11—
1605228212243 724—-1—-510—-29—>1—
522362125 0—-24—238—210-2329—25—-211>7—>
225122443198 -+3—-6—-210256—27—-29—>212—-11-0.

On the basis of the experiments above, we currently have the following conjecture
stronger than Conjecture 1.

Conjecture 2 For any odd integer n withn 2 7, ERL(K,) = n — 3 holds, that is to say
the Eulerian recurrent length of a complete graph with n vertices is n — 3.

4 Computational experiments to verify the conjec-
tures
In this section, we describe the mechanism of our algorithm for the computational ex-

periments to verify Conjectures 1 and 2. We use the programming language C in the
computational experiments for simplicity of coding and efficiency of execution.
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In what follows, for every positive integer n, we regard {0,1,2,...,n — 1} as the
vertex set of K,,. The name of only one core function in the program for the experiments
is stceuler. The behavior of srceuler is viewed as searching a tree consisting of growing
trails in K, by backtracking.

Suppose that there is an Eulerian circuit C whose shortest cycle length is n — 2.
Without loss of generality, we describe a shortest subcycle of C' as

12— - =2n-2-=1

Furthermore, since the shortest cycle length of C' is n — 2, and since any edge of K,, must
not.appear more than once in C, we may describe C' as

C=0—-1-22—-—>n-3—-n-2=1=-n-1—---—=0.
We therefore set the root node of the search tree the following trail of length n:
Th=0—-122—--->n-3—-n-2—->31—=3n—-1

Let T = vy — v; — -+ — v be a trail of K, such that K, — E(T) is connected.
Note that there is an Eulerian circuit C such that T is a subtrail of C, if K, — E(T) is
connected. Furthermore, let 7" = T — Ugy1 —> Upgo — *+* = Vpgpi—1 —> Ukl = Uk be a
trail of K, such that 7 is a prefix subtrail of T, the terminal vertex of 7" is the same as
that of T, and the vertex vy, the terminal vertex of T and T”, does not appear in subtrail
Vg1 = Vkp2 — '+ — Upyi—1. By the following theorem, if 7" is a subtrail of an Eulerian
circuit of K, then n —2 £ 1 £ n+ 3 must hold.

Theorem 3 [2/ Let m,n be integers with 4 Sn<m—1. Let C =y = 1 = T3 =
cor 2 Tpana1 — Y be a circuit of Kpyqo whose length is m +n + 2. Then, if y does not
appear in the subcircuit C' = 7 — Tg = +++ — Tyany1 0f C then C' has a subcycle of
length less than m.

From the arguments above, we make srceuler set Ty as the initial trail, that is the
root node, then look at each vertex on the growing trail in turn from the initial vertex 0.
Let srceuler look at the k-th vertex v = v, on the growing trail. Then, it determines
interval [ with n — 2 £ 1 £ n + 3 between the current occurrence of v and the next
one such that the (k + )-th vertex vg4; on the growing trail is undetermined, and sets
Uk+, @s v. In this way, srceuler tries to extend the growing trail so that an Eulerian
circuit may be obtained. Notice that the growing trail may have undetermined vertices.
For example, if srceuler determines n + 2 as the interval between the initial vertex 0
and the next occurrence of 0 just after it starts, and extends the growing trail, then the
n + 2-th vertex v,4o is the terminal vertex of the growing trail and the n + 1-th vertex
Un+1 18 undetermined. Since srceuler tries to make an Eulerian circuit whose shortest
cycle length is n — 2, if it looks at the k-th vertex vy = v on the growing trail and the
k 4+ n — 2-th vertex vgin—2 is undetermined, then it must determine n — 2 as the interval
between the current occurrence of v and the next one so that vgi,—o = v. When srceuler
cannot extend the trail, it backtracks.

The length of each Eulerian circuit C of K, is |E(K,)| = n(n — 1)/2, and each vertex
v of Ky, occurs exactly (n —1)/2 times on C. Furthermore, if the shortest cycle length of
C is n — 2, then any interval between an occurrence of a vertex v and the next one of v
on C liesin {n—2,n—1,n,n+1,n+2,n+ 3} by Theorem 3. The following Theorem 4
follows from those facts.
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Theorem 4 Let n be an integer with n 2 7, Let L be an Eulerian circuit of K, whose
shortest cycle length is n — 2 represented by

L=vy— v = v2 = = Unn-1)/2)-1 = Vo,
and C' a subcircuit of L expressed as:
C =vm = Uny1 = = Unaiy
where Uy, = Upmy. Let k denote
{ie {mm+1m+2,....m+1—1}|v; =vn}|.

Then, 1, the length of C, must satisfy the following inequalities:

kn—3<n;1—k)§l§kn+2(n;1—k).

In our current computational experiments, the backtracking condition derived from
Theorem 4 causes a reduction of the search tree that srceuler builds. By computational
experiments with srceuler improved by Theorem 4, we have verified that Conjecture 1
holds for n = 21. Table 1 shows the number of times that recurrent procedure srceuler
is invoked, where N;(n) is the number for the improved srceuler, and N,(n) the one for
the previous srceuler. We expect that the execution time of one trial of the experiment
is approximately in proportion to the number of times that srceuler is invoked. As
Table 1 shows, the truth of Conjecture 1 for n = 21 is also verified with the previous
srceuler. The reason for that is chiefly the computers used in the current experiments
being more powerful than the previous srceuler. For n = 21, the improved srceuler is
about three times faster than the previous one. Currently, we intend to verify Conjecture 1
for n € {23,25,27} by large-scale computation.

Table 1. Results of the verification experiments for Conjecture 1.

ln] Ni(n) | Ny(n) |
17 3776653933 18490379207
19 52896311490 | 473349261179
21 | 2318764728335 | 7815975519946

Variation in the intervals between two successive identical vertices on the growing
trail that srceuler extends leads us to the following new conjecture that can prove
Conjecture 1.

Conjecture 3 Let n be an integer withn 2 7, and L = vg = vy — vy — -+ —
V((n-1)/2)-1 & non-closed trail with length ((n—1)/2)—1 of a complete graph with n vertices,
K. For each vertezv € V(K,) and each integeri € {1,2,...,(n—1)/2}, let p(v, 1) denote
the length from the initial vertex vy of L to the i-th occurrence of v, where p(vg,1) = 0.
Furthermore, let sequence {A(i)}gzl)/z be defined as A(3) = |p(v,i) — p(v,1) — (i — 1)n|
forie{1,2,...,(n—1)/2}.

Then, {A(i)}g:l)/ % is monotone increasing.
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5 Remarks

We hope that the algorithm for verifying Conjecture 1 and 2 improved by exploiting an
idea derived from the following proposition are orders of magnitude faster than the current
one.

Proposition 1 Letn be an integer withn 2 7, and ¢ : {0,1,2,...,n—1} — {0,1,2,...,
n — 1} denote the one-to-one and onto mapping defined as

n—1 ifi=0,
, 1 ifi=1,
p(1) = .
0 ifi=n-1,

n—1 otherwise.

Suppose that {0,1,2,...,n — 1} is V(K,), the vertez set of complete graph K, with n
vertices. For a trail T =ty — t; =ty — -+ = t, of Ky, let v(T) be defined as

r(T) = o(ts) = o(te—1) = P(ts—2) = -+ = p(t1) = (to)-

Let k and [ be positive integers such thatl = n—2 and 2k+l+1-n = |E(K,)| = n(n—1)/2.
Then, the following is a necessary and sufficient condition for existence of an Eulerian
circuit of K, whose shortest cycle length is n — 2: There are two trails of length k + 1,

S =8y 8 — Sy — " — Sky and T=ty—t; = tyg— - =tk
such that
1. the shortest cycle lengths of S and T are both n — 2,
2.8 =ty =0,8y =t = 1,80 =1ty =2,...,8p0 =tlpo=n—2,8,1 =tp1 = 1,
and s, =t, =n—1,
8. sk41 = O(tkt1), Skrz = P(tksi-1), Skrs = @(thrt — 2)s - -+, Skt = Q(ty1), and

4. B(S)UE(T) = E(K,).
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