
A Rule Selection Method
for Automated Reasoning

Hidetune Kobayashi (Institute of Computational Logic)
Yoko Ono (Yokohama City University)

1 Introduction
H-prover [1] is an automated reasoning system using formal and logical method to prove propositions on
set theory. H-prover is designed to generate proof steps for a given proposition to be proved. A proof is a
sequence of propositions to used to rewrite the original proposition to some apparently true propositions,
and H-prover generates proofs to some propositions. Therefore it is a key point to choose proper rules to
prove a proposition. This is a report to show a method to select proper rules among the rules stored in
the data base.

2 Structure of an automated reasoning system $H-$prover ”

In this section, we explain how H-prover” consists of, and how it works.

2.1 Parts of H-prover
H-prover is consisting of four parts:

1 $)$ Isabelle/HOL [2] as an inference engine

2 $)$ ProofGeneral as an interface

3 $)$ proof controller

4$)$ a database of mathematical knowledge

ProofGeneral is an interface for interactive proof of a proposition, it is incorporated in emacs. We
type in a proposition to be proved into emacs, and throw the proposition into Isabelle by pressing the
start button. Then Isabelle retums a proposition interpreted by Isabelle, and ProofGeneral displays the
proposition retumed from Isabelle. Then we insert a rule with adjusted variables to the proposition and
press the start button to ask Isabelle to rewrite the proposition. This time, Isabelle returns some propo-
sitions which as a whole is a sufficient condition to show the original proposition to be true. Repeating
this procedure, finally we obtain a set of apparently true propositions. A role of H-prover is give a rule
with adjusted variables for the given proposition, control a proof procedure and put into the data base
the original proposition after proved. The main part of proof controller is written in emacs lisp and it
is incorporated in emacs. The rule selection functions are written in C language and plpgsql and they
works within postgreSQL server which contains rules and hints for a proof.

2.2 Trees in the Data Base
To store rules in the data base, we express rules in tree structure. By using trees, we can match variables
of a rule for variables of a proposition to prove. Here, we give an example of a proposition expressed in
tree:

Isabelle expression $[|Pc;Qc|]\Rightarrow\exists$ c. Pc \wedge Qc
Tree expression (LrarS (lrBRK $($Pc sclS Qc$))$ $(exS$ $c dS andS $(P$ $c) $(Q$ $c)))

As above, Isabelle expression is converted to tree structure. In postgreSQL, we have to treat such trees,
we prepared lisp like functions executed within postgreSQL. In the next subsection, we introduce some
lisp like functions briefly. The rules are stored in the table propositions” having columns hsted below.

数理解析研究所講究録
第 1809巻 2012年 93-99 93

$\frac{no|thy|kind|1oca1e|name|simp|num_{-}prem|tree|}{int|text|text|text|text|int|int|text|}$

$\frac{premises|conc1usion|num_{-}cn_{-}vars|num_{-}t_{-}vars}{text[]|text|int|int}$

We have another table ‘ prop$-to_{-}$prove ” which store proposition to prove. The table has columns

$\frac{num_{-}prem1|tree1|premises1|conc1usion1|num_{-}cn_{-}vars1|num_{-}t_{-}vars1}{Int|text|text[]|text|int|int}$

When we choose rules for a proposition to prove, we use these two tables and make a view which
contains candidate rules to apply.

2.3 LISP like functions in postgreSQL
In postgreSQL, type of the tree is declared as text, and fundamental LISP functions car, cdr, cons, nth,

append, list, sreverse are written in C language. Here, we note that in postgreSQL, there is already
the function named reverse, therefore we named sreverse the function having the same effect as reverse
in LISP. In postgreSQL, car works as:

$>$ select car $(((ab) c))$;
car

(a b)
(1 row)

The function “ car” is defined as:

create or replace function car(text) returns text as
$‘/home/hkb/pgsql/C/$lisp’, ‘ car’ language c strict;

PG FUNCTION INFO..Vl (car) ;
Datum car(PG-FUNCTION-ARGS)
$\{$

t ext $*\arg=PG_{-}GETARG_{-}TEXT_{-}P(0)$;
int32 new-text size, a , block-size, arg-size $=$ VARSIZE(arg)-VARHDRSZ;
char $*VAR$, buf [10];
Params; VAR $=$ VARDATA(arg); $Kind_{-}of_{-}\arg(a, VAR, \arg- size)$;
switch (a)

{case $1:$ { NIL nil(buf, block..size); VAR $=$ buf; break;}
case $2:$ { $ERROR_{-}er(buf, block- size)$; VAR $=$ buf; break;}
case $3:\{$ VAR $-VAR+1$; arg-size $=$ arg-size $-$ 2 ;

Block-end(VAR, arg-size, block-size); $\}$

$\}$

new text-size \Leftrightarrow block size $+$ VARHDRSZ;
text $*new_{-}text=$ (text $*$) palloc $(new_{-}text_{-}size)$;
SET-VARSIZE $(new- text, new_{-}text_{-}size)$;
memcpy(VARDATA(new-text), VAR, block-size);
$PG_{-}RETURN_{-}TEXT_{-}P$ (new-text) ;

$\}$

In the above source code, Kind of-arg. NIL-nil, ERROR-er and Block-end are macros.

94

3 Rough rule selection
Since there are hundreds of rules in the DB , we choose rules in two steps. At first, we select rules from the
table propositions” by using three functions root-char, left-char and right-char. Using these
functions, H-prover compares roots of conclusion trees, roots of left children of conclusions and roots of
right children of conclusions.

3.1 Characters of root, left-child and right-child

root-char is a function taking root of a tree defined as:

create function root-char(tree text) returns text as $$
begin

if reserved.-sym(car(root-of tree(tree))) $=$ t ’ then
return car(root of-tree(tree));

else return $L’$; end if;
end; $$ language plpgsql;

left-char and right-char are defined similarly
to take the root of left-child and right-child respectively.

We make a view as

create view selected-rules as select $*$ from propositions,
prop to-prove where root-char(conclusion) $=$ root-char(c-tree)

and left-char(conclusion) $=$ left-char(c-tree)

and right-char(conclusion) $=$ right-char(c-tree)
and $num_{-}cn_{-}vars<=num_{-}cn_{-}vars1$;

First selection of rules is executed as

1. Give a proposition to prove in ProofGeneral, and throw the proposition into Isabelle.

2. Isabelle retums a proposition in $*goal*$
” buffer.

3. H-prover takes the proposition from $*goal*$ ”, then H-prover converts the proposition to tree and
puts the tree into the table “

$prop_{-}to_{-}$prove ” by using update command.

4. The view $selected_{-}$rules
” has rules having the same root-char, left-char, right-char and

having less number of variables than the proposition to prove.

Grouping by root-char, left-char, right-char, we have 219 groups. The largest group is the group
consisting of 52 rules including $iffD2$. The average number of members is 2, therefore the first selection
step is works fairly well.

Now, we see why there are so many rules in $iffD2$ group. $IffD2$ is the rule

$[|P= Q;Q|]\Rightarrow P$

which is represented as

95

(LrarS (lrBRK $(-$ (P) (Q) sclS $Q))$ (P))

in tree expression. The conclusion tree of the tree is (P). Since the first selection checks only the conclusion
of a tree, root-char of (P) is L , left-char is nil, right-char is nil, there is no way to distinguish
this rule from the other rules having simple conclusion.

3.2 Position of variables
A position of variables is a list of depth 2 like
($(CnLP)$ (Pr-2 $LQ)$ (Pr-l $\approx)$ (Pr-llL P) (Pr-lr $LQ)$).

Each inner list is a list of symbols indicating a position and a variable at the position. The header of
each inner list is a symbol to specify a premise or the conclusion a variable is belonging to. The symbol
L shows a variable is a leaf of a tree. The last element is a variable or an operator;

(Cn LP) the variable P is a leaf of the conclusion tree (P),
(Pr-l) the operator $=$ is the root of the tree of the first premise,
$(Pr_{-}11 LP)$ the variable P is the leaf of the left child of the first premise.
Adding $tree_{-}var_{-}pos$ to root-char, left-char, right-char in SQL group by condition, we have

the following result.

name count
ssubst 1

$al1_{-}dupE 1$

rev-notE 1
swap 1

Other group 1

From this result we see that $tree_{-}var_{-}pos$, the function giving porision of variables, separates all
rules.

4 Detailed rule selection
Comparing conclusions of a proposition to prove and that of a rule in the view selected-rules, we can
obtain more detailed data to prove the proposition.

4.1 Compare conclusions
To illustrate the procedure of selection, we give a simple proposition to prove:

$[1Pc;Qc1]$ $\Rightarrow\exists c$. Pc $\wedge Qc$

We convert this into tree, and put it into the table prop-to prove. Then we have nine rules as in the
table.

exI

$ex1_{-}implies_{-}ex$

$exCI$

$bexI$

rev-bexI

bexCI

UNIV-witness
$psubset_{-}imp_{-}ex_{-}mem$

$mk_{-}disjoint_{-}insert$

Comparing conclusions as

96

select name, compare-conclusions(conclusion, conclusionl)

from selected-rules, $prop_{-}to_{-}$prove ;

we obtain the following table.

Here ($lmbS$ xxxi dS andS (P xxxl) $(Q$ xxxl)) is tree expression of”Axxxl. P xxxl $\wedge Q$ xxxl”. The
function compare-conclusions is designed as:

let tvp be tree-var-pos(conclusion) and let tvpl be tree-var-pos(conclusioni).

If the last element of the data at the first different position is a variable, say P , we cut out the
counterpart of P in conclusionl by using the position data at the different position. If P is in the left
child of conclusion tree, we check the similar position in the right child.

In the above table, rules exI , exl-implies ex and $exCI$ have the same conclusion. Therefore, we
cannot separate these rules only by comparing conclusions.

To test the function works, we try another type of exist tree which is called bex-tree. We give a
proposition having bex conclusion:

not-subseteq: “ $\neg A\subseteq B\Rightarrow a\in A.$ $a\not\in B^{\mathfrak{l}}$
’

We have the following table:

Now, we compare the rule exI and the rule $ex1_{-}implies_{-}ex$:
The latter means if there is only one element x satisfying P , then there is an element satisfying $P.$

This is very simple and easy to understand for us, but not so easy for term rewriting by machine. In
next section we discuss checking premises, and we note that the above example is an simple example that
shows unless checking premises, we cannot decide a solution.

97

exi: Px $\Rightarrow\exists x$. Px
$ex1_{-}implies_{-}ex$: $\exists!$ x. Px $\Rightarrow\exists$ x. Px

4.2 Compare premises
In this subsection, we discuss a problem conceming with checking premises.

Start to prove: $b\in f$
‘ $A\Rightarrow\exists$ a $\exists A.$ $b=fa,$

In the view $selected_{-}rules$”, we have nine rules as in the table in subsection 4.1. Comparing conclusion
of the rule $bexI$

$bexI$: $[|Px;x\exists A|]\Rightarrow\exists x\exists A.$ $Px,$

we obtain λ xxxl. $b-f$ xxxl as P. However, there is no candidate variable for the local variable $x,$

we cannot apply $bexI.$ A proof of the proposition $b\in f$ ‘ $A\Rightarrow\exists A.$ $b\Leftrightarrow f$ a is obtained as follows:

Apply (simp only: image-def) —$>b\in\{y. \in x\in A. y\cdot fx\}\Rightarrow\exists a\in A.$ $b\cdot fa.$

Apply (erule Collect E) $—>\exists a\in A.$ $b\cdot f$ a $\Rightarrow\exists a\in A.$ $b\Leftrightarrow f$ a f

Since the prover does not know the definition of the image, in the first line we expand image-def,
and in the second line, we give erule CollectE as a method to treat a set. The idea in the second
line, we will call it as “ mathematical knowledge” Almost all propositions in mathematics cannot be
proved only by simple term rewriting. By virtue of mathematical knowledge, we can make a proof to
a mathematical proposition. Therefore how to store mathematical knowledge and how to use stored
mathematical knowledge is very important future work.

Now we present a function $check_{-}tree_{-}1$
” giving a solution to some simple propositions.

create function check tree-i(tree text, conclusion text, treel text, conclusionl text)

returns text as $$
declare

vars text default ’nil’;
$1_{-}vars$ text default ’nil’ ;
op-pairs text default ’nil’;
op-pairsl text default ‘nil’;
len-l integer default 0 ;
i integer default 0 ;
res text default ’nil’;

res-l text default ’nil’ ;
begin
if assumption-p(treel) $-$ t ’ then return ’assumption’ ;
elseif $ex1_{-}in_{-}prem_{-}equa1_{-}conc1(tree1, num_{-}$premises ($tree1))\Rightarrow$ t ’

then retum $ex1_{-}imp1ies_{-}ex=’$
;

elseif $CHECK_{-}premises_{-}1$ ’ t ’then return $S0ME_{-}ACTI0N_{-}1’$;
elseif ‘CHECK premises-2’ $=$ t ’ then return $S0ME_{-}ACTI0N_{-}2’$;
else

res-l $;=$ compare conclusions(conclusion, conclusionl);

len-l $:-$ slength(res-l);
vars $:\Leftrightarrow$ var-list (tree);
$1_{-}vars:\Leftrightarrow vars_{-}of_{-}QF_{-}tree$ (conclusionl); – later use $QFSL-tree$

if 1 vars $=$ ‘nil’ then return list(res-l);

else
op-pairs $:=$ op operands $(vars, tree_{-}var_{-}pos(tree))$;
op-pairsl: $=$ op-operands (var-list (treel), tree-var pos(treel));
while $i<$ len-l LOOP

98

$res:^{=}$ append $($ lcons ($nth(i, res- l)$, make pairs $($

list $(operand- of (car(nth(i, res- l)$), pm-op pairs(op-pairs)),
operand-of $(car(nth(i, res- l)$), $pm_{-}op_{-}pairs(op_{-}pairs1)))))$,

res) ;
$i:=i+1$;

END LOOP;
end if;
retum res;

end if;
end; $$ language plpgsql;

This is a first version to obtain a solution. It consists of two parts:

1 $)$ simple checks in two points only:

a , is there a same tree as conclusion in premises,
b , is there an expression as the premise in exi-implies ex.

2 $)$ make pair of related variables one from a rule and another from $prop_{-}to_{-}$prove.

For the proposition $[|Pc;Qc|]\Rightarrow\exists$ c. Pc $\wedge Qc$, by using this $check_{-}tree_{-}1$ ”, the prover
gives automatically a sequence of proof steps as

lemma ex-conj I : “ $[|pc;Qc|]\Rightarrow\exists c.$ $Pc\wedge$ $Qc^{\dagger 1}$

apply (rule-tac $P=||\lambda$ xxxl. P xxxl $\wedge Q$ xxx$1”$ and $x=/_{C^{t/}}$ in exI)

apply (rule conj I)

apply assumption$+$

done

In addition to the proof method $rule_{-}tac$ ”, there are proof methods drule”, erule” and
frule” which modify premises. A work to write functions realizing those methods is our urgent task.

Acknowledgement
The idea of this report is an outgrowth of a study in the key laboratory of mathematics mechanization of
Chinese academy of sciences. We are grateful to the institute for giving us nice circumstance for study.

References
[1] H. Kobayashi and Y. Ono, An Application of the Formal Method to Statistics, Proceedings of the

2009 Intemational Symposium on Computing, Communication and Control,238-241, 2009.

[2] T. Nipkow et.al., Isabelle/HOL: A Proof Assistant for Higher- Order Logic. Springer, 2002.

99

