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Marcus External Contextual Grammars with
Choice of the Languages of Primitive and
Generalized Primitive Words.

An Alternative Proof

To the honor Professor Masami Ito on his 70-th birthday

Pdl Démosi, *and Szildrd Fazekas'}

Abstract

In this paper we unify some well-known results describing an alterna-
tive proof that all of the languages of primitive, quasi-primitive, and
hyper-primitive words are Marcus external contextual languages with
choice.
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1 Preliminaries

Marcus contextual grammars were introduced and intensively studied by S.
Marcus and his students (see [11, 13]). The word is primitive if it is not a

*College of Nyiregyhdza, Institute of Mathematics and Informatics,
H-4400 Nyiregyhdza, Séstéi it 31/B, Hungary, e-mail: domosi@nyf.hu

tCollege of Nyiregyhdaza, Institute of Mathematics and Informatics,
H-4400 Nyiregyhaza, Séstéi it 31/B, Hungary, e-mail: domosi@nyf.hu

¥The authors are grateful to JSPS (Japanese Society for Promotion of Science), Kyoto
Sangyo University, and Nyiregyhdza College for their constant support. The first author
was also supported by Czech Ministry of Education, Youth and Sport, and Hungarian
National Development Agency No CZ-1/2009.



111

power of its proper prefix. The quasi-primitivity and hyper-primitivity are
natural extensions of this concept. The relation of the language of primitive
words to the Marcus contextual languages was studied first in [4]. On the line
of this research, the relation of the language of quasi-primitive and hyper-
primitive words and their certain further generalizations was described in [2]
and [6]. In this paper we unify some of the results in [4, 2, 6] describing an
alternative proof that all of the languages of primitive, quasi-primitive, and
hyper-primitive words are Marcus external contextual languages with choice.

All notion and notations not defined here we refer to [3]. A word (over
Y)) is a finite sequence of elements of some finite non-empty set X. We call
the set ¥ an alphabet, the elements of ¥ letters. If v and v are words over
an alphabet ¥, then their catenation uv is also a word over X. Especially, for
every word u over ¥, uA = A\u = u, where A denotes the empty word. Given
a word u, we define v® = A, " = "y, n > 0, u* = {u" : n > 0} and
ut =u*\ {2}

For every triplet u, v, w of words we say that u is a prefix, w is a suffiz,
and v is a subword of wvw. If u (v,w) is nonempty then we speak about
proper prefiz (proper subword, proper suffix). A word z is called overlapping
or bordered if there are u,v,w € Lt with z = uw = wv.

The length |w| of a word w is the number of letters in w, where each
letter is counted as many times as it occurs. Thus |A| = 0. By the free
monoid X* generated by ¥ we mean the set of all words (including the empty
word A) having catenation as multiplication. We set &t = X* \ {\}, where
the subsemigroup Xt of X* is said to be the free semigroup generated by X.
Subsets of £* are referred to as languages over X.

A primitive word (over X, or actually over an arbitrary alphabet) is a
nonempty word not of the form w™ for any nonempty word w and integer
m 2> 2. The set of all primitive words over ¥ will be denoted by Q(X), or
simply by @ if ¥ is understood. @) has received special interest: ¢ and
¥+ \ @ play an important role in the algebraic theory of codes and formal
languages (see [7, 8, 9, 14]). If u € ¥+ can not be written into the form
u = v™',n > 2 such that u,v € % and ¢’ is a prefix of u then we say that
u is strongly-primitive.

We say that a word u € X% is covered by the word v € Xt if for
every v, u” € ¥*,a € X with u = wau” there are vy,vq,v3,v4 € T* with
U = V1V2QU3V4, VU = V2QU3, U = ¥1Vq, U’ = V3v4.

A word u € Xt is called hyper-primitive if it can not be covered by any
of its proper subwords.
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u € Tt is super strongly primitive if u # v™',n > 2 such that v has a
suffix v” for which v”v' is a prefix of . '

u is called strongly hyper-primitive if u # wv', where w is covered by v,
which is one of its proper subwords, and v’ is a prefix of v.

Finally, u is hyper hyper-primitive if u # wv’, where w is covered by v,
which is one of its proper subwords, and w has a suffix v” such that v"v’ is
a prefix of v.

Denote, in order, SQ(X), HQ(X),SSQ(X), SHQ(X), HHQ(X), or, if X
is understood, then SQ, HQ,SSQ,SHQ, HH(Q the language of all strongly
primitive, hyper primitive, super strongly primitive, strongly hyper-primitive,
and hyper hyper primitive words (over X).

Moreover, denote by |H| the cardinality of H for every set H.

A (Marcus) contextual grammar with choice is a structure G = (V, A, C, ¢),
where V is an alphabet, A is a finite language over V, C is a finite subset of
V* x V*, and ¢ : V* — 2C. If () = C holds for every z € V* then we say
that G is a (Marcus) contextual grammar without choice and then we omit
© sometimes.

We define two relations on V* as usual: for any € V*, we write

T = y if and only if y = uzv, for a context (u,v) in ¢(z),
T =in: ¥ if and only if T = 112923,y = T1uz2vx3 for any (u,v) € @(zs).

Denote = o, = i, the reflexive and transitive closure of these relations and
let Lo(G) = {z € V*: w & ,z,w € A} for a € {ex,in}. Then L, (G) is the
(Marcus) external contextual language (with or without choice) generated by
G, and similarly, L;,(G) is the (Marcus) internal contextual language (with
or without choice) generated by G. Now let G = (V, A, p), where V is an
alphabet, A is a finite language over V, C is a finite subset of V* x V*  and
Q:V*XV*xV* =201

Define the relation = on V* such that # = y for some z,y € V* if
and only if T = 717273,y = T1UT2VT3, T1, T2, T3 € V*, (u,v) € (1, Z2, X3).
Moreover, let = denote the reflexive and transitive closure of = . Thus
L(QG) is defined to be a (Marcus) total contextual grammar (with or without
choice) generated by G. If ¢(z1,z2,23) = C holds for every zy,z2,23 € V*
then we say that G is a (Marcus) total contextual grammar without choice
and sometimes we omit ¢ having this property.

1Observe that the definition of ¢ is not the same as before.
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The following statement is a unified form of some results in [2, 4, 6]. It
has been formulated by [6].

Theorem 1 [2, 4, 6] The languages @, SQ, and HQ are external contextual
languages with choice. This is not true for the sets SSQ,SHQ, and HHQ),
furthermore, none of the sets Q,SQ, HQ,SSQ,SHQ, and HHQ 1is an ex-
ternal contextual language without choice or an internal conteztual language
with or without choice. O )

We shall use the following results.

Theorem 2 [5] Let u,v € Lt,s,t > 1, with s # t. If\/—#\/ﬂanduvsgéQ,
then uwvt € Q.

Theorem 3 [1] Let u,v € Q,u™ = v*w,k,m > 2 for some prefiz w of v.
Then v =v and w € {u, \}. o2

Theorem 4 [1//[BorweinLemma] Letu € Tt,u ¢ a*,a € . Then at least
one of ua,u must be primitive. O

Theorem 5 [10] Ifuv = vq,u € £t,v,q € I*, thenu = wz,v = (wz)*w,q =
2w for some w € *,z € BT and k > 0. v O

We shall use the following two widely known consequences of Theorem 5.

Proposition 6 For every bordered word z € LT there exists a nonempty
word u € £F and a (not necessarily nonempty) word v € L* having z = uvu.
O

Theorem 7 [10] Let u,v € ¥t with uv = vu. There exists w € 1T with
u,v € wt. a

2This statement can also be derived directly from [5].
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2 Results

Next we show alternative proofs of some known results.

Theorem 8 [2, 6] Let V be an alphabet with |V| > 2. If awb € SQ where
weV* anda,beV, then aw € SQ or wb € SQ.3

Proof: Suppose the contrary. Then aw,wb € SPer, i.e., there are u,v €
V+ o/, v € V*, positive integers m,n > 2 such that v’ is a prefix of u, v’ is
a prefix of v, and u™u' = aw, v™v' = wb.

Then u = aw,w; and v’ € {)\, aw,} for some w;, w, € V*. Similarly, v =
wsbw, and v’ € {\,w3b} for an appropriate pair ws, ws € V*. Thus we can
write w € {(wiwza)™wy, (Wiwaa)™ wiwg, (wsbwy) ws, (Wswsb)* T wsws}. Let,
say, w = (wywea)™w; = (wsbwy)"ws. By the symmetricity we may assume
|wi| < |ws]. Thus (wywea)™ = (wsbws)™w’ for some prefix w' of wz. Apply-
ing Theorem 3, \/wiwza = vwsbws. Therefore, wibwy = wsw”a for some
w” € V*. Hence awb = a(wsbw”a)"wsb = (awsbw”)*awzb ¢ SQ, a contradic-
tion. '

We can get the same conclusion if w = (wywea)™w; = (wswsb)™ *wsw,
and n > 2 (or w = (wywea)™ *wywy = (wzbwy)"ws and m > 2). Thus let
w = (wywea)™w; = wawgbwsw, (with n = 2). But then (wywoa)™wib =
(waw4b)? with m > 2. Applying again Theorem 3, /wiwza = vwswsb with
a = b. Therefore, awb = awswibwswyd = (awsw,)?a ¢ SQ, a contradiction.

We can derive the impossibility of w = wywsawwy = (wsbwy)™ws and
n > 2 in the same way.

The rest of the cases is the equality wyweaw,we = wswsbwsw,. But then
|lwiws| = |wswy| which implies wiwsa = wswsd, ie., a = b. Then awdb =
awswsbwswsb = (awswy)?a ¢ SQ, a contradiction again. O

Lemma 9 If a word w can be covered by a word va, with v € ¥*,a € %,
then vb is not a subword of w, for any b € £,b # a.

Proof: Consider a covering of w by va. We will assume that vb can occur in
w and show that it leads to a contradiction.
There are two possibilities for vb to occur in w:

Case 1. vb is a proper subword (not only pre- or suffix) of v'v, where v’
is a prefix of v: in this case vb is neither a prefix nor a suffix of v'v because

3a = b is possible.



va # vb. Thus v has two different borders, i.e. by Proposition 6, v = z;uz;
and v = xoy'xe. Without loss of generality we can assume |z3| < |z;|. Then
x; itself is bordered, hence, applying Proposition 6 again, ; = zyz, for
some z,y. This gives us v = zyzruzryxr and because v overlaps twice with
itself (by zyz and also by z), v = zyzuzyr = zuzryzz, for some z, but then
z is a suffix of z and immediately before it is y, so zyruryr = ruryzryz.
Simplifying gives us yzu = uxy, hence

TUTYTYT = TYTUTYyxr = ryryrur with v = zyruryz, (1)

taking away the first x, we get uzyzryz = yryzuz, so uzr = (yz)?. Therefore,
by Theorem 7, uz, (yr)? € 2% for some z € Xt. From here applying (1),
v = zz*, where z is a primitive word and k > 3. Moreover, since z is a
suffix ofv we get T = 2/27, with 2’ a suffix of z and j < k, so z = 2”2’ and
v=2(2"2 ’)~7+k, with 22 primitive, therefore 2/(2"2')7*+*b would have to be
a proper subword of either 2/(2"2')i+*az’ (2"2')7** or 2/(2"2')!, with i > j+k.
In both cases the first letter of z” would have to be at the same time a and
b, contradiction.

Case 2. vb is a proper subword of vav. In this case v from va overlaps the
first v in vav with a part u; and the second with us, that is, v = ujau, and
v = ugbuy. If |u;| = |ug|, we instantly get a = b, contradiction. Without loss
of generality |u;| < |ug|, and then u, is a border of uy so, applying Theorem 5,
for some z € £*,y € =t we have u; (= (zy)'z) = z(yz)’ and us(= (zy)'z) =

z(yz)’, with 1 < i < j. This gives v = z(yz)'az(yz)’ = z(yz)'bz(yz)".
Taking away z(yz)¢ from both sides we get az(yz)’~ = z(yz)’~*b. By this
equality, x # A implies ax = zc and dxr = xb for some c,d € X. Hence we
could get € a* Nbt, a contradiction. Therefore, z = A. Then ay?~—% = 37~%
with a # b and ¢ < j. (By a # b, i = j would be impossible even if we would

not suppose before ¢ < j.) By this connection, y # A implies ay = yc and

dy = yb for some ¢,d € X. Then y € a™ N b+, which is impossible unless
a=b. a

Theorem 10 [6/ For any word w and (not necessarily distinct) letters a,b €
Y, if aw,wb ¢ HQ, then awb ¢ HQ.

Proof: If aw ¢ HQ, then there is some hyper-primitive av which covers aw.
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Similarly, there is some hyper-primitive ub which covers wb. Without loss -



116

of generality, we can assume |v| < |u|. Then, u is a suffix of v, therefore
wherever there is an occurrence of v in the string, it ends in u. Now, Lemma,
9 tells us that if ub covers wb, and c # b, then wuc is not a subword of wb.

There are two cases.

Case 1. a # b. Whenever v appears in the string wb, it should be followed
by b. From here, we get that avbcovers awbd, so awb ¢ HQ.

Case 2. a = b. Whenever v appears in the string wa, it should be followed
By a. From here, we get that ava covert awa, so awa ¢ HQ. a

Corollary 11 Let V be an alphabet with |V| > 2. If awbc € XQ, where
XQe€{Q,5Q,HQ}, w e V* and a,b,c € V*, then one of aw, awb, wbc is in
XQ.

Proof: If XQ = Q and awb ¢ a*, then Theorem 4 implies that one of aw, awb
should be in Q. If XQ = @Q and awb € a™, then awbc € XQ implies ¢ # a.
In this case, wbc € atc with a # ¢, for which wbc € @ obviously holds. If
XQ € {SQ} then by Theorem 8, if XQ € {SQ, HQ} then by Theorem 10
we have that one of awb, wbc should be in X Q). ]

On the basis of Lemma 11, similarly to Theorem 12 published by [6], next
we show an alternative (and unified) proof of the next statement which is a
union of three previous results.

Theorem 12 (2, 4, 6] All of the languages Q,SQ, HQ are Marcus external
contextual languages with choice.

Proof: Let G = (V, A,C, ) be be an external Marcus contextual grammar
with choice defined by A =V, C = {(\, \), (A, a), (A ab), (a,N) : a,b € V},
moreover, let for every w € V*, z € p(w) with

{(AA)}) V=1,

{(a,N)} ifa€V andaw € XQ,
{(\,a)} ifaeV and wa € XQ,
{(\,ab)} ifa,beV and wabe XQ.°

Moreover, let X@Q € {Q, SQ, HQ}. Obviously, the proposition holds true
for [V| = 1. Hence we assume |V| > 2. By the definition of the grammar
G, it is obvious that L. (G) C SQ. Now we prove that SQ C L., (G)

44, b, c are not necessarily distinct
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by induction. By definition, V N SQ = V(= A) and V2N SQ = {ab |
a,b € V,a # b}. Similarly, VN V3 = {abc | a,b,c € V,a # b,a # ¢,b #
c} U {aab, abb | a,b € V,a # b}. Moreover, by our construction, a,b € V and
a # b imply a =>; ab. Thus we have (VU V?)NQ C Le(G). Similarly, by
our construction, a,b,c € V and a # b,a # ¢,b # ¢ imply ab =, abc and
a,b € V and a # b imply ab =, abb and ab =, aab. Now, assume that
(VUVZU- - UV?)NXQ C Lex(G) for some n > 3. Let u € VPN XQ and
let u = awbc € X@Q where a,b,c € V. (Note that a,b, c are not necessarily
distinct.) Corollary 11 states that, by this condition, one of aw, awb, wbc
in X@Q. Hence, either aw € XQ with aw =¢; awbc or awb € X with
awb =, awbe, or wbe € X Q with wbc =, awbc. O
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