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1 Preliminaries
Marcus contextual grammars were introduced and intensively studied by $S.$

Marcus and his students (see [11, 13]). The word is primitive if it is not a
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power of its proper prefix. The quasi-primitivity and hyper-primitivity are
natural extensions of this concept. The relation of the language of primitive
words to the Marcus contextual languages was studied first in [4]. On the line
of this research, the relation of the language of quasi-primitive and hyper-
primitive words and their certain further generalizations was described in [2]
and [6]. In this paper we unify some of the results in [4, 2, 6] describing an
alternative proof that all of the languages of primitive, quasi-primitive, and
hyper-primitive words are Marcus external contextual languages with choice.

All notion and notations not defined here we refer to [3]. $A$ word (over
$\Sigma)$ is a finite sequence of elements of some finite non-empty set $\Sigma$ . We call
the set $\Sigma$ an alphabet, the elements of $\Sigma$ letters. If $u$ and $v$ are words over
an alphabet $\Sigma$ , then their catenation $uv$ is also a word over $\Sigma$ . Especially, for
every word $u$ over $\Sigma,$ $u\lambda=\lambda u=u$ , where $\lambda$ denotes the empty word. Given
a word $u$ , we define $u^{0}=\lambda,$ $u^{n}=u^{n-1}u,$ $n>0,$ $u^{*}=\{u^{n} : n\geq 0\}$ and
$u^{+}=u^{*}\backslash \{\lambda\}.$

For every triplet $u,$ $v,$ $w$ of words we say that $u$ is a prefix, $w$ is a suffix,
and $v$ is a subword of $uvw$ . If $u(v, w)$ is nonempty then we speak about
proper prefix (proper subword, proper suffix). $A$ word $z$ is called overlapping
or bordered if there are $u,$ $v,$

$w\in\Sigma^{+}$ with $z=uw=wv.$
The length $|w|$ of a word $w$ is the number of letters in $w$ , where each

letter is counted as many times as it occurs. Thus $|\lambda|=0$ . By the free
monoid $\Sigma^{*}$ generated by $\Sigma$ we mean the set of all words (including the empty
word $\lambda$ ) having catenation as multiplication. We set $\Sigma^{+}=\Sigma^{*}\backslash \{\lambda\}$ , where
the subsemigroup $\Sigma^{+}$ of $\Sigma^{*}$ is said to be the free semigroup generated by $\Sigma.$

Subsets of $\Sigma^{*}$ are referred to as languages over $\Sigma.$

A primitive word $(over \Sigma, or$ actually $over an$ arbitrary alphabet) is a
nonempty word not of the form $w^{m}$ for any nonempty word $w$ and integer
$m\geq 2$ . The set of all primitive words over $\Sigma$ will be denoted by $Q(\Sigma)$ , or
simply by $Q$ if $\Sigma$ is understood. $Q$ has received special interest: $Q$ and
$\Sigma^{+}\backslash Q$ play an important role in the algebraic theory of codes and formal
languages (see [7, 8, 9, 14]). If $u\in\Sigma^{+}$ can not be written int$0$ the form
$u=v^{n}v’,$ $n\geq 2$ such that $u,$ $v\in\Sigma^{+}$ and $v’$ is a prefix of $u$ then we say that
$u$ is strongly-primitive.

We say that a word $u\in\Sigma^{+}$ is covered by the word $v\in\Sigma^{+}$ if for
every $u’,$ $u”\in\Sigma^{*},$ $a\in\Sigma$ with $u=u’au”$ there are $v_{1},$ $v_{2},$ $v_{3},$ $v_{4}\in\Sigma^{*}$ with
$u=v_{1}v_{2}av_{3}v_{4},$ $v=v_{2}av_{3},$ $u’=v_{1}v_{2},$ $u”=v_{3}v_{4}.$

A word $u\in\Sigma^{+}$ is called hyper-primitive if it can not be covered by any
of its proper subwords.
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$u\in\Sigma^{+}$ is super strongly primitive if $u\neq v^{n}v’,$ $n\geq 2$ such that $v$ has a
suffix $v”$ for which $v”v’$ is a prefix of $u.$

$u$ is called strongly hyper-primitive if $u\neq wv’$ , where $w$ is covered by $v,$

which is one of its proper subwords, and $v’$ is a prefix of $v.$

Finally, $u$ is hyper hyper-primitive if $u\neq wv’$ , where $w$ is covered by $v,$

which is one of its proper subwords, and $w$ has a suffix $v”$ such that $v”v’$ is
a prefix of $v.$

Denote, in order, $SQ(\Sigma),$ $HQ(\Sigma),$ $SSQ(\Sigma),$ $SHQ(\Sigma),$ $HHQ(\Sigma)$ , or, if $\Sigma$

is understood, then $SQ,$ $HQ,$ $SSQ,$ $SHQ,$ $HHQ$ the language of all strongly
primitive, hyper primitive, super strongly primitive, strongly hyper-primitive,
and hyper hyper primitive words (over $\Sigma$).

Moreover, denote by $|H|$ the cardinality of $H$ for every set $H.$

$A$ (Marcus) contextual gmmmar with choice is a structure $G=(V, A, C, \varphi)$ ,
where $V$ is an alphabet, $A$ is a finite language over $V,$ $C$ is a finite subset of
$V^{*}\cross V^{*}$ , and $\varphi$ : $V^{*}arrow 2^{C}$ . If $\varphi(x)=C$ holds for every $x\in V^{*}$ then we say
that $G$ is $a$ (Marcus) contextual grammar without choice and then we omit
$\varphi$ sometimes.

We define two relations on $V^{*}$ as usual: for any $x\in V^{*}$ , we write

$x\Rightarrow_{ex}y$ if and only if $y=uxv$ , for a context $(u, v)$ in $\varphi(x)$ ,
$x\Rightarrow_{int}y$ if and only if $x=x_{1}x_{2}x_{3},$ $y=x_{1}ux_{2}vx_{3}$ for any $(u, v)\in\varphi(x_{2})$ .

Denote $\Rightarrow*ex,$ $\Rightarrow*$

in the reflexive and transitive closure of these relations and
let $L_{\alpha}(G)=\{x\in V^{*} : w\Rightarrow*\alpha^{X,w}\in A\}$ for $\alpha\in\{ex$ , in $\}$ . Then $L_{ex}(G)$ is the
(Marcus) extemal contextual language (with or without choice) genemted by
$G$ , and similarly, $L_{in}(G)$ is the (Marcus) intemal contextual language (with
or without choice) genemted by $G$ . Now let $G=(V, A, \varphi)$ , where $V$ is an
alphabet, $A$ is a finite language over $V,$ $C$ is a finite subset of $V^{*}\cross V^{*}$ , and
$\varphi:V^{*}\cross V^{*}\cross V^{*}arrow 2^{C.1}$

Define the relation $\Rightarrow$ on $V^{*}$ such that $x\Rightarrow y$ for some $x,$ $y\in V^{*}$ if
and only if $x=x_{1}x_{2}x_{3},$ $y=x_{1}ux_{2}vx_{3},$ $x_{1},$ $x_{2},$ $x_{3}\in V^{*},$ $(u, v)\in\varphi(x_{1}, x_{2}, x_{3})$ .
Moreover, let $\Rightarrow*$ denote the reflexive and transitive closure of $\Rightarrow$ Thus
$L(G)$ is defined to be $a$ (Marcus) total contextual gmmmar (with or without
choice) generated by $G$ . If $\varphi(x_{1}, x_{2}, x_{3})=C$ holds for every $x_{1},$ $x_{2},$ $x_{3}\in V^{*}$

then we say that $G$ is $a$ (Marcus) total contextual grammar without choice
and sometimes we omit $\varphi$ having this property.

lObserve that the definition of $\varphi$ is not the same as before.
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The following statement is a unified form of some results in [2, 4, 6]. It
has been formulated by [6].

Theorem 1 [2, 4, \’oJ The languages $Q,$ $SQ$ , and $HQ$ are external contextual
languages with choice. This is not true for the sets $SSQ,$ $SHQ$ , and $HHQ,$

furthermore, none of the sets $Q,$ $SQ,$ $HQ,$ $SSQ,$ $SHQ$ , and $HHQ$ is an ex-
ternal contextual language without choice or an internal contextual language
with or without choice. $\square$ $\square$

We shall use the following results.

Theorem 2 $[5J$ Let $u,$ $v\in\Sigma^{+},$ $s,$ $t\geq 1$ , with $s\neq t.$ If $\sqrt{u}\neq\sqrt{v}$ and
$uv^{s}\not\in\square Q,$

then $uv^{t}\in Q.$

Theorem 3 [lJ Let $u,$ $v\in Q_{)}u^{m}=v^{k}w,$ $k,$ $m\geq 2$ for some prefikz
$wofv\square ^{2}.$

Then $u=v$ and $w\in\{u, \lambda\}.$

Theorem 4 [$14J$[BorweinLemmaJ Let $u\in\Sigma^{+},$ $u\not\in a^{+},$ $a\in\Sigma$ . Then at least
one of $ua,$ $u$ must be primitive. $\square$

Theorem 5 [1 $OJ$ If$uv=vq,$ $u\in\Sigma^{+},$ $v,$ $q\in\Sigma^{*}$ , then $u=wz,$ $v=(wz)^{k}w,$ $q=$

$zw$ for some $w\in\Sigma^{*},$ $z\in\Sigma^{+}$ and $k\geq 0.$ $\square$

We shall use the following two widely known consequences of Theorem 5.

Proposition 6 For every bordered word $z\in\Sigma^{+}$ there exists a nonempty
word $u\in\Sigma^{+}$ and $a$ (not necessarily nonempty) word $v\in\Sigma^{*}$ having $z=uvu.$
$\square$

$u,v\in w^{+}$

Theorem 7 [$1OJ$ Let $u,$
$v\in\Sigma^{+}$ with $uv=vu.$ There exists

$w\in\Sigma^{+}with\square$

2This statement can also be derived directly from [5].
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2 Results
Next we show alternative proofs of some known results.

Theorem 8 [2, $6J$ Let $V$ be an alphabet with $|V|\geq 2$ . If $awb\in SQ$ where
$w\in V^{*}$ and $a,$ $b\in V$ , then $aw\in SQ$ or $wb\in SQ^{3}$

Proof: Suppose the contrary. Then $aw,$ $wb\in$ SPer, i.e., there are $u,$ $v\in$

$V^{+},$ $u’,$ $v’\in V^{*}$ , positive integers $m,n\geq 2$ such that $u’$ is a prefix of $u,$ $v’$ is
a prefix of $v$ , and $u^{m}u’=aw,$ $v^{n}v’=wb.$

Then $u=aw_{1}w_{2}$ and $u’\in\{\lambda, aw_{1}\}$ for some $w_{1},$ $w_{2}\in V^{*}$ Similarly, $v=$

$w_{3}bw_{4}$ and $v’\in\{\lambda, w_{3}b\}$ for an appropriate pair $w_{3},$ $w_{4}\in V^{*}$ Thus we can
write $w\in\{(w_{1}w_{2}a)^{m}w_{1}, (w_{1}w_{2}a)^{m-1}w_{1}w_{2}, (w_{3}bw_{4})^{n}w_{3}, (w_{3}w_{4}b)^{n-1}w_{3}w_{4}\}$ . Let,
say, $w=(w_{1}w_{2}a)^{m}w_{1}=(w_{3}bw_{4})^{n}w_{3}$ . By the symmetricity we may assume
$|w_{1}|\leq|w_{3}|$ . Thus $(w_{1}w_{2}a)^{m}=(w_{3}bw_{4})^{n}w’$ for some prefix $w’$ of $w_{3}$ . Apply-
ing Theorem 3, $\sqrt{w_{1}w_{2}a}=\sqrt{w_{3}bw_{4}}$. Therefore, $w_{3}bw_{4}=w_{3}w"a$ for some
$w”\in V^{*}$ . Hence $awb=a(w_{3}bw"a)^{n}w_{3}b=(aw_{3}bw")^{n}aw_{3}b\not\in SQ$, a contradic-
tion.

We can get the same conclusion if $w=(w_{1}w_{2}a)^{m}w_{1}=(w_{3}w_{4}b)^{n-1}w_{3}w_{4}$

and $n>2$ $($or $w=(w_{1}w_{2}a)^{m-1}w_{1}w_{2}=(w_{3}bw_{4})^{n}w_{3}$ and $m>2)$ . Thus let
$w=(w_{1}w_{2}a)^{m}w_{1}=w_{3}w_{4}bw_{3}w_{4}$ (with $n=2$). But then $(w_{1}w_{2}a)^{m}w_{1}b=$

$(w_{3}w_{4}b)^{2}$ with $m\geq 2$ . Applying again Theorem 3, $\sqrt{w_{1}w_{2}a}=\sqrt{w_{3}w_{4}b}$ with
$a=b$. Therefore, $awb=aw_{3}w_{4}bw_{3}w_{4}b=(aw_{3}w_{4})^{2}a\not\in SQ$ , a contradiction.

We can derive the impossibility of $w=w_{1}w_{2}aw_{1}w_{2}=(w_{3}bw_{4})^{n}w_{3}$ and
$n\geq 2$ in the same way.

The rest of the cases is the equality $w_{1}w_{2}aw_{1}w_{2}=w_{3}w_{4}bw_{3}w_{4}$ . But then
$|w_{1}w_{2}|=|w_{3}w_{4}|$ which implies $w_{1}w_{2}a=w_{3}w_{4}b$ , i.e., $a=b$. Then $awb=$

$aw_{3}w_{4}bw_{3}w_{4}b=(aw_{3}w_{4})^{2}a\not\in SQ$ , a contradiction again. $\square$

Lemma 9 If a word $w$ can be covered by a word va, with $v\in\Sigma^{*},$ $a\in\Sigma,$

then $vb$ is not a subword of $w$ , for any $b\in\Sigma,$ $b\neq a.$

Proof: Consider a covering of $w$ by $va$ . We will assume that $vb$ can occur in
$w$ and show that it leads to a contradiction.
There are two possibilities for $vb$ to occur in $w$ :

Case 1. $vb$ is a proper subword (not only pre- or suffix) of $v’v$ , where $v’$

is a prefix of $v$ : in this case $vb$ is neither a prefix nor a suffix of $v’v$ because

$3a=b$ is possible.
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$va\neq vb$ . Thus $v$ has two different borders, i.e. by Proposition 6, $v=x_{1}ux_{1}$

and $v=x_{2}y’x_{2}$ . Without loss of generality we can assume $|x_{2}|<|x_{1}|$ . Then
$x_{1}$ itself is bordered, hence, applying Proposition 6 again, $x_{1}=xyx$ , for
some $x,$ $y$ . This gives us $v=$ xyxuxyx and because $v$ overlaps twice with
itself (by $xyx$ and also by $x$), $v=$ xyxuxyx $=$ xuxyxz, for some $z$ , but then
$x$ is a suffix of $z$ and immediately before it is $y$ , so xyxuxyx $=$ xuxyxyx.
Simplifying gives us $yxu=uxy$ , hence

xuxyxyx $=$ xyxuxyx $=$ xyxyxux with $v=$ xyxuxyx, (1)

taking away the first $x$ , we get uxyxyx $=$ yxyxux, so $ux=(yx)^{2}$ . Therefore,
by Theorem 7, $ux,$ $(yx)^{2}\in z^{+}$ for some $z\in\Sigma^{+}$ . From here applying (1),
$v=xz^{k}$ , where $z$ is a primitive word and $k\geq 3$ . Moreover, since $x$ is a
suffix of $v$ , we get $x=z’z^{j}$ , with $z’$ a suffix of $z$ and $j<k$ , so $z=z”z’$ and
$v=z’(z”z’)^{j+k}$ , with $z”z’$ primitive, therefore $z’(z”z’)^{j+k}b$ would have to be
a proper subword of either $z’(z”z’)^{j+k}az’(z"z’)^{j+k}$ or $z’(z^{\prime/}z’)^{i}$ , with $i>j+k.$
In both cases the first letter of $z”$ would have to be at the same time $a$ and
$b$ , contradiction.

Case 2. $vb$ is a proper subword of $vav$ . In this case $v$ from $va$ overlaps the
first $v$ in $vav$ with a part $u_{1}$ and the second with $u_{2}$ , that is, $v=u_{1}au_{2}$ and
$v=u_{2}bu_{1}$ . If $|u_{1}|=|u_{2}|$ , we instantly get $a=b$, contradiction. Without loss
of generality $|u_{1}|<|u_{2}|$ , and then $u_{1}$ is a border of $u_{2}$ so, applying Theorem 5,
for some $x\in\Sigma^{*},$ $y\in\Sigma^{+}$ we have $u_{1}(=(xy)^{i}x)=x(yx)^{i}$ and $u_{2}(=(xy)^{j}x)=$

$x(yx)^{j}$ , with $1\leq i<j$ . This gives $v=x(yx)^{i}ax(yx)^{j}=x(yx)^{j}bx(yx)^{i}.$

Taking away $x(yx)^{i}$ from both sides we get $ax(yx)^{j-i}=x(yx)^{j-i}b$ . By this
equality, $x\neq\lambda$ implies $ax=xc$ and $dx=xb$ for some $c,$ $d\in\Sigma$ . Hence we
could get $x\in a^{+}\cap b^{+}$ , a contradiction. Therefore, $x=\lambda$ . Then $ay^{j-i}=y^{j-i}b$

with $a\neq b$ and $i<j$ . (By $a\neq b,$ $i=j$ would be impossible even if we would
not suppose before $i<j.$ ) By this connection, $y\neq\lambda$ implies $ay=yc$ and
$dy=yb$ for some $c,$ $d\in\Sigma$ . Then $y\in a^{+}\cap b^{+}$ , which is impossible

$unless\square$

$a=b.$

Theorem 10 $[6J$ For any word $w$ and (not necessarily distinct) letters $a,$ $b\in$

$\Sigma$ , if $aw,$ $wb\not\in HQ$ , then $awb\not\in HQ.$

Proof: If $aw\not\in HQ$ , then there is some hyper-primitive $av$ which covers $aw.$

Similarly, there is some hyper-primitive $ub$ which covers $wb$ . Without loss
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of generality, we can assume $|v|\leq|u|$ . Then, $u$ is a suffix of $v$ , therefore
wherever there is an occurrence of $v$ in the string, it ends in $u$ . Now, Lemma
9 tells us that if $ub$ covers $wb$ , and $c\neq b$ , then $uc$ is not a subword of $wb.$

There are two cases.
Case 1. $a\neq b$ . Whenever $v$ appears in the string $wb$ , it should be followed

by $b$ . From here, we get that avbcovers $awb$, so $awb\not\in HQ.$

Case 2. $a=b$. Whenever $v$ appears in the string $wa$ , it should be followed
By $a$ . From here, we get that $ava$ covert $awa$ , so $awa\not\in HQ.$ $\square$

Corollary 11 Let $V$ be an alphabet with $|V|\geq 2$ . If $awbc\in XQ$ , where
$XQ\in\{Q, SQ, HQ\},$ $w\in V^{*}$ and $a,$ $b,$ $c\in V^{4}$ , then one of $aw,$ $awb,$ $wbc$ is in
$XQ.$

Proof: If $XQ=Q$ and $awb\not\in a^{+}$ , then Theorem 4 implies that one of $aw,$ $awb$

should be in $Q$ . If $XQ=Q$ and $awb\in a^{+}$ , then $awbc\in XQ$ implies $c\neq a.$

In this case, $wbc\in a^{+}c$ with $a\neq c$ , for which $wbc\in Q$ obviously holds. If
$XQ\in\{SQ\}$ then by Theorem 8, if $XQ\in\{SQ, HQ\}$ then by Theorem 10
we have that one of $awb,$ $wbc$ should be in $XQ.$ $\square$

On the basis of Lemma 11, similarly to Theorem 12 published by [6], next
we show an alternative (and unified) proof of the next statement which is a
union of three previous results.

Theorem 12 [2, 4, $6J$ All of the languages $Q,$ $SQ,$ $HQ$ are Marcus extemal
contextual languages with choice.

Proof: Let $G=(V, A, C, \varphi)$ be be an external Marcus contextual grammar
with choice defined by $A=V,$ $C=\{(\lambda, \lambda), (\lambda, a), (\lambda, ab), (a, \lambda) : a, b\in V\},$

moreover, let for every $w\in V^{*},$ $z\in\varphi(w)$ with

$z=\{\begin{array}{ll}\{(\lambda, \lambda)\} if |V|=1,\{(a, \lambda)\} if a\in V and aw\in XQ,\{(\lambda, a)\} if a\in V and wa\in XQ,\{ (\lambda, ab) \} if a, b\in V and wab\in XQ^{5}\end{array}$

Moreover, let $XQ\in\{Q, SQ, HQ\}$ . Obviously, the proposition holds true
for $|V|=1$ . Hence we assume $|V|\geq 2$ . By the definition of the grammar
$G$ , it is obvious that $L_{ex}(G)\subseteq SQ$ . Now we prove that $SQ\subseteq L_{ex}(G)$

$4_{a,b,c}$ are not necessarily distinct
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by induction. By definition, $V\cap SQ=V(=A)$ and $V^{2}\cap SQ=$ {ab $|$

$a,$ $b\in V,$ $a\neq b\}$ . Similarly, $V\cap V^{3}=\{abc|a,$ $b,$ $c\in V,$ $a\neq b,$ $a\neq c,$ $b\neq$

$c\}\cup\{aab, abb|a, b\in V, a\neq b\}$ . Moreover, by our construction, $a,$ $b\in V$ and
$a\neq b$ imply $a\Rightarrow ex$ ab. Thus we have $(V\cup V^{2})\cap Q\subseteq L_{ex}(G)$ . Similarly, by
our construction, $a,$ $b,$ $c\in V$ and $a\neq b,$ $a\neq c,$ $b\neq c$ imply $ab\Rightarrow$exabc and
$a,$ $b\in V$ and $a\neq b$ imply $ab\Rightarrow$exabb and $ab\Rightarrow$exaab. Now, assume that
$(V\cup V^{2}\cup\cdots\cup V^{n})\cap XQ\subseteq L_{ex}(G)$ for some $n\geq 3$ . Let $u\in V^{n+1}\cap XQ$ and
let $u=awbc\in XQ$ where $a,$ $b,$ $c\in V.$ (Note that $a,$ $b,$ $c$ are not necessarily
distinct.) Corollary 11 states that, by this condition, one of $aw,$ $awb,$ $wbc$

in $XQ$ . Hence, either $aw\in XQ$ with $aw\Rightarrow ex$ awbc or $awb\in XQ$ with
$awb\Rightarrow ex$ awbc, or $wbc\in XQ$ with $wbc\Rightarrow ex$ awbc. $\square$
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