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Abstract. Palindromes are words that read from either the left or the
right end are the same. In this paper we introduce a new word operation,
that of palindromic completion, in which symbols are added to either
side of the word such that the new obtained words are palindromes. This
notion represents somehow a particular type of hairpin completion, where
the length of the hairpin is at most one. We give precise descriptions of
regular languages that are closed under this operation and show that in
this setting the regularity of the closure under the operation is decidable.
Keywords: Palindromes, palindromic completion, palindromic iterated
completion, regular languages, decidability.

1 Introduction and preliminaries

Palindromes are sequences which read the same starting from either end. Besides
their importance in combinatorial studies of strings, mirrored complementary se-
quences occur frequently in DNA and are often found at functionally interesting
locations such as replication origins or operator sites. Already in the $1950$ ’s it
was recognized that palindromic regions of DNA can exist in a cruciform struc-
ture with intrastrand base pairing of the self-complementary sequence, i.e., if
a palindromic sequence occurs in a double strand, then pulling apart the two
strands at the middle of the palindrome one can perform a “transfer-twist” in
which each strand twists about itself, reducing the energy needed to separate
the strands. $A$ similar phenomenon is when a single strand of DNA curls back
on itself to become self-complementary, after which a polymerase chain reaction
extends the “shorter” end to generate a complete double strand, the result be-
ing a partial double helix with a bend in it. The structure is called a hairpin
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or stem-loop, and it is an important building block of many RNA secondary
structures.

The latter was the main motivation for the study of the mathematical hairpin
concept considered to be a word in which some suffix is matching, Watson-Crick
complementary to, a middle factor of the word. We exhibit a particularisation
of the hairpin concept: whenever designating the complement of some symbol to
be the symbol itself, palindromes can be seen as hairpins for which the loop has
size at most one (we consider that whenever a matching is possible, the binding
happens). Note that in the biological phenomenon serving as inspiration for the
model, the length of the hairpin in the case of stable bindings is also limited
(approximatively 4-8 base-pairs exist normally in such situations).

We say that whenever a word has a palindrome as prefix or suffix, then it is
extended with the reverse of the rest of the word. $A$ concept somehow similar,
that of palindromic closure was introduced in [1] where the author only considers
the shortest left or right pahndrome constructed in such a fashion. To illustrate
this with an example, after palindromic completion from the word abbb we get
both abbba and abbbba, depending on which of the suffixes $bb$ or $bbb$ we choose
for the binding loop. Furthermore, we consider iterated palindromic completion,
the successive application of palindromic completion, taken to the limit. Under
these conditions we prove that one can obtain precise characterizations of both
words and regular languages whose iterated palindromic completion is regular.
Moreover, we show that in this setting the problem of whether the iterated
completion of some language is regular or not is decidable.

We assume the reader to be familiar with fundamental concepts as alphabet,
word, language and regular expression (for more details see [2]) and end this
Section with definitions regarding combinatorics on words and formal languages.

The length of a finite word $w$ is the number of not necessarily distinct symbols
it consists of and is written $|w|$ . The number of occurrences of a certain letter $a$

in $w$ is $|w|_{a}$ . The i-th symbol we denote by $w[i]$ and use the notation $w[i\ldots j]$ to
refer to the part of a word starting at the i-th and ending at the j-th position.

Words together with the operation of concatenation form a free monoid,
which is usually denoted by $\Sigma^{*}$ for an alphabet $\Sigma$ . Repeated concatenation of a
word $w$ with itself is denoted by $w^{i}$ for natural numbers $i.$

A word $u$ is a prefix of $w$ if there exists an $i\leq|w|$ such that $u=w[1\ldots i].$

We denote this by $u\leq_{p}w$ . If $i<|w|$ , then the prefix is called proper. Suffixes
are the corresponding concept reading from the back of the word to the front. $A$

word $w$ has a positive integer $k$ as a period if for all $i,j$ such that $i\equiv j(mod k)$

we have $w[i]=w[j]$ , whenever both $w[i]$ and $w|j]$ are defined.
The central concept to the work presented here is palindromicity. First off,

for a word $w$ by $w^{R}$ we denote its reversal, that is $w[|w|\ldots 1]$ . If $w=w^{R}$ , the
word is called a palindrome; for words of even length we have $w=uu^{R}$ , while for
odd length we have $w=uau^{R}$ with $u$ a word and $a$ some letter at their centre.
The set of all palindromes of a language $L$ is denoted by $\mathcal{P}al(L)=\mathcal{P}al\cap L$ . If
$\mathcal{P}al(L)=L$ , the language $L$ is called a palindromic.
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Horv\’ath, Karhum\"aki and Kleijn [3] have characterized the regular languages
consisting only of palindromes:

Theorem 1. $A$ regular language $L\subseteq\Sigma^{*}$ is palindromic, if and only if it is a
union of finitely many languages of the form $L_{p}=\{p\}$ or $L_{r,s,q}=qr(sr)^{*}q^{R}$

where $p,$ $r$ and $s$ are palindromes, and $q$ is an arbitrary word.

We note here that the location of $\mathcal{P}al$ –the language of all palindromes-
in the Chomsky Hierarchy is well-known; it is linear context-free. Another fact
worth noting is that the primitive root of every palindrome is again a palindrome.

Trivially, every palindrome $p=aqa$ , with $qa$ (possibly empty) pahndrome,
has palindromic prefixes $\lambda,$ $a$ and $aqa$ , therefore whenever we say a palindrome
has a non-trivial palindromic prefix (suffix), we mean that it has a proper prefix
(suffix) of length at least two which is a palindrome.

Definition 1. For a word $uv$ , where $v\not\in\Sigma\cup\{\lambda\}$ $($respectively, $u\not\in\Sigma\cup\{\lambda\})$ is a
palindrome, $uvu^{R}$ $($respectively, $v^{R}uv)$ is in the $r’ight(lefl)$-palindromic comple-
tion of $uv$ . We say that $w’$ is in the palin dromic completion of $w$ if it is either in
the right or left palindromic completion of $w$ . We denote this relation by $w\vdash w’.$

The reflexive, tmnsitive closure of $\vdash is$ the iterated palindromic completion, $in$

notation $\vdash^{*}$ , where for two words $w$ and $w’$ we say $w\vdash^{*}w’$ if $w=w’$ or there
exist words $v_{1},$ $\ldots,$ $v_{n}$ with $v_{1}=w,$ $v_{n}=w’$ and $v_{i}\vdash v_{i+1}$ for $1\leq i\leq n-1.$

Definition 2. For a $lan9^{ua}9^{eL}$ , we denote $L=L_{0}$ and for any $n>0$ we let $L_{n}$

be the palindromic completion of $L_{n-1}$ , i. e., $L_{n}=\{w|\exists u\in L_{n-1} : u\vdash w\}\cup L.$

For a language $L_{f}$ we denote by $L_{\infty}$ the iterated palindromic completion of $L$ , in
other words $L_{\infty}= \bigcup_{narrow\infty}L_{n}.$

For a singleton language $L=\{w\}$ , let $\{w\}_{n}$ denote $L_{n}$ , i.e., the nth pahn-
dromic completion of the word $w.$

2 Palindromic Completion

A trivial observation that we make is that the pahndromic completion of a word
is always a finite set, given that it has finitely many pahindromic pre- or suffixes.

To see that the class of regular languages is not closed under pahndromic
completion, consider the language $L=aa^{+}ba$ . After one palindromic completion
step we get $L_{1}=ab\cdot L\cup\{a^{n}ba^{n}|a\geq 2\}$ , which, intersected with the regular
language $a^{*}ba^{*}$ , results in the non-regular context-free language $\{a^{n}ba^{n}|n\geq 2\}.$

As we will see, even when the starting language is a very simple one, its iter-
ated palindromic completion can become highly complex. We shall characterize
the regular languages, which have regular closure under this operation, but first
let us treat the closure of words. The following lemma is quite useful later on:

Lemma 1. For a palindrome $w$ starting with a palindrome $v$ of length greater
than one, there always exist palindromes $x\neq\lambda$ and $y$ , such that $v,$ $w\in x(yx)^{*}.$
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Proof. Assume we have $w=vu,$ such that $v$ is a palindrome, the other case
being similar. If $2|v|<|w|$ , since $v$ is a prefix of the pahndrome $w$ , and $v$ is a
palindrome itself, taking $v=x$ the conclusion follows.

It is well known (see [4]), that if a word has a border longer than half of the
word, then it has a border shorter than half. Any border of a palindrome is a
pahndrome itself and this leads back to the previous case. $\square$

The next immediate result says that, since each palindromic prefix of a word
is also a suffix of it, the left and right palindromic completions are symmetric.

Lemma 2. For palindromes, the right palindromic completion equals the left
palindromic completion.

Thus, whenever considering several steps of pahndromic completion for some
language $L$ , it is enough to consider either the right, or the left, palindromic
completion of $L_{1}.$

3 Iterated Palindromic Completion

Next natural question considers the iterated palindromic completion? Without
loss of generality, we assume that all languages investigated in the case of iterated
completion have only words longer than two. The case of palindromic completion
on unary alphabets is not difficult to prove. Even more, we have that even for
arbitrary unary languages the iterated palindromic completion is regular:

Proposition 1, The class of unary regular languages is closed under palin-
dromic completion. Furthermore, the itemted palindromic completion of any
unary language is regular.

Proof. We know that all unary regular languages can be expressed as a finite
union of languages of the form { $a^{k}(a^{n})^{*}|k,$ $n$ are some non-negative integers}.
Hence, since after a one step pahndromic completion of each word $a^{m}$ we get
the language $\{a^{\ell}|\ell<2m\}$ , the first part of our result follows. Moreover, for
some arbitrary unary language, after the iterated completion we get the language
{ $a^{j}a^{*}|j$ is the minimum integer among all $m’ s$ }. $\square$

Next let us investigate what happens in the singleton languages case.

Proposition 2. The class of iterated palindromic completion of singletons is
incompamble with the class of regular languages.

Proof. To show that regular languages are obtained take the word $a^{2}ba$ . It is
not difficult to check that the language obtained is $\{a^{2}ba\}\cup\{ab(a^{2}b)^{n}a|n\geq$

$1\}\cup\{a^{2}(ba^{2})^{n}|n\geq 1\}$ . Since all languages are regular, so is their union.
To see now that we not always get regular, nay, non-context-free, consider the

word $u=a^{3}ba$ . After one step completion we get the words $aba^{3}ba,$ $aba^{4}ba,$ $a^{3}ba^{3}.$

The iterated palindromic completion of the first two is $\{aba(a^{3}ba)^{n}|n\geq 1\}\cup$
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$\{aba(a^{2}ba)^{n} n\geq 1\}$ . However, the one step completion of the word $a^{3}ba^{3}$

gives $\{a^{3}ba^{3}ba^{3}, a^{3}ba^{4}ba^{3}\}$ . From $\{a^{3}b(a^{4}b)^{n}a^{3} n\geq 1\}$ one can always get
$\{a^{3}b(a^{4}b)^{m}a^{3}|1<n+1\leq m\leq 2n-1\}$ , and $\{a^{3}b(a^{4}b)^{n}a^{3}b(a^{4}b)^{n}a^{3}|n\geq 1\}.$

From the latter, the completion includes $L=\{a^{3}b(a^{4}b)^{n}a^{3}b(a^{4}b)^{m}a^{3}b(a^{4}b)^{n}a^{3}|$

$1\leq n\leq m\leq 2n+1\}$ . In particular, $\{u\}_{\infty}\cap a^{3}(b(a^{4}b)^{+}a^{3})^{3}$ gives us exactly $L,$

which is easily shown not to be context-free by applying the pumping lemma. $\square$

Proposition 3. For all words of the form $w=up(qp)^{n}u^{R}$ , where $p$ and $q$ are
palindromes and $u$ is a suffix of $pq$ , there exist palindromes $p’,$ $q’$ such that $w=$

$p’(q’p’)^{m}$ with $n\leq m\leq n+2.$

Proof. Depending on the lengths of $u$ and $q$ we distinguish the following cases:
1. $|u|\leq\sqcup q2-$ in this case $q=u^{R}xu$ , for some (possibly empty) palindrome
$x$ . Thus, $w$ can be written as up$(u^{R}xup)^{n}u^{R}=upu^{R}(x.u1^{yu^{R})^{n}}$ , therefore by
assigning $p’=upu^{R}$ and $q’=x$ we can conclude the proof.
2. $\sqcup q2<|u|\leq|q|$ -in this case the prefix $u$ and the suffix $u^{R}$ overlap in $q,$

i.e., $q=$ xyxyx for some palindromes $x$ and $y$ , where $u=xyx$. Thus, $w=$
$xyxp($xyxyxp) $xyx=x($yxpxy.$x)^{n+1}$ and we find that $p’=x$ and $q’=yxpxy$
satisfy our requirements.
3. $|q|<|u|$ -in this case $u=xq$ for some suffix $x$ of $p$ . Thus, $w=xqp(qp)^{n}qx^{R}=$

$xq(pq)^{n+1}x^{R}$ with $x$ a suffix of $p$ , which brings us back to cases 1 or 2 (if the
latter, the exponent increases by one yet again). $\square$

The following result tells us that whenever a palindrome $w$ has $u$ as a palin-
dromic prefix it has $|w|-|u|$ as period:

Lemma 3. [lJ A palindrome $w$ has period $p<|w|$ if and only if it has a palin-
dmmic prefix of length $|w|-p.$

Proposition 4. Let $u_{i}p_{i}(q_{i}p_{i})^{k}\cdot u_{i}^{R}$ be a sequence of palindmmes with

$u_{i}p_{i}(q_{i}p_{i})^{k}\cdot u_{i}^{R}\vdash u_{i+1P_{l+1}}(q_{i+1}p_{i+1})^{k_{i+1}}u_{i+1}^{R},$

where $1\leq i\leq n$ , and $u_{1}=u_{n},$ $p_{1}=p_{n}$ and $q_{1}=q_{n}$ . Then, for all $i$ with
$1\leq i\leq n$ there exist palindromes $p,$ $q$ and positive integers $t_{i}$ , such that

$u_{i}p_{i}(q_{i}p_{i})_{i}^{k}u_{i}^{R}=p(qp)^{t}\cdot.$

Proof. Since $w\vdash w’$ imphes $w\leq_{p}w’$ , we get $u_{1}^{R}\leq_{p}(q_{1}p_{1})^{k_{n}-k_{1}}$ . Then, there
exist words $u,$ $v$ with $uv=q_{1}p_{1}$ and some $t\geq 0$ , such that we can write $u_{1}^{R}=$

$(q_{1}p_{1})^{t}u$ , hence $u_{1}=u^{R}(p_{1}q_{1})^{t}$ . But, $p_{1}q_{1}=p_{1}^{R}q_{1}^{R}=(q_{1}p_{1})^{R}=(uv)^{R}=v^{R}u^{R},$

therefore $u_{1}p_{1}(q_{1}p_{1})^{k_{1}}u_{1}^{R}=u^{R}(v^{R}u^{R})^{t}(v^{R}u^{R})^{k_{1}}p_{1}(q_{1}p_{1})^{t}u=u^{R}(p_{1}q_{1})^{2t+k_{1}}p_{1}u$

and $u_{1}p_{1}(q_{1}p_{1})^{k_{n}}u_{1}^{R}=u^{R}(p_{1}q_{1})^{2t+k_{n}}p_{1}u$ . Taking this further gives us that for
every $i$ with $1\leq i\leq n$ there exists a $t_{\iota}>0$ and a suffix $x_{i}$ of $p_{i}q_{i}$ such that
$x_{i}p_{i}(q_{i}p_{i})^{k}\cdot x_{i}^{R}\vdash^{*}x_{i}p_{l}(q_{i}p_{i})^{k.+t}\cdot x_{l}^{R}$ . Now we can apply Proposition 3, which
gives us that these are all words of the form $p(qp)^{+}$ and Lemma 1 makes sure
that one can find a unique pair $p,$ $q$ to express all of the words. $\square$
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Theorem 2. The itemted palindromic completion of a word $w$ is regular if and
only if for all words $w’\in\{w\}_{1}$ with $w\neq w’$ there exist unique palindromes $p$

and $q$ with $|p|\geq 2$ , such that:

$-w’\in p(qp)^{+}$

$-w’$ has no palindromic prefixes except for the words in $p(qp)^{*}.$

Proof. Due to Lemma 2, for the iterated completion we need only consider the
finite union of all one sided iterated palindromic completion of words $w’\in\{w\}_{1}.$

( $IF$ ) For this direction the result is easily obtained, since, at each completion step,
from some word of form $p(qp)^{n}$ with $n\geq 1$ we get all words $p(qp)^{n},$ $\ldots,p(qp)^{2n},$

for $n\geq 1$ . Thus, the final result is a finite union of regular languages.
(ONLY IF) Now assume that $\{w\}_{\infty}$ , the iterated palindromic completion of some
word $w$ , is regular. Following Theorem 1, $\{w\}_{\infty}$ can be written as the union of
some finite language {$p|p$ palindrome} and some finite union of languages
{ $qr(sr)^{*}q^{R}|r,$ $s\in\Sigma^{*}$ palindromes}.

We neglect the case of the finite language {$p|p$ palindrome}, since this
would contain just elements of $\{w\}\cup\{w\}_{1}$ that cannot be extended further on.
Thus, we consider from $\{w\}_{\infty}$ only the finite union of languages of the form
{ $qr(sr)^{*}q^{R}|q,$ $r,$ $s\in\Sigma^{*}$ and $r,$ $s$ palindromes}.

Following Dirichlet’s principle for the finiteness of variables $q$ with the help
of the pigeon hole principle, we get that for some big enough integer $k_{1}$ and
some $i_{1}$ , we have that $qr(sr)^{k_{1}}q^{R}\vdash^{*}qr(sr)^{k_{1}+i_{1}}q^{R}$ . We can apply Proposition 4
and get some pahndromes $u,$ $v$ , such that $qr(sr)^{*}q^{R}\subset u(vu)^{*}$ . Moreover, from
the same Proposition we have that all the intermediate palindromic completion
steps are in the language $qr(sr)^{*}q^{R}$ , hence, in $u(vu)^{+}$ . Now we know there exist
at most finitely many pairs of pahndromes $u,$ $v$ , such that $w’\in u(vu)^{+}$ . Suppose
that exist $n$ pairs of palindromes $(u_{i},v_{i})$ such that $w’\in u_{i}(v_{i}u_{i})^{+}$ with $u_{i}\neq u_{j}$

and $|u_{i}|\geq 2$ , for $1\leq i\neq j\leq n$ . With the help of the Fine and Wilf’s periodicity
Theorem and Lemma 3 we easily get that $u_{i}v_{\iota}u_{i}\in x(yx)^{+}$ for some palindromes
$x$ and $y$ and $1\leq i\leq n$ and the proof is concluded. $\square$

Next natural question for one to consider, is what happens in the case of
regular languages. We already know that the one step palindromic completion
is not closed to regularity.

Proposition 5. Itemted palindromic completion of a regular language can be
non-con text-free.

Proof. Indeed, for this we just consider the language $L=\{aa^{n}ba|n\geq 1\}.$

Taking a closer look at the iterated palindromic completion of $L$ , we get
that the language obtained is $L_{\infty}\subset L\cup L’$ , where $L’ \subset\{(\prod_{i\geq 1}a^{n}\cdot b)a^{n_{1}}$

$n_{1}\leq n_{\iota}\leq 2n_{1}-2$ for all $i$ }. It is easy to show, that the language $L_{\infty}\cap a^{+}ba^{+}ba^{+}$

is non-context-free, employing the pumping lemma for context-free languages.
Since the class of context-free languages is closed under intersection with regular
languages, it follows that $L_{\infty}$ is outside the class, as well. $\square$
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Proposition 6. Let $p,$ $q,u\in\Sigma^{*}$ with $p,$ $q$ palindromes. If all palin dromic $\tilde{p}$re-
fixes of upqp$u^{R}$ are trivial ones, then for any $i\geq 0$ so are those of up$(qp)^{i}u^{R}.$

Proof. Suppose $p’$ is the shortest non-trivial palindromic prefix of any word
up$(qp)^{k}u^{R},$ $k\geq 0$ . Since $p’$ is not a prefix of $upqpu^{R}$ , the length of $up$ is less than
the length of $p’$ , hence, we have $p’=up(qp)^{i}x$ , for some $i\leq k$ and word $x$ which
is a prefix of $q,$ $qp$ or $u^{R}$ . If $x$ is a prefix of $q$ , then $x^{R}px$ is a suffix of $p’$ , hence, a
non-trivial palindromic prefix of $p’$ , and, therefore, $p’$ is not the shortest. If $x$ is
a prefix of $qp$ , but not of $q$ , then $x=qx’$ and $x^{JR}(qp)^{i}qx’$ is a palindromic suffix,
hence, prefix of $p’$ , contradicting our assumption. Similarly, if $x$ is a prefix of $u,$

then $x^{R}p(qp)^{i}x$ is a shorter non-trivial palindromic prefix than $p’$ itself. $\square$

Theorem 3. For a regular language $L$ , its itemted palindromic completion $L_{\infty}$

is regular if and only if $L$ can be written as the union of disjoint regular languages
$L’,$ $L”$ , and $L”’$ , where

$-L’=L_{1}’=\{w\in L|\{w\}_{\infty}\subseteq L\}$;
$-L”=\{w\in L|\{w\}_{1}=\{w\}_{\infty}\not\subset L\}$ and all words of $L”$ are prefixes4 of

words in the finite union of languages of the form up$(qp)^{*}u^{R}$ , where upqpu
has only trivial palindromic prefixes and $p,$ $q$ are palindromes;

$-L”’=\{w\in L|\{w\}_{\infty}\neq\{w\}_{1}\}$ and all words of $L”’$ are $poefixes^{4}$ of words
in $\bigcup_{i=1}^{n}p_{l}(q_{i}p_{i})^{+}$ , where $n\geq 0$ is an integer depending on $L$ and $p_{i},$ $q_{i}$ are
palindromes, with $p_{l}q_{i}$ primitive.

Proof. ( $IF$ ) This direction is straightforward given the fact that $L$ is the union
of three regular languages.
(ONLY IF) Clearly, any language $L\subset\Sigma^{*}$ can be written as a union of three
disjoint languages where one of them $(L’)$ contains the words which have nei-
ther non-trivial palindromic prefixes nor suffixes or their iterated pahndromic
completion is included in $L$ , another $(L”)$ has all the words which have either
non-trivial prefixes or suffixes, and the third one $(L”’)$ contains the words which
can be extended in both directions by palindromic completion. If $L_{\infty}$ and two
of the aforementioned languages are regular, then the third one is, as well.

Here, we assume that $L_{\infty}$ is regular, hence $L_{\infty}\backslash L$ is regular, too. Moreover,
$L_{\infty}\backslash L$ is a palindromic language, since all of its words are the result of pahn-
dromic completion. From Theorem 1 it follows that there exists a finite set of
words $x_{i},p_{i},$ $q_{i}$ , where $i\in\{1, \ldots, n\}$ and $p_{i},$ $q_{i}$ are pahndromes, such that the
words in $L_{\infty}\backslash L$ are elements of $x_{i}p_{i}(q_{i}p_{i})^{*}x_{l}^{R}$ , for some $1\leq i\leq n.$

First we will identify $L”’$ . For each $j$ , using once more the pigeon hole prin-
ciple, it must be the case that there exist big enough integers $k_{1}$ and $k_{2}$ with

$x_{j}p_{j}(q_{j}p_{j})^{k_{1}R*}x_{j}\vdash x_{j}p_{j}(q_{j}p_{j})^{k_{2}}x_{j}^{R},$

or for some $i\neq j$ and $k_{j}$ , we have

$x_{j}p_{j}(q_{j}p_{j})^{k_{j}R*k_{1}R*}x_{j}\vdash x_{i}p_{z}(q_{i}p_{i})x_{i}\vdash x_{i}p_{i}(q_{i}p_{i})^{k_{2}}x_{i}^{R}.$

4 the prefixes are at least $|up|+\lceil_{2}^{M}\rceil+1$ and $|p_{i}|+r_{2}^{M}\rceil+$ llong, respectively,
because the shorter ones do not extend beyond one step completion when $pq$ (and
$p_{i}q_{i}$ , respectively) is primitive
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In the first case we can apply Proposition 4 and get that there exist palindromes
$p\neq\lambda$ and $q$ such that $x_{j}p_{j}(q_{j}p_{j})^{k_{i}}x_{j}^{R}\in p(qp)^{+}$ , for $i\in\{1,2\}$ , and all interme-
diary words $x_{j}p_{j}(q_{j}p_{j})^{k_{j}}x_{j}^{R}$ are also in $p(qp)^{+}$ . In the second case we can apply
Proposition 4 to the second relation. Then by Lemma 1 and by Proposition 4 we
get that all three words are in $p(qp)^{+}$ , for suitable $p,$ $q$ . From here, the condition
follows by the fact that the language of all prefixes of $\bigcup_{k=1}^{n}p_{k}(q_{k}p_{k})^{+}$ is a regular
language, hence, its intersection with $L$ is also regular. That $p_{i}q_{i}$ are primitive,
we can assume without loss of generahty, because otherwise we can find their
primitive root with the help of the Fine and Wilf Theorem and Lemma 3, which
still satisfy the condition.

We know that $L_{\infty}\backslash L_{\infty}"’=L_{\infty}’\cup L_{\infty}^{\prime;}$ is regular, therefore $L_{diff}=(L_{\infty}’\cup L_{\infty}")\backslash$

$L\subset L_{\infty}"$ is a palindromic regular language. Again, from Theorem 1 we know
that $L_{diff}$ can be written as the finite union of languages of the form up$(qp)^{*}u^{R}.$

Clearly then, all words in $L”$ are prefixes of some up$(qp)^{n}u^{R}$ . Since by definition
$L_{1}"=L_{\infty}"$ , we know that the words up$(qp)^{n}u^{R}$ have no non-trivial palindromic
prefixes, hence, by Proposition 6 we have that upqpu does not either. Assign
$L”$ to be the finite union of the languages up$(qp)^{+}\cap L$ . This way, $L”$ is regular
and since from $L”$ we can obtain $L_{diff}$ by palindromic completion, it meets the
requirements. All that is left is to designate $L’$ to be $(L\backslash L"’)\backslash L"$ , which is
regular and for all words we have that they either have only trivial palindromic
prefixes or suffixes, or their pahndromic completion is already in $L.$ $\square$

As a consequence of Theorems 1 and 3, the following result is obtained:

Corollary 1. If, for some regular language $L$ , we have that $L_{\infty}$ is regular, then
for any integer $n\geq 1$ we have that $L_{n}$ is regular.

4 Membership and decidability questions

We conclude this paper with some complexity results, which build on the previ-
ously obtained characterizations. In what follows, a deterministic finite automa-
ton ($DFA$) is a quintuple $\langle Q,$ $\Sigma,$

$q_{0},$ $\sigma,$
$F\rangle$ , where $Q$ is the set of states, $q_{0}$ the

initial state, $\Sigma$ the input alphabet, $\sigma$ the transition function and $F$ the set of
final states. For details on finite automata and closure properties, see [2].

We start this part with of our investigation with the observation that while
in the classical hairpin completion case the extension of a word is both to the
right and the left of the word, here, due to the palindromicity property the two
extensions are identical making this case somehow simpler. The membership
problem for the one step palindromic completion of a word is trivial as one has
to check for the shortest word if it is both a prefix and a suffix of the longer
one and these two occurrences overlap. Obviously, the time needed for this is
$\mathcal{O}(n)$ and the result is optimal. $A$ more interesting problem is the membership
problem for the iterated palindromic completion. We show that in this setting
the problem is decidable, and, moreover, solvable in quadratic time.

Lemma 4. If $u,$ $v$ are palindromes with $u$ prefix ofvand $|u|>|v|/2$ , then $u\vdash v.$
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Proof. Since $u$ is a prefix of $v$ we can denote $v=xyx^{R}z=z^{R}x^{R}yx$ . Thus, $z$ is
a suffix of $x^{R}yx$ and now with the help of Proposition 3 the result is available.

Proposition 7. For two palindromes $u,$ $v$ , we have $u\vdash^{*}v$ if and only if $u$ is a
prefix of $v$ and for every prefix $w$ of $v$ with length greater than $u,$ $w$ has as prefix
a non-trivial palindrome of length greater than $|w|/2.$

Proof. In other words for palindromes $u$ and $v$ , we say that $v$ can be obtained
from $u$ if and only if $u$ is a prefix of $v$ and for any palindromic prefixes of $v$ they
all have as prefix some palindrome of length greater than half theirs.
(ONLY IF) This case is quite obvious, since starting with the palindrome $u$ we
always have after some completions steps $u$ as both prefix and suffix. Moreover,
after each step the palindrome on which we do the completion is both a prefix
and a suffix of the new word.
($IF$ ) In order for $v$ to be part of the iterated palindromic completion of a word it
must be the case that second of the properties holds. Taking into account that
$v$ starts with $u$ and the second property holds, with the help of Lemma 4 we get
that $v$ is in the language given by the iterated palindromic completion of $u.$ $\square$

Theorem 4. One can decide in linear time if for two words $u$ and $v$ , where $v$

is palindrome of length $n>|u|$ , we have $u\vdash^{*}v.$

Proof. Following the result of the previous Proposition we only need to check
if any palindrome $w$ from the palindromic completion of $u$ is a prefixes of $v,$

which is done in linear time, and then check if all palindromic prefixes of $v$ have
as prefix a palindrome of length at least half theirs. Identifying all palindromic
prefixes of $v$ of length greater than that of $w$ is easily done in $\mathcal{O}(n)$ using $s$

slight modification of the algorithm from [5]. Next, looking at the lengths of
all elements in this set, we need to check that the difference between no two
consecutive ones is double the smallest of them; again linear time is enough to
do this. If YES then $v$ is part of the iterated palindromic completion of $v.$ $\square$

As previously mentioned, one can identify in time $\mathcal{O}(n)$ all pahndromic pre-
fixes of some word $v$ of length $n$ . From those, one can efficiently compute the
palindromic completion distance between two given words $u$ and $v$ . We start with
the longest element of $\{u\}_{1}$ , and in each step choose $v$ ’s longest palindromic prefix
which is shorter than twice the length of the $C$}$\}^{rrent}$ one. The greedy technique
ensures optimality with the help of Proposition 7, while Lemma 4 proves the
correctness of each step, therefore:

Theorem 5. Given a word $u$ and a palindrome $v$ of length $n>|u|$ , one can
compute in linear time the minimum number of palindromic $\omega$mpletion item-
tions needed in order to get from $u$ to $v$ , when possible.

Let us now look at the regular closure property related to this operation.

Theorem 6. For some word $w$ of length $n$ , it is decidable in $\mathcal{O}(n^{2})$ whether
$L_{\infty}(w)$ is regular.
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Proof. In linear time one can find all periods of a word. If we denote $n=p_{i}q_{i}+r_{\iota},$

where $p_{i}$ are all periods of $w$ and $r_{i}<p_{l}$ , it is left to check if taking $r_{i}$ the smallest
palindrome from the sequence, for all other pahndromes $r_{j}$ with $r_{i}\leq_{p}r_{j}$ it is the
case that $r_{j}=r_{i}(r_{i}v)^{*}$ , for some unique pahndrome $v$ . Since deciding whether a
word is pahndrome is done in $\mathcal{O}(n)$ , the result is concluded. $\square$

Theorem 7. Given a regular language $L$ , it is decidable whether $L=L_{\infty}.$

Proof. We suppose, without loss of generality, as the algorithm given here is
intractable even for DFAs, that $L$ is presented to us as a $DFA$ with $n$ states.
The $DFA$ is given by its set of states $Q$ , initial state $q_{0}$ , transition function
$\sigma$ : $Q\cross\Sigma^{*}arrow Q$ and set of final states $F.$

If $L\neq L_{\infty}$ , then there exist some non-empty word $u$ and pahndrome $p$ of length
at least two, such that $up\in L$ , but $uf^{xu^{R}}\not\in L$ . Let us suppose that $u$ is the
shortest such word. We will show, that should $u$ exist, we can find it after finitely
many steps. Let $L_{ul}$ denote denote the language $\{w|\sigma(q_{0},w)=\sigma(q_{0}, u)\}$ . Define
$F_{u}$ as the set of final states which we can reach by first reading $u$ , that is,

$F_{u}=\{q\in F|\exists w\in \mathcal{P}al:\sigma(q_{0}, uw)=q\}$

and the language accepted starting from one of these states

$L_{ur}=\{w|\exists p\in F_{u}, q\in F:\sigma(p,w)=q\}.$

Then, $u$ is the shortest word in $L_{ul}\backslash L_{ur}^{R}=L_{u}\iota\cap\overline{L_{ur}^{R}}$ , where $L^{R}$ is the reversal
of $L$ and $\overline{L}$ is the complement, i.e., $\overline{L}=\Sigma^{*}\backslash L$ . The number of words to check
in order to find $u$ , if it exists, is unfortunately quite high:
-the automaton accepting $L_{ul}$ has at most $n$ states,
-for $L_{ur}$ we get a NFA of at most $n$ states, so at most $2^{n}$ states for the $DFA,$

-reversal and determinisation of the $L_{ur}$ automaton takes it up to $2^{2^{n}}$ states,
– $L_{ul}\cap\overline{L_{ur}^{R}}$ results in an automaton having at most $n2^{2^{n}}$ states, and the shortest
word accepted by an automaton is at most as long as the number of states.

Thus, for all words $u$ with $|u|\leq n2^{2^{n}}$ , we have to check $((u\cdot \mathcal{P}al)\cap L)u^{R}\backslash L=$

$\emptyset$ . If for at least one the set is not empty, we answer $NO$ , otherwise YES. $\square$

Theorem 8. Given a regular language $L$ , it is decidable whether $L_{\infty}$ is regular.
If the answer is YES, it is possible to construct an automaton accepting $L_{\infty}.$

Proof. The outhne of the decision procedure is as follows: first we identify the
words $p_{i},$ $q_{i}$ forming $L”’$ , if there are any. Then we construct a $DFA$ which accepts
$L’\cup L"=L\backslash L"’$ . In the resulting automaton we check for the words $u_{k},$ $p_{k}$ and
$q_{k}-$ if any - which form $L”$ and construct the automaton for $L’=(L\backslash L^{\prime//})\backslash L",$

and from that, the $DFA$ accepting the language $L_{ps}$ of all proper prefixes and
suffixes of words in $L’$ . Last, we check whether $L’=L_{\infty}’$ , that is $L’=L_{1}’$ , and
we can check this by Theorem 7. If yes, then $L_{\infty}$ is regular, otherwise it is not.

The automata for the intermediary steps are computable using well-known
algorithms (see [2]). What we have to show, is that the words $u_{k},p_{k},$ $q_{k}$ can be
found, given an automaton. First, we check every cycle of length at most $N_{L}$ (for
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the proof of the bound, see Appendix) in the automaton, where $N_{L}$ is a constant
computable from the representation of $L$ . This can be easily done by a depth-
first search. If the label of the cycle can be written as $pq$ for some palindromes
$p\neq\lambda$ and $q$ , then we check all paths $w$ of length at most $N_{L}$ , which lead to
the cycle from the initial state and all paths $v$ of length at most $N_{L}$ , going from
the cycle to a final state. If there exist pahndromes $x\neq\lambda$ and $y$ such that $xy$ is
a cyclic shift of $pq$ and wpqv is a prefix or suffix of a word in $x(yx)^{+}$ , then we
identified a pair $p_{i},$ $q_{i}$ for $L”’$ . If there exist palindromes $x\neq\lambda$ and $y$ and some
word $u$ , such that $xy$ is a cyclic shift of $pq$ and $wpqv=ux(yx)^{i}$ for some $i\geq 1$

then we identified a triple $u_{k},p_{k},$ $q_{k}$ for $L”$ . After finding all pairs $p,$ $q$ for $L”’,$

we construct the automaton accepting $L\backslash L_{pq}$ for each pair, where $L_{pq}$ is the set
of prefixes of $p(qp)^{+}$ longer than $|p|+r_{2}^{\mathcal{M}}\rceil+1$ . The language we get finally is
$L’\cup L"$ . Afterwards we subtract, for each triple $u,p,q$ forming $L”$ , the language
of prefixes of up$(qp)^{+}u^{R}$ which are longer that $|up|+r_{2}^{uq}\rceil+1$ . The resulting
language is our candidate for $L’$ . As mentioned above, if $L’=L_{1}’$ , output YES,
otherwise $NO.$

We end the proof by showing why it is enough to consider cycles of length
not exceeding the number of states of a newly constructed automaton.

If $L_{\infty}$ is regular, then so is $L_{1}$ , by Corollary 1. If $L_{1}$ is regular, then Theorem 1
apphes to $L_{1}\backslash L$ and gives us that it can be written as the finite union of languages
of the form $xr(sr)^{*}x^{R}$ , with $r,$ $s$ palindromes.

For every state $p\in Q$ , let us define the languages $LEFT_{p}=\{u|\sigma(q_{0}, u)=p\}$

and $RIGHT_{p}=\{u|\exists q\in F:\sigma(p, u)=q\}$ . For every pair of states $p\in Q,$ $q\in F,$

such that there exists a palindrome $w\not\in\Sigma\cup\{\lambda\}$ , with $\sigma(p, w)=q$ , let $L_{pq}$

denote the language $LEFT_{p}\backslash$ RIGHT$qR$ , and for all other pairs $L_{pq}=\emptyset$ . Now,
the language

$L_{c}= \bigcup_{p,q\in Q}L_{pq}$

is regular, as it is the finite union of regular languages. Also, every word in $L_{c}$ is
the prefix of a word in one of the finitely many languages $xr(sr)^{*}x^{R}$ mentioned
above. If $L_{c}$ is infinite, then by pumping arguments and the Theorem of Fine
and Wilf we easily get that the label of every cycle in the automaton accepting
$L_{c}$ is of the form $w^{k}$ , where $w$ is a cyclic shift of $pq$ and $k\geq 1$ . Hence, the same
holds for cycles of length at most $m$ , where $m$ is the number of states of the
automaton accepting $L_{c}$ . On the other hand, suppose there is a pair $r_{1},$ $s_{1}$ , such
that all cycles which are cyclic shifts of $(r_{1}s_{1})^{k}$ , for some $k\geq 1$ , are longer than
$m$ . Then, again by pumping and the pigeon hole principle, we get that $r_{1}s_{1}$ is
the cychc shift of some other pair $r_{2},$ $s_{2}$ , where $|r_{2}s_{2}|\leq m$ . Hence, we conclude
that by checking all cycles of length at most $m$ of the automaton accepting $L_{c}$

we can discover the pairs $r,$ $s$ from the characterization of pahndromic languages
in Theorem 1. The automaton accepting $L_{c}$ can be constructed, given $L$ , and
from there $m$ is computed by counting the states. $\square$
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