Reduction of Squares in Suffix Arrays

Peter Leupold*
Research Group in Mathematical Linguistics
Rovira i Virgili University, Tarragona, Spain
eMail: Peter.Leupold@web.de

0 Reducing Squares

A mutation which occurs frequently in DNA strands is the duplication of a factor inside a strand [5]. The result is called a tandem repeat, and the detection of these repeats has received a great deal of attention in bioinformatics [1, 9]. The reconstruction of possible duplication histories of a gene is used for the construction of a phylogenetic network in the investigation of the evolution of a species [10]. Thus duplicating factors and deleting halves of squares is an interesting algorithmic problem with some motivation from bioinformatics, although squares do not always need to be exact there. A very similar reduction was also introduced in the context of data compression by Ilie et al. [2, 3]. They, however conserve information about each reduction step in the resulting string such that the operation can also be undone again. In this way the original word can always be reconstructed, which is essential for data compression.

Our main aim here is the development of efficient methods for the repeated reduction of squares. At the heart of this is the detection

of squares, or, as we will see, the detection of runs. Several methods for this are known [6]. Usually they use suffix arrays or related data structures. What we want to avoid here is having to construct these for every string from scratch. Since the deletion of half a square is a very local change, it might be more efficient to update the old suffix array.

In recent work Salson et al. [8, 7] have investigated the updating of suffix arrays and related data structures. They considered insertions, deletions and changes of factors. Basically, the reduction of a square is just a deletion. However, it has the special property that another copy of the deleted factor remains just next to the deletion site. Thus the suffixes and LCP values of the new string’s suffix array are more related to the old one’s than usually. Here our aim is to characterize this relation and use it for an efficient update of the suffix array.

1 Repetitions and Duplication

We introduce a few formalisms to describe the reductions of squares in strings. We call a string \(w \) square-free iff it does not contain any non-empty factor of the form \(u^2 \), where exponents of strings refer to iterated catenation, and thus \(u^i \) is the \(i \)-fold catenation of the string \(u \) with itself. A string \(w \) has a positive integer

*Peter Leupold's work was done while he was funded as a Beatriz de Pinós researcher by the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya. His stay in Japan was kindly supported by Prof. Masami Ito from Kyoto Sangyo University.
k as a period, if for all i, j such that i ≡ j(mod k)
we have w[i] = w[j], if both w[i] and w[j] are
defined.

We formalize the duplication relation as a
string-rewriting system defined as

$$u \circ v := \exists z[z \in \Sigma^* \land u = u_1zu_2 \land v = u_1zu_2]$$

Notice how the symbol \circ nicely visualizes the
operation going from one origin to two equal
halves. \circ^* is the reflexive and transitive
closure of the relation \circ. The duplication closure
of a string w is then $w^{\circ} := \{ u : w^{\circ^*}u \}$. Because
our main topic is the reduction of squares, we
will mainly use the inverse of \circ and will de-
note it by $\Rightarrow := \circ^{-1}$. The set $\text{IRR} (\Rightarrow)$ of
the strings irreducible under \Rightarrow is exactly the
set of all square-free strings. With this we have
all the prerequisites for defining the central no-
tion of this work, the duplication root.

Definition 1. The duplication root of a non-
empty word w is

$$\sqrt{w} := \text{IRR} (\Rightarrow) \cap \{ u : w^{\Rightarrow^*}u \}.$$

As usual, this notion is extended in the canoni-
cal way from words to languages such that

$$\sqrt{L} := \bigcup_{w \in L} \sqrt{w}.$$

If we do not only want the irreducible
strings, then we use the notation

$$w^{\Rightarrow^*} := \{ u : w^{\Rightarrow^*}u \}.$$

When talking about squares, we will say
that a square u^2 is of length $|u|$; in this case
u will be called the base of this square.

Concerning the size of duplication roots we
know that they can be exponentially large in
terms of a string's length.

Theorem 2. [4] The number duproots(n) of dup-
lication roots of the string of length n with the
maximum number of such roots satisfies

$$\frac{1}{30} 10^{10^2} \leq \text{duproots}(w) \leq 2^n \text{ for all } n > 0.$$

2 Runs, not Squares

Before we start to reduce squares, let us take
a look at the effect that this operation has in
periodic factors. In the following example, we
see that reduction of either of the three squares
in the periodic factor $bcbc$ leads to the same
result:

$$\begin{align*}
abcbcba & \quad abc \quad abc
\end{align*}$$

Thus it would not be efficient to do all the
three reductions. A maximal periodic factor
like this is called a run. So rather than looking
for squares, we should actually look for runs and
reduce one square within each of them.

As stated above, the most common algo-
rithms for detecting runs are based on suffix
arrays and related data structures [6]. Using
these, we would employ a method along the
lines of Algorithm 1. Then this method would

Algorithm 1: Constructing all words
reachable from w by reduction of
squares.

Input: string: w;
Data: stringlist: S (contains w);
1 while (S nonempty) do
2 \quad x := \text{POP}(S);
3 \quad Construct the suffix array of x;
4 \quad if (there are runs in x) then
5 \quad \quad foreach run r do
6 \quad \quad \quad Reduce r;
7 \quad \quad \quad Add new string to S;
8 \quad \quad end
9 \quad end
10 else output x;
11 end
3 Suffix Arrays

In string algorithms suffix arrays are a very common data structure, because they allow fast search for patterns. A suffix array of a string w consists of the two tables depicted on the left-hand side of Figure 1: SA is the lexicographically ordered list of all the suffixes of w; typically their starting position is saved rather than the entire suffix. LCP is the list of the longest common prefixes between these suffixes. Here we only provide the values for direct neighbors. Depending on the application, they may be saved for all pairs.

On the right-hand side of Figure 1 we see how the deletion of bcb changes the suffix array. Obviously there is no change in the relative order nor in the LCP values for all the suffixes that start to the right of the deletion site; here it is more convenient to consider the first half of the square as the deleted one, because then we see immediately that also for the positions in the remaining right half nothing changes.

The only new suffix is $abcba$. It starts with the same letter as $abcbbcbca$, the one it comes from; also the following bcb is the same as before, because the deleted factor is replaced by another copy of itself — only after that there can be change. Thus the new suffix will not be very far from the old one in lexicographic order. Formulating these observations in a more general and exact way will be the objective of the next section.

4 Updating the Suffix Array

The problem we treat here is the following: Given a string w with a square of length n starting at position k and given the suffix array of w, compute the suffix array of $w[0\ldots k−1]w[k+n\ldots |w|−1]$. So $w[k−1\ldots k+n−1]$ is deleted, not $w[k+n\ldots k+2n−1]$.

First we formulate the obvious fact that the positions to the right of a deleted square remain in the same order.

Lemma 3. The lexicographic order of the suffixes of a string w and their longest common prefixes are the same as for the corresponding suffixes in a longer string uw.

For updating a suffix array, this means that we can simply copy the values for these. The positions to the left of the deleted site may change. We formulate the conditions for this in terms of the old suffix array values.

Lemma 4. Let the LCP of two strings z and uvw be k and let $z < uvw$. Then z and uvw have the same LCP and $z < uvw$ unless $LCP(z, uvw) \geq |uv|$, in the latter case also $LCP(z, uvw) \geq |uv|$.

Proof. If $LCP(z, uvw) < |uv|$ then the first position from the left where z and uvw differ is
within \(uv \). As \(uv \) is also a prefix of \(uvvw \), \(z \) and \(uvvw \) have their first difference in the same position. Thus \(LCP \) and the lexicographic order remain the same.

If \(LCP(z, uvw) \geq |uvw| \), then \(uv \) is a common prefix of \(z \) and \(uvvw \). Thus also \(LCP(z, uvww) \geq |vw| \).

This characterizes the conditions under which actually a change in the suffix array has to be done. Salson et al. have shown efficient ways for reordering a suffix array after a deletion [8]. So we do not enter into details about this here. Algorithm 2 implements the updating of a suffix array after the deletion of a square avoiding unnecessary work according to the observations of this section.

Algorithm 2: Computing the new suffix array.

Input: string: \(w \), SA, LCP; length and pos of square: \(n, k \);

1. \(i := k - 1 \);
2. **while** \((LCP[i] > n + k - i \text{ AND } i \geq 0) \) **do**
 3. compute new SA of \(w[i \ldots k - 1]w[k + n \ldots |w| - 1] \);
 4. compute new LCP[i];
 5. \(i := i - 1 \);
3. **end**

The test in line 2 checks exactly the condition of Lemma 4. Note that if \(LCP(u, v) < k \) then \(LCP(uv, uv) < k + |w| \); thus as soon as the test fails once, we do not need to continue testing for longer suffixes. Rather we can stop the updating immediately, because the following LCP values will all fail the test.

The runtime of this updating depends very much on how often this test is successful. This, in turn, depends mainly on two factors: the length of the square that is reduced and the LCP values. The latter are higher for longer strings, because the probability of a factor occurring twice increases with the string's length; on the other hand, a larger alphabet decreases this probability. Both factors are not very much under our influence.

On the other hand, we can possibly do something about the length of the squares that are reduced. Squares of lengths one can be reduced first, if we do not want the entire reduction graph, but only the duplication root. For detecting and reducing them, it is faster to just run a window of size two over the string in low linear time without building the suffix array. After this, the value \(n + k - i \) from line 2 of the algorithm would always be at least two. Squares of length two can already overlap with others in a way that reduction of one square makes reduction of the other impossible like in the string abcababc; here reduction of the final babc leads to a square-free string, and the other root abc cannot be reached anymore.

Comparing theoretical worst case runtime, we have not achieved anything. There are algorithms for constructing suffix arrays in linear time. Salson et al.’s dynamic suffix arrays allow deletion in linear time, but in practice have proven much faster than the construction of a new suffix array. Similarly, our method will require linear time in the worst case. But as we have argued, the test in line 2 will often fail even in the first iteration. Then the computation consists only in removing the entries for the deleted positions. How much time this saves in practice can only be shown by experiments on large texts.

5 Perspectives

We have only looked at how to update a suffix array efficiently. But for actually computing a duplication history or a duplication root several more problems must be handled in an efficient way: as one word can produce many descendants, many suffix arrays must be derived from the same one and be stored; can this be done better than just storing them all
in parallel? A typical duplication history contains many paths to a given word; how do we avoid computing a word more than once?

References

