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1 Introduction

Grobner bases and the Buchberger algorithm (Buchberger [3]) are now central
techniques in Computational Algebra ([2]). One of serious problems is the inter-
mediate swell of the size of the coefficients of polynomials during computation
of Grobner bases (Ebert [4]).

To avoid this, the modular algorithm is considered to be useful (Winkler
[5]). Choosing a suitable prime p compute a Grobner basis G over the field
Z, = Z/(p), then reconstruct a system G over Z from G. If p is large enough
and lucky, G is a correct Grobner basis. But there is no effective way to check
that p is lucky and large enough beforehand.

Let H be a finite set of polynomials in Z[X] = Z[X4, ..., X,] and let p be a
prime number. For a polynomial f in Z[X], f, denotes the polynomial on Z,[X]
induced from f. Moreover, define H, = {f,|f € H}. Let > be a term order on
Z[X] and G be the Grobner basis obtained by the Buchberger algorithm from
H, on Zy[X]. Let G be a set of polynomial in Z[X] such that G, = G.

To see that G is a Grobner basis we check that (i) every S-polynomial of G
is reduced to 0 modulo G. If this is checked, then G is a Grébner basis of 'some’
ideal of Z[X]. To see that G is a Grobner basis of the ideal I(H) generated by
H, we check that (ii) every h € H is reduced to 0 modulo G. If this is checked,
I(H) C I(G) holds. Here, if the converse inclusion G C I(H) is satisfied, G is
a correct Grobner basis for H.

Arnold [1] proved that if H is homogeneous, the converse inclusion holds
if the conditions (i) and (ii) above are checked. If H is not homogeneous, we
homogenize it to PG, and complete it to G’ by the modular algorithm, and then
ahomogenizing it we obtain the Grobner basis G = *G’ of I(H). In this note we
examine these steps precisely.

2 Compatible orders and weights

A gquasi-order > on a set A is a reflexive, transitive and comparable relation on
A. For a,be Awewritez~yife>yandy >x,and z>yifz > y and



206

(v y).
A quasi-order > on A is well-founded if there is no infinite decreasing se-
quence a; > az > ..., or equivalently, any nonempty subset of A has a minimal

element. A well-founded order is a well-order.

Let X = {X1, X2,..., X} be a finite set of symbols (variables). Let M(X)
be the set of (monic) monomials, that is, M(X) is the free abelian monoid
generated by X. Any element z in M(X) is written as

z= X7 Xyt X (1)

with e; € N = {0,1,2,...}, in particular, 1 denotes the identity element (the
empty monomial). For another y = X{CIXZ2 - XJr € M(X), we have

Ty = Xf1+f1X§2+f2 .. _X:r‘*'fr‘.

From now on we consider only (quasi-)orders on M(X).
A quasi-order on M(X) is compatible, if

x>y = szt 2> syt
for any z,y,s,t € M(X). It is positive (resp. non-negative), if
z>1 (resp. z > 1)

for any = (# 1) € M(X).

As is well known as a variant of Dickson’s lemma (see [2]), a non-negative
compatible quasi-order on M (X) is well-founded.

A weight function (simply a weight) w is a homomorphism from M(X) to
the additive group R of real numbers. The weight w is determined by the values
w(X;) of X; € X. In fact, for z € M(X) in (1) we have

w(z) = eqw(X1) + eaw(X2) + -+ - + erw(Xy).

The set of weights on M(X) forms an R-space of dimension d.
A weight w is positive (resp. non-negative), if

w(X,) >0 (resp. w(X;) 20)
for every 4. It is rational (resp. integral), if
w(X;) € Q (resp. w(X;) € Z)

for every i. The degree function deg is a typical positive integral weight.
For a weight w, the associated quasi-order >, is defined by

T2,y & wz)>wy)

for z,y € M(X).



For a weight w on M (X), >,, is a compatible quasi-order on M(X). If w is
positive (resp. non-negative), so is >, and it is well-founded.
A weight w is >-monotone (simply monotone), if

z2y=w()>wy),

or equivalently,
wz)>wly)=z>y

for z,y € M(X).

3 Grobner bases

Let K be a field and let K[X] be the polynomial ring in X3, Xs,..., X, over
K. A compatible positive order on M(X) is called a term order, and we fix a
term order > in this section.

For a polynomial

Y ksrw (k€ K) (2)
zEM(X)
in K[X], the maximal z such that k, # 0 is the leading monomial of f denoted by
It(f), here k; is the leading coefficient denoted by le(f) and &, -z = le(f) - Im(f)
is the leading term denoted by 1t(f). We set rt(f) = f — It(f). For a subset G
of K[X], set
Im(G) = {lm(g) | g € G}.

We extend > to the quasi-order > on M (X) as follows. First,

(i f>0
for any nonzero f € K[X], and

(i) f > g if Im(f) > Im(g) or (Im(f) = lm(g) and rt(f) > rt(g))
for any nonzero f,g € K[X].

Let G C K[X]. If some term of f € K[X] is divided by Im(g) for some
g € G, f is G-reducible, otherwise, f is G-irreducible. Let Red(G) (resp. Irr(Q))
denote the set of G-reducible (resp. G-irreducible) monomials. Clearly,

Red(GQ) = 1Im(G) - M(X), Irr(G) = M(X) \ Red(G).

For f € K[X], if some term k- z (k € K \ {0}, € M (X)) of f is G-reducible;
z =z’ - lm(g) for some 2’ € K[X] and g € G, then we can rewrite f to

’_ ' rt(g) k z'
= gmbed (1nlo) - () = 1=

In this situation we write as
f—clf.

The reflexive transitive closure of the relation — g is denoted by —¢, . If f —% f
for f, f’ € K[X], we say that f is reduced to f’ modulo G.
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Let I be an ideal of K[X]. A finite set G C K[X] is a Grobner basis of I, if

(i) GcI,and

(i) every f € I is reduced to 0 modulo G.
The condition (ii) is equivalent to the inclusion Im(I) C Red(G).

G is reduced, if any g € G is (G\ {g})-irreducible. G is monic, if every f € G
is monic, that is lc(f) = 1. Any ideal in K[X] has a unique monic reduced
Grébner basis (if the order > is fixed).

Lemma 3.1. Let I be an ideal, and for x € Im(I) choose one fy in I such that
Im(fz) = . Then, {fz}zeim(r) i a K-linear base of I. If is G a Grobner basis
of I, then { fz}zeRred(q) i a K-linear base of I.

Suppose that K is the quotient field of an integral domain R. Let P be
a maximal ideal of R and let pp be the canonical surjection from R to the
quotient R = R/P. The homomorphism pp extends to the homomorphism p:

Proposition 3.2. With the situation above, suppose that a subset G of R[X] is
a Grobner basis of an ideal I of K[X]. If le(G) is out of P, then Gp = pp(G)
is a Grobner basis of the ideal Ip = pp(I N R[X]) in Rp|X].

4 Homogeneous ideals

Let w be a weight on M(X) and let v € R. A polynomial f € K[X] is w-
homogeneous (we simply say homogeneous) of weight v, if all the monomials in
f have the same weight v. In this case v is the weight of f and we write w(f) = v.
Any polynomial f is decomposed as a sum of the homogeneous polynomials;

f=Zf['U],

vER

where f[v] is homogeneous with weight v.

For a subset H of K[X], H[v] denotes the set of homogeneous elements
with weight v. H is homogeneous, if every element of it is homogeneous, that
‘is, H = UyerH|[v]. An ideal of K[X] is homogeneous if it is generated by
homogeneous polynomials. If I is a homogeneous ideal, then any element in I
is a sum of homogeneous elements of I. Thus, I[v] is the set of homogeneous
elements of I of weight v. A homogeneous ideal I has a homogeneous Grébner
basis. In fact, a reduced Grébner basis of I is homogeneous.

If w is positive, then the set M(X)[v] of monomials with a given weight
v € R is finite. If I is a homogeneous ideal, then for z € lm(I), f, can be chosen
from I[v] such that lm(f;) = z. By this observation together with Lemma 3.1,
we have

Lemma 4.1. Let w be a positive weight on M(X) and I be a homogeneous ideal
of K[X]. Then, I[v] is a finite dimensional K -space with base { fz|z € Im(I)[v]},
and dimgI[v] = [Im(I)[v])]. If G is a Grdbner basis of I, then dimglI[v] =
|Red(G)[v]|



From here in this section R is a principal ideal domain, K is its quotient
field, p is a prime element of R, and p, denotes the canonical surjection from R
to R, = R/(p) as well as the canonical surjection from R[X] to R,[X]. For an
ideal I of K[X], I, denotes the ideal p,(I N R[X]) of R,[X]. If J is an ideal of
R[X], then J, = pp(J).

Lemma 4.2. Let w be a positive weight on M(X) and let I be a homogeneous
ideal of K[X]. Then, for any v € R,

dimg I[v] > dimpg, Ip[v].

Lemma 4.3. Let w be a positive weight on M(X), and let I be a homogeneous
ideal of K[X]. Let G be a (homogeneous) Grobner basis of a homogeneous ideal
L. Let G be a (homageneous) Grébner basis of a homogeneous ideal J of Rp[X].
If (i) I C L, (ii) Im(G) = Im(G), and (iii) J C I,(= p,(I N R[X]), then I = L
and G is a Grobner basis of I.

Corollary 4.4. Let w be a positive weight on M(X), and let H be a homo-
geneous subset of R[X]. Let I (resp. J) be the ideal of K[X] (resp. R[X])
generated by H. Let G be a (homogeneous) Grobner basis of a homogeneous
ideal L. Let G be a (homogeneous) Grébner basis of a homogeneous ideal J, of
R,[X]). If (i) I C L, and (i) Im(G) = Im(G), then I = L and G is a Grébner
basis of I.

5 Homogenization and ahomogenization

Let w be a fixed non-negative integral weight on M(X) with w(X;) = v; for
i =1,...,r. For f € K[X], let m,(f) denote the maximum of the weights of
the monomials appearing in f.

We introduce a new indeterminate X and the weight wy on M(Xy, X) =
M([Xo, X1,...,X,] defined by wo(Xp) = 1, and wo(X;) = v; for i = 1,...,r.
Let K[Xo, X] = K[Xo,Xl, “oe ,Xr].

For f € K[X], define "f € K[X,, X] by

he = XEF(X X5, .., Xe X5,

where ¢t = m(f). Then Bf is >g-homogeneous. On the other hand for [ €
K[Xo,X], we define ®f € K[X] by

°f = f[1, X].
For a subset H of K[X] (resp. K[Xp,X]), set
"H = {"f|f € H} (vesp. °H = {°f | f € H}).

For an ideal I of K[X], BI denotes the ideal of K [Xo, X] generated by 1.
Because the mapping sending f € K[Xo, X] to ®f € K[X] is a homomorphism,
® is an ideal of K[X] for an ideal I of K[Xy, X].
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An order >¢ on M(Xp, X) is defined as follows. For z,y € M (X, X)
>0y € wo(z) > wo(y) or (wo(z) = wo(y) and °z > %y).

If > is positive (non-negative, well-founded, compatible) on M(X), so is it on
M (Xo,X). If w is monotone, > is an extension of >, that is, >¢|p(x)=2-

Lemma 5.1. (1) ®(f-g) ="f Y9 for f,g € K[X].
(2) *bf = f for amy f € K[X].
(8) ®*H = H and **I = I for a subset H of K[X] and an ideal I of K[X],
(4) For any homogeneous f € K[Xo, X], X§-P2f = f for somet € N
(5) For any f € K[X] Im(*f) = X§-Im(f) for somet € N. Ifw is monotone,
Im(*f) = Im(f).
(6) For any homogeneous f € K[Xo, X], X§-1m(3f) = Im(f) for somet € N.

Lemma 5.2. (1) If G is a homogeneous Grobner basis of a homogeneous ideal
I of K[Xo, X], then ®G is a Grébner basis of the ideal ®I of K[X].

(2) Suppose that w is monotone. If G is a Grobner basis of an ideal I of
K|[X], then G is a homogeneous Grébner basis of °I.

Hereafter in this section, K is the quotient field of a principal ideal domain
R and p is a prime element of R.

Lemma 5.3. Let w be a compatible positive integral weight on M(X). Let H
be a subset of R[X], and let I (resp. J) be the ideal of K[X] (resp. R[X])
generated by H. Let G be a Grébner basis of an ideal L of K[X]. Let G be
a Grébner basis of a homogeneous ideal J, of Rp(X]. If (i) I C L, and (ii)
Im(G) = Im(G), and (iii) ¥(f,) € (*I), for all f € J, then I = L and G is a
Grébner basis of I.

If the condition (iii) in the above Lemma is satisfied, p is called lucky, but
there is no way to find p is lucky effectively. Next we work in the homogenized
side.

Proposition 5.4. Let H be a subset of K[X] and let I be an ideal of K[X]
generated by H. Let I' (resp. J') be the ideal of K[Xo.X] (resp. R[Xo,X])
generated by PH. Let G be a homogeneous Grébner basis of J,’, and let G be
a homogeneous Grobner basis of a homogeneous ideal L' of K[Xo,X]. IfI' C
L', and Im(G) = Im(G), then °G is a Grébner basis of I. Moreover, if w is
monotone, MG is a Grébner basis of M

6 Algorithms and examples

Let p be a odd prime and let > be a term order on M(X). For f = a,X™ +
-1 X"+ a1 X + ap € Z[X], let ||f|| be the maximal norm of f, that is,

||f|| = max{|a;||¢ =0,...,n}.
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For f € Z,[X], let g = re(f) is a polynomial in Z[X] with minimal ||g|| satisfying
gp = c- f with ¢ € Z,. For a set G of polynomials in Z,[X], set re(G) =
{re(f)| f € G}. Let H be a finite subset of Z[X].

(i) Compute the reduced Grébner basis G of PH,, in Z,[Xp, X] with respect
to >¢.

(ii) Compute Go = re(G).

(iii) Check if every S-polynomial reduced to 0 modulo Gy in Z[Xj, X].

(iv) Check if every h € ®H is reduced to 0 modulo Gy in Z[Xq, X].

(v) Let G = °Gp.

If Go obtained in (ii) passes the tests (iii) and (iv), then G is a correct
Grobner basis of H.

Example 6.1. Let
H={X?+2Y,XY +1}.

We consider the pure lexicographic order with X > Y. We have an S-polynomial
X —2Y?, and reducing the system H U{X — 2Y 2} we have a Grobner basis

G={2Y3+1,X-Y?}
of I(H). On the other hand, homogenizing H, we have
b= {X? +2YZ, XY + Z7%}.

Let p = 5, Completing th in Z,[X,Y, Z], we have a Grobner basis

G={X?*+2YZ XY + 2%, XZ%+3Y?Z2,2Y*Z + Z*}
of I("H,). From this we reconstruct a Grébner basis

G ={X?+2YZ, XY + 7% XZ%? -2Y?Z,2Y3Z + Z*}
of I(*H) on Z[X,Y, Z]. Then, ahomogenizing it we have a Grobner basis

G = {X?+2Y,XY +1,X —2Y2,2Y3 + 1}.

of I(H). Then, reducing it we have {2Y3 +1,X — Y2} = G.

As seen in the above example 3G’ may not be reduced, though G is reduced.
Sometimes, G’ can be very big compared with G. In these cases, our methods
are not practical.

Example 6.2, Let
H={3X?+5X%3-3Y2% —4-4X%4+3XY+Y3,34+ XY +5X°Y +4Y?-3XY?}.

The reduced Grébner basis of H is {1}. However, the reduced Grobner basis of
hH is very big with a polynomial which involves an integer with 1120 digits in
decimal expression in its coefficients.
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