Homogenized modular algorithms for Gröbner bases

Yuji Kobayashi

Department of Information Science, Toho University, Funabashi 274–8510, Japan

1 Introduction

Gröbner bases and the Buchberger algorithm (Buchberger [3]) are now central techniques in Computational Algebra ([2]). One of serious problems is the intermediate swell of the size of the coefficients of polynomials during computation of Gröbner bases (Ebert [4]).

To avoid this, the modular algorithm is considered to be useful (Winkler [5]). Choosing a suitable prime p compute a Gröbner basis \overline{G} over the field $\mathbb{Z}_p = \mathbb{Z}/(p)$, then reconstruct a system G over \mathbb{Z} from \overline{G} . If p is large enough and lucky, G is a correct Gröbner basis. But there is no effective way to check that p is lucky and large enough beforehand.

Let H be a finite set of polynomials in $\mathbb{Z}[X] = \mathbb{Z}[X_1, ..., X_n]$ and let p be a prime number. For a polynomial f in $\mathbb{Z}[X]$, f_p denotes the polynomial on $\mathbb{Z}_p[X]$ induced from f. Moreover, define $H_p = \{f_p | f \in H\}$. Let > be a term order on $\mathbb{Z}[X]$ and \overline{G} be the Gröbner basis obtained by the Buchberger algorithm from H_p on $\mathbb{Z}_p[X]$. Let G be a set of polynomial in $\mathbb{Z}[X]$ such that $G_p = \overline{G}$.

To see that G is a Gröbner basis we check that (i) every S-polynomial of G is reduced to 0 modulo G. If this is checked, then G is a Gröbner basis of 'some' ideal of $\mathbb{Z}[X]$. To see that G is a Gröbner basis of the ideal I(H) generated by H, we check that (ii) every $h \in H$ is reduced to 0 modulo G. If this is checked, $I(H) \subset I(G)$ holds. Here, if the converse inclusion $G \subset I(H)$ is satisfied, G is a correct Gröbner basis for H.

Arnold [1] proved that if H is homogeneous, the converse inclusion holds if the conditions (i) and (ii) above are checked. If H is not homogeneous, we homogenize it to ${}^{\rm h}G$, and complete it to G' by the modular algorithm, and then ahomogenizing it we obtain the Gröbner basis $G = {}^{\rm a}G'$ of I(H). In this note we examine these steps precisely.

2 Compatible orders and weights

A quasi-order \geq on a set A is a reflexive, transitive and comparable relation on A. For $a, b \in A$ we write $x \sim y$ if $x \geq y$ and $y \geq x$, and x > y if $x \geq y$ and

 $(x \stackrel{>}{\sim} y).$

A quasi-order \geq on A is well-founded if there is no infinite decreasing sequence $a_1 > a_2 > \dots$, or equivalently, any nonempty subset of A has a minimal element. A well-founded order is a well-order.

Let $X = \{X_1, X_2, ..., X_r\}$ be a finite set of symbols (variables). Let M(X) be the set of (monic) monomials, that is, M(X) is the free abelian monoid generated by X. Any element x in M(X) is written as

$$x = X_1^{e_1} X_2^{e_2} \cdots X_r^{e_r} \tag{1}$$

with $e_i \in \mathbb{N} = \{0, 1, 2, \dots\}$, in particular, 1 denotes the identity element (the empty monomial). For another $y = X_1^{f_1} X_2^{f_2} \cdots X_r^{f_r} \in M(X)$, we have

$$xy = X_1^{e_1+f_1} X_2^{e_2+f_2} \cdots X_r^{e_r+f_r}.$$

From now on we consider only (quasi-)orders on M(X). A quasi-order on M(X) is compatible, if

$$x \ge y \implies sxt \ge syt$$

for any $x, y, s, t \in M(X)$. It is positive (resp. non-negative), if

$$x > 1$$
 (resp. $x \ge 1$)

for any $x \neq 1 \in M(X)$.

As is well known as a variant of Dickson's lemma (see [2]), a non-negative compatible quasi-order on M(X) is well-founded.

A weight function (simply a weight) ω is a homomorphism from M(X) to the additive group \mathbb{R} of real numbers. The weight ω is determined by the values $\omega(X_i)$ of $X_i \in X$. In fact, for $x \in M(X)$ in (1) we have

$$\omega(x) = e_1\omega(X_1) + e_2\omega(X_2) + \cdots + e_r\omega(X_r).$$

The set of weights on M(X) forms an \mathbb{R} -space of dimension d. A weight ω is positive (resp. non-negative), if

$$\omega(X_i) > 0 \text{ (resp. } \omega(X_i) \ge 0)$$

for every i. It is rational (resp. integral), if

$$\omega(X_i) \in \mathbb{Q} \ (\text{resp. } \omega(X_i) \in \mathbb{Z})$$

for every i. The degree function deg is a typical positive integral weight. For a weight ω , the associated quasi-order \geq_{ω} is defined by

$$x \ge_{\omega} y \Leftrightarrow \omega(x) \ge \omega(y)$$

for $x, y \in M(X)$.

For a weight ω on M(X), \geq_{ω} is a compatible quasi-order on M(X). If ω is positive (resp. non-negative), so is \geq_{ω} and it is well-founded.

A weight ω is \geq -monotone (simply monotone), if

$$x \ge y \Rightarrow \omega(x) \ge \omega(y),$$

or equivalently,

$$\omega(x) > \omega(y) \Rightarrow x > y$$

for $x, y \in M(X)$.

3 Gröbner bases

Let K be a field and let K[X] be the polynomial ring in X_1, X_2, \ldots, X_r over K. A compatible positive order on M(X) is called a *term order*, and we fix a term order \geq in this section.

For a polynomial

$$f = \sum_{x \in M(X)} k_x \cdot x \quad (k \in K)$$
 (2)

in K[X], the maximal x such that $k_x \neq 0$ is the leading monomial of f denoted by lt(f), here k_x is the leading coefficient denoted by lt(f) and $k_x \cdot x = lt(f) \cdot lm(f)$ is the leading term denoted by lt(f). We set rt(f) = f - lt(f). For a subset G of K[X], set

$$lm(G) = \{ lm(g) \mid g \in G \}.$$

We extend \geq to the quasi-order \geq on M(X) as follows. First,

(i) f > 0

for any nonzero $f \in K[X]$, and

(ii) $f \ge g$ if lm(f) > lm(g) or (lm(f) = lm(g)) and $rt(f) \ge rt(g)$ for any nonzero $f, g \in K[X]$.

Let $G \subset K[X]$. If some term of $f \in K[X]$ is divided by lm(g) for some $g \in G$, f is G-reducible, otherwise, f is G-irreducible. Let Red(G) (resp. Irr(G)) denote the set of G-reducible (resp. G-irreducible) monomials. Clearly,

$$\operatorname{Red}(G) = \operatorname{Im}(G) \cdot M(X), \operatorname{Irr}(G) = M(X) \setminus \operatorname{Red}(G).$$

For $f \in K[X]$, if some term $k \cdot x (k \in K \setminus \{0\}, x \in M(X))$ of f is G-reducible; $x = x' \cdot \text{lm}(g)$ for some $x' \in K[X]$ and $g \in G$, then we can rewrite f to

$$f' = f - k \cdot x' \left(\operatorname{lm}(g) - \frac{\operatorname{rt}(g)}{lc(g)} \right) = f - \frac{k}{\operatorname{lc}(g)} \cdot x'g.$$

In this situation we write as

$$f \to_G f'$$
.

The reflexive transitive closure of the relation \to_G is denoted by \to_G^* . If $f \to_G^* f'$ for $f, f' \in K[X]$, we say that f is reduced to f' modulo G.

Let I be an ideal of K[X]. A finite set $G \subset K[X]$ is a Gröbner basis of I, if (i) $G \subset I$, and

(ii) every $f \in I$ is reduced to 0 modulo G.

The condition (ii) is equivalent to the inclusion $lm(I) \subset Red(G)$.

G is reduced, if any $g \in G$ is $(G \setminus \{g\})$ -irreducible. G is monic, if every $f \in G$ is monic, that is lc(f) = 1. Any ideal in K[X] has a unique monic reduced Gröbner basis (if the order \geq is fixed).

Lemma 3.1. Let I be an ideal, and for $x \in \text{lm}(I)$ choose one f_x in I such that $\text{lm}(f_x) = x$. Then, $\{f_x\}_{x \in \text{lm}(I)}$ is a K-linear base of I. If is G a Gröbner basis of I, then $\{f_x\}_{x \in \text{Red}(G)}$ is a K-linear base of I.

Suppose that K is the quotient field of an integral domain R. Let P be a maximal ideal of R and let ρ_P be the canonical surjection from R to the quotient $\overline{R} = R/P$. The homomorphism ρ_P extends to the homomorphism ρ : $R[X] \to \overline{R}[X]$.

Proposition 3.2. With the situation above, suppose that a subset G of R[X] is a Gröbner basis of an ideal I of K[X]. If lc(G) is out of P, then $G_P = \rho_P(G)$ is a Gröbner basis of the ideal $I_P = \rho_P(I \cap R[X])$ in $R_P[X]$.

4 Homogeneous ideals

Let ω be a weight on M(X) and let $v \in \mathbb{R}$. A polynomial $f \in K[X]$ is ω -homogeneous (we simply say homogeneous) of weight v, if all the monomials in f have the same weight v. In this case v is the weight of f and we write $\omega(f) = v$. Any polynomial f is decomposed as a sum of the homogeneous polynomials;

$$f = \sum_{v \in \mathbb{R}} f[v],$$

where f[v] is homogeneous with weight v.

For a subset H of K[X], H[v] denotes the set of homogeneous elements with weight v. H is homogeneous, if every element of it is homogeneous, that is, $H = \bigcup_{v \in \mathbb{R}} H[v]$. An ideal of K[X] is homogeneous if it is generated by homogeneous polynomials. If I is a homogeneous ideal, then any element in I is a sum of homogeneous elements of I. Thus, I[v] is the set of homogeneous elements of I of weight v. A homogeneous ideal I has a homogeneous Gröbner basis. In fact, a reduced Gröbner basis of I is homogeneous.

If ω is positive, then the set M(X)[v] of monomials with a given weight $v \in \mathbb{R}$ is finite. If I is a homogeneous ideal, then for $x \in \text{lm}(I)$, f_x can be chosen from I[v] such that $\text{lm}(f_x) = x$. By this observation together with Lemma 3.1, we have

Lemma 4.1. Let ω be a positive weight on M(X) and I be a homogeneous ideal of K[X]. Then, I[v] is a finite dimensional K-space with base $\{f_x|x\in \text{Im}(I)[v]\}$, and $\dim_K I[v]=|\text{Im}(I)[v]|$. If G is a Gröbner basis of I, then $\dim_K I[v]=|\text{Red}(G)[v]|$

From here in this section R is a principal ideal domain, K is its quotient field, p is a prime element of R, and ρ_p denotes the canonical surjection from R to $R_p = R/(p)$ as well as the canonical surjection from R[X] to $R_p[X]$. For an ideal I of K[X], I_p denotes the ideal $\rho_p(I \cap R[X])$ of $R_p[X]$. If J is an ideal of R[X], then $J_p = \rho_p(J)$.

Lemma 4.2. Let ω be a positive weight on M(X) and let I be a homogeneous ideal of K[X]. Then, for any $v \in \mathbb{R}$,

$$\dim_K I[v] \ge \dim_{R_p} I_p[v].$$

Lemma 4.3. Let ω be a positive weight on M(X), and let I be a homogeneous ideal of K[X]. Let G be a (homogeneous) Gröbner basis of a homogeneous ideal L. Let \overline{G} be a (homogeneous) Gröbner basis of a homogeneous ideal \overline{J} of $R_p[X]$. If (i) $I \subset L$, (ii) $\operatorname{Im}(G) = \operatorname{Im}(\overline{G})$, and (iii) $\overline{J} \subset I_p(=\rho_p(I \cap R[X]))$, then I = L and G is a Gröbner basis of I.

Corollary 4.4. Let ω be a positive weight on M(X), and let H be a homogeneous subset of R[X]. Let I (resp. J) be the ideal of K[X] (resp. R[X]) generated by H. Let G be a (homogeneous) Gröbner basis of a homogeneous ideal L. Let \overline{G} be a (homogeneous) Gröbner basis of a homogeneous ideal J_p of $R_p[X]$. If (i) $I \subset L$, and (ii) $\operatorname{Im}(G) = \operatorname{Im}(\overline{G})$, then I = L and G is a Gröbner basis of I.

5 Homogenization and ahomogenization

Let ω be a fixed non-negative integral weight on M(X) with $\omega(X_i) = v_i$ for $i = 1, \ldots, r$. For $f \in K[X]$, let $m_{\omega}(f)$ denote the maximum of the weights of the monomials appearing in f.

We introduce a new indeterminate X_0 and the weight ω_0 on $M(X_0, X) = M([X_0, X_1, \ldots, X_r])$ defined by $\omega_0(X_0) = 1$, and $\omega_0(X_i) = v_i$ for $i = 1, \ldots, r$. Let $K[X_0, X] = K[X_0, X_1, \ldots, X_r]$.

For $f \in K[X]$, define ${}^{\mathrm{h}} f \in K[X_0, X]$ by

$$^{\mathbf{h}}f = X_0^t f(X_1 X_0^{-v_1}, \dots, X_r X_0^{-v_r}),$$

where $t = m_{\omega}(f)$. Then ${}^{h}f$ is \geq_{0} -homogeneous. On the other hand for $f \in K[X_{0}, X]$, we define ${}^{a}f \in K[X]$ by

$$^{\mathbf{a}}f = f[1, X].$$

For a subset H of K[X] (resp. $K[X_0, X]$), set

$${}^{\mathbf{h}}H = \{{}^{\mathbf{h}}f \mid f \in H\} \text{ (resp. } {}^{\mathbf{a}}H = \{{}^{\mathbf{a}}f \mid f \in H\}).$$

For an ideal I of K[X], ${}^{\bar{h}}I$ denotes the ideal of $K[X_0, X]$ generated by ${}^{h}I$. Because the mapping sending $f \in K[X_0, X]$ to ${}^{a}f \in K[X]$ is a homomorphism, ${}^{a}I$ is an ideal of K[X] for an ideal I of $K[X_0, X]$.

An order \geq_0 on $M(X_0, X)$ is defined as follows. For $x, y \in M(X_0, X)$

$$x \ge_0 y \iff \omega_0(x) > \omega_0(y) \text{ or } (\omega_0(x) = \omega_0(y) \text{ and } {}^{\mathrm{a}}x \ge {}^{\mathrm{a}}y).$$

If \geq is positive (non-negative, well-founded, compatible) on M(X), so is it on $M(X_0, X)$. If ω is monotone, \geq_0 is an extension of \geq , that is, $\geq_{0|M(X)} = \geq$.

Lemma 5.1. (1) $h(f \cdot g) = hf \cdot hg$ for $f, g \in K[X]$.

- (2) $^{\mathrm{ah}}f = f$ for any $f \in K[X]$.
- (3) ${}^{\mathrm{ah}}H = H$ and ${}^{\mathrm{ah}}I = I$ for a subset H of K[X] and an ideal I of K[X],
- (4) For any homogeneous $f \in K[X_0, X]$, $X_0^t \cdot {}^{ha}f = f$ for some $t \in \mathbb{N}$
- (5) For any $f \in K[X] \operatorname{lm}({}^{h}f) = X_0^t \cdot \operatorname{lm}(f)$ for some $t \in \mathbb{N}$. If ω is monotone, $\operatorname{lm}({}^{h}f) = \operatorname{lm}(f)$.
 - (6) For any homogeneous $f \in K[X_0, X]$, $X_0^t \cdot lm({}^{\mathbf{a}}f) = lm(f)$ for some $t \in \mathbb{N}$.

Lemma 5.2. (1) If G is a homogeneous Gröbner basis of a homogeneous ideal I of $K[X_0, X]$, then ${}^{\alpha}G$ is a Gröbner basis of the ideal ${}^{\alpha}I$ of K[X].

(2) Suppose that ω is monotone. If G is a Gröbner basis of an ideal I of K[X], then ${}^{h}G$ is a homogeneous Gröbner basis of ${}^{\bar{h}}I$.

Hereafter in this section, K is the quotient field of a principal ideal domain R and p is a prime element of R.

Lemma 5.3. Let ω be a compatible positive integral weight on M(X). Let H be a subset of R[X], and let I (resp. J) be the ideal of K[X] (resp. R[X]) generated by H. Let G be a Gröbner basis of an ideal L of K[X]. Let \overline{G} be a Gröbner basis of a homogeneous ideal J_p of $R_p[X]$. If (i) $I \subset L$, and (ii) $\operatorname{lm}(G) = \operatorname{lm}(\overline{G})$, and (iii) $\operatorname{lm}(f_p) \in (\overline{{}}^h I)_p$ for all $f \in J$, then I = L and G is a Gröbner basis of I.

If the condition (iii) in the above Lemma is satisfied, p is called lucky, but there is no way to find p is lucky effectively. Next we work in the homogenized side.

Proposition 5.4. Let H be a subset of K[X] and let I be an ideal of K[X] generated by H. Let I' (resp. J') be the ideal of $K[X_0.X]$ (resp. $R[X_0,X]$) generated by ${}^{\rm h}H$. Let \overline{G} be a homogeneous Gröbner basis of J'_p and let G be a homogeneous Gröbner basis of a homogeneous ideal L' of $K[X_0,X]$. If $I' \subset L'$, and ${\rm lm}(G) = {\rm lm}(\overline{G})$, then ${}^{\rm h}G$ is a Gröbner basis of I. Moreover, if ω is monotone, ${}^{\rm h}G$ is a Gröbner basis of I

6 Algorithms and examples

Let p be a odd prime and let > be a term order on M(X). For $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0 \in \mathbb{Z}[X]$, let ||f|| be the maximal norm of f, that is,

$$||f|| = \max\{|a_i| | i = 0, \dots, n\}.$$

For $f \in \mathbb{Z}_p[X]$, let g = re(f) is a polynomial in $\mathbb{Z}[X]$ with minimal ||g|| satisfying $g_p = c \cdot f$ with $c \in \mathbb{Z}_p$. For a set G of polynomials in $\mathbb{Z}_p[X]$, set $\text{re}(G) = \{\text{re}(f) \mid f \in G\}$. Let H be a finite subset of $\mathbb{Z}[X]$.

- (i) Compute the reduced Gröbner basis \overline{G} of ${}^{\mathrm{h}}H_p$ in $\mathbb{Z}_p[X_0,X]$ with respect to $>_0$.
 - (ii) Compute $G_0 = \operatorname{re}(\overline{G})$.
 - (iii) Check if every S-polynomial reduced to 0 modulo G_0 in $\mathbb{Z}[X_0, X]$.
 - (iv) Check if every $h \in {}^{\mathrm{h}}H$ is reduced to 0 modulo G_0 in $\mathbb{Z}[X_0, X]$.
 - (v) Let $G = {}^{a}G_{0}$.

If G_0 obtained in (ii) passes the tests (iii) and (iv), then G is a correct Gröbner basis of H.

Example 6.1. Let

$$H = \{X^2 + 2Y, XY + 1\}.$$

We consider the pure lexicographic order with X > Y. We have an S-polynomial $X - 2Y^2$, and reducing the system $H \cup \{X - 2Y^2\}$ we have a Gröbner basis

$$G = \{2Y^3 + 1, X - Y^2\}$$

of I(H). On the other hand, homogenizing H, we have

$${}^{\mathbf{h}}H = \{X^2 + 2YZ, XY + Z^2\}.$$

Let p = 5, Completing ${}^{\rm h}H_p$ in $\mathbb{Z}_p[X,Y,Z]$, we have a Gröbner basis

$$\overline{G} = \{X^2 + 2YZ, XY + Z^2, XZ^2 + 3Y^2Z, 2Y^3Z + Z^4\}$$

of $I({}^{\rm h}H_p)$. From this we reconstruct a Gröbner basis

$$G' = \{X^2 + 2YZ, XY + Z^2, XZ^2 - 2Y^2Z, 2Y^3Z + Z^4\}$$

of $I({}^{\rm h}H)$ on $\mathbb{Z}[X,Y,Z]$. Then, a homogenizing it we have a Gröbner basis

$${}^{\mathbf{a}}G' = \{X^2 + 2Y, XY + 1, X - 2Y^2, 2Y^3 + 1\}.$$

of I(H). Then, reducing it we have $\{2Y^3 + 1, X - Y^2\} = G$.

As seen in the above example ${}^{a}G'$ may not be reduced, though G' is reduced. Sometimes, G' can be very big compared with G. In these cases, our methods are not practical.

Example 6.2. Let

$$H = \{3X^2 + 5X^3 - 3Y^2, -4 - 4X^2 + 3XY + Y^3, 3 + XY + 5X^2Y + 4Y^2 - 3XY^2\}.$$

The reduced Gröbner basis of H is $\{1\}$. However, the reduced Gröbner basis of ${}^{h}H$ is very big with a polynomial which involves an integer with 1120 digits in decimal expression in its coefficients.

References

- [1] E.A. Arnold, Modular algorithms for computing Gröbner bases, J. Symbolic Comp. **35** (2003), 403–419.
- [2] T. Becker, V. Weispfenning, Gröbner bases, Springer, 1993.
- [3] B. Buchberger, Gröbner-bases: an algorithmic method in polynomial ideal theory, In: Multidimensional Systems Theory (1985), 184–232.
- [4] G.L. Elbert, Some comments on the modular approach to Gröbner-bases. ACM SIGSAM Bulletin 17, (1983), 28–32.
- [5] F. Winkler, A p-adic approach to the computation of Gröbner bases, J. Symbolic Comp. 6 (1987), 287-304.