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ON THE CALCULATION OF THE SPECTRA OF BURNSIDE
TAMBARA FUNCTORS

HIROYUKI NAKAOKA

ABSTRACT. For a finite group G, a Tambara functor on G is regarded as a G-
bivariant analog of a commutative ring. In our previous article, we consider a
G-bivariant analog of the ideal theory for Tambara functors. In this article, we
will demonstrate calculations of spectra of Burnside Tambara functors, when
G=1Z/qZ.

1. INTRODUCTION AND PRELIMINARIES

A Tambara functor is firstly defined by Tambara [8] in the name ‘TNR-functor’,
to treat the multiplicative transfers of Green functors. (For the definitions of Green
and Mackey functors, see [1].) Later it is used by Brun [2] to describe the structure
of Witt-Burnside rings.

For a finite group G, a Tambara functor is also regarded as a G-bivariant analog
of a commutative ring, as seen in [9]. As such, for example a G-bivariant analog of
the fraction ring was considered in [3], and a G-bivariant analog of the semigroup-
ring construction was discussed in [5] and [6], with relation to the Dress construction
[7]-

In this analogy, we considered a G-bivariant analog of the ideal theory for Tam-
bara functors in our previous article [4]. In this article, we will demonstrate calcu-
lations of spectra of Burnside Tambara functors, when G = Z/qZ for some prime
number q.

Throughout this article, the unit of a finite group G will be denoted by e. Ab-
breviately we denote the trivial subgroup of G by e, instead of {e}. H < G means
H is a subgroup of G. gset denotes the category of finite G-sets and G-equivariant
maps. If H < G and g € G, then 9H = gHg~! denotes the conjugate 9H = gHg™!.

A ring is assumed to be commutative, with an additive unit 0 and a multiplicative
unit 1. A ring homomorphism preserves 0 and 1.

For any category ¥ and any pair of objects X and Y in %, the set of morphisms
from X to Y in ¥ is denoted by €(X,Y).

First we briefly recall the definition of a Tambara functor and its ideal.

Definition 1.1. ([8]) A Tambara functor T on G is a triplet T = (T*,T4,T,) of
two covariant functors

T,: gset — Set, T,: gset — Set
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and one contravariant functor
T*: gset — Set

which satisfies the following. Here Set is the category of sets.
(1) T* = (T*,T4) is a Mackey functor on G.
(2) TH =(T*,T,) is a semi-Mackey functor on G.
Since T%, TH are semi-Mackey functors, we have T*(X) = T4 (X) = To(X)
for each X € Ob(gset). We denote this by T(X).
(3) (Distributive law) If we are given an exponential diagram

x<Z- a2z

s|er

Y B
in gset, then
T(X) T+ (p) T(A) () T(Z)
T.(f)l O lT-(P)
T(Y T(B
¥) T1(q) (B)

is commutative.

IfT = (T'*,T4+,T,) is a Tambara functor, then T'(X) becomes a ring for each
X € Ob(gset). For each f € gset(X,Y),
o T*(f): T(Y) » T(X) is a ring homomorphism.
e T.(f): T(X) » T(Y) is an additive homomorphism.
o T,(f): T(X) = T(Y) is a multiplicative homomorphism.

T*(f), T4 (f), Te(f) are often abbreviated to f*, fi, fe.

In this article, a Tambara functor always means a Tambara functor on some
finite group G.

Example 1.2. If we define Q by
Q(X) = Ko(gset/X)

for each X € Ob(gset), where the right hand side is the Grothendieck ring of the
category of finite G-sets over X, then €2 becomes a Tambara functor on G. This is
called the Burnside Tambara functor. For each f € gset(X,Y),

fo: Q(X) = QYY)
is the one determined by
fo(AS X)=([;(4) 3Y) (Y(A5 X) € Ob(gset/X)),
where II¢(A) and w is

yey,
o: f71(y) > A amapofsets, ),
poo =ids-1y)

f(A) = { (y,0)

w(y,0) =y.
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G acts on IIf(A) by g - (y,0) = (g9y, %), where % is the map defined by

9(z) = go(g~'z) (Tz e fgy)).
Definition 1.3. Let T be a Tambara functor. For each f € gset(X,Y), define
[: T(X) > T(Y) by

fi(z) = fo(x) — £:(0)

for any = € T(X).
Remark 1.4. ([4]) Let T be a Tambara functor. We have the following for any
f € gset(X,Y).

(1) fi satisfies fi(z)fi(y) = fi(zy) for any z,y € T(X).
(2) If f is surjective, then we have f) = f,.

(3) If
f/
X' —Y'
ol
X _f> Y
is a pull-back diagram, then f/{* = n* fi holds.
(4) If
X<2-a<2 7
N
Y = II

is an exponential diagram, then @, py A* = fy p4 holds.

Definition 1.5. ([4]) Let T’ be a Tambara functor. An ideal .# of T is a family of
ideals #(X) C T(X) (VX € Ob(gset)) satisfying
i) /~(#(¥)) € #(X),
(ii) f+(F(X)) € 2(Y),
(iif) A(L (X)) € F(Y)

for any f € ¢set(X,Y). These conditions also imply
J(Xl I X2) = f(Xl) X j(Xg)
for any X,, Xy € Ob(gset).

Obviously when G is trivial, this definition of an ideal agrees with the ordinary
definition of an ideal of a commutative ring.

Remark 1.6. For any ideal .# C T, we have #(0) = T'(0) = 0.

Definition 1.7. ([4]) An ideal p C T is prime if for any transitive X,Y € Ob(gset)
and any a € T(X), be T(Y),

(@) Sp = aep(X) or bep(Y)

is satisfied. Remark that the converse always holds.
An ideal m C T is mazimal if it is maximal with respect to the inclusion of ideals
not equal to 7. A maximal ideal is always prime.
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Definition 1.8. ([4]) For any Tambara functor T on G, define Spec(T) to be the
set of all prime ideals of T'. For each ideal .# C T, define a subset V(#) C Spec(T)
by

V(F) = {p € Spec(T) | 7 C p}.

Remark 1.9. ([4]) For any Tambara functor T, we have the following.
(1) V(#)=0if and only if # = T.
(2) V(F) = Spec(T) if and only if # C (] p.
pESpec(T)
Remark 1.10. ([4]) For any Tambara functor T', the family {V(#) | # C T is an ideal}
forms a system of closed subsets of Spec(T). Thus Spec Q becomes a topological
space.

2. SOME PROPOSITIONS

Proposition 2.1. Let T be a Tambara functor. Suppose we are given a family of
ideals indezed by the set of finite non-empty transitive G-sets

2.1 J(Xy) CT(X ransitive .
21) {F(Xo) T 0)}m¢xéeoé(gset)
For any X € Ob(gset), take its orbit decomposition X = ][] X; and put

1<2<s
F(X)=I(X1) x--- x F(X,) CT(X).
(We used the identification T(X) =[] T(X,).) Then the following are equivalent.

1<
(1) F ={F(X)}xcob(gset) is an ideal of T
(2) The family (2.1) satisfies
() 1*(7(¥o)) € #(Xo)
(i) £+(#(Xo)) € 2 (Y)
(ili) fo(F(Xo)) C F(Yo)
for any transitive Xo,Yy € Ob(gset) and any f € gset(Xo, Yo)

Proof. Remark that for any non-empty transitive Xo, Yy € Ob(gset) and any f €
cset(Xo,Ys), we have f, = fi. Obviously, (1) implies (2). We will show the
converse.

Assume (2) holds. It suffices to show # satisfies (i), (ii), (iii) in Definition 1.5
for any f € gset(X,Y).

First, we reduce to the case where Y is transitive. Take the orbit decomposition

Y= ]] Y, put
1<5<t

X, =75, fi={flx,: X, = Y;,
and suppose (i), (ii), (iii) in Definition 1.5 holds for each f,. Since we have com-
mutative diagrams
T(X) —ILTX) 1Y) =—ILT()  7(xX) —— I, T(X;)
f+l ) il’l, fi+ f*l O ll‘lj o, f.l/ O il’lJ I,
TY)—4—ILTY) TX)—ITX;) 7T)—ILT)
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under the canonical identification, we obtain

X)) =[IH+(rX) ¢ [l7 =2,
e =[Irew) < [Irx)=2x),
) =[meX)) < [[Fw) =

1 J

Now it remains to show in the case Y is transitive. If X = §, then there is

nothing to show. Otherwise, take the orbit decomposition X = II X: and put
1<i<s

f, = flx,: Xi = Y. Remark that in this case, we have f, = fi. By assumption,
each f; satisfies

fz+( (X)) A(Y),
fi(#(Y)) S (Xs),
fi(F(X)) © J(¥)
Under the identification T(X) = [ T(X;), we obtain f*(F(Y)) C F(X1) X

1<1<3
.- x F(X,) = £(X). Moreover, for any € #(X), under the identification

FX) = F(X)x--FI(X,)

N N

z = (z1,...,%s),
we have
f+(x) = fi4(z1) + -t foy () € I(Y),
fo(x) = flo(xl)' 'fso(xs) € j(Y)
Thus it follows f4 (& (X)) C F(Y), fo(F£(X)) C F(Y). O

Corollary 2.2. To give an ideal # of a Tambara functor T on G is equivalent to
give a family of ideals indexed by Og
{#(G/H) CT(G/H)}reo(0)
satisfying
(i) reSQ(f(G/H)) C J(G/K)
(i) de( (G/K)) ¢ J(G/H)
(i) jndg(FL(G/K)) S F(G/H)
(iv) cgu(F(G/H)) € F(G/°H)
for any K < H < G and g € G. In particular, #(G/H) C T(G/H) is Ng(H)/H-
nvariont.
By construction, for ideals .#, ¢ C T, we have
JC g o JG/H)C #(G/H) (YH € O(G)).
Corollary 2.3. When G = Z/qZ where q is a prime number, then to give an ideal
F of T 1is equivalent to give
e a G-invariant ideal #(G/e) CT(G/e),
e an ideal #(G/G) CT(G/G),
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satisfying
() =(#(G/G) < #(Gfe),
(i) m(F(G/e)) C F(G/G),
(iii) m(SF(G/e)) € F(G/G),

where m: G/e — G/G is the unique constant map.

Remark 2.4. (Corollary 4.5 in [4]) An ideal # C T is prime if and only if for
any transitive X,Y € Ob(gset) and any a € T(X),b € T(Y), the following two
conditions become equivalent.

(1) aeT(X)orbeT(Y).

(2) For any C € Ob(gset) and for any pair of diagrams in gset

’
w

c&D%x, c&Lp Xy,
(nw*(a)) - (vjw™(b)) € F(O) is satisfied.
Note that (1) always implies (2).

By the following lemma, it is enough to check (2) only when C, D, D’ are tran-
sitive.

Lemma 2.5. Let & C T be an ideal. Condition (2) in Remark 2.4 is equivalent
to the following.

(2)" For any transitive C € Ob(gset) and for any pair of diagrams in gset

’
w

C&-D-LX, LD
where D and D' are transitive, (vew*(a)) - (viw™ (b)) € F(C) is satisfied.

Proof. It suffices to show (2) implies (2). Assume (2)’ holds, take any C €
Ob(gset) and

’
w

C& DX x, & p Xy,

with not necessarily transitive C, D, D’.
Let C= ][ C; be the orbit decomposition, and put

ai<m

D;=v71(C) D, =v""1(C),

’U,;=’U|Dt:D,;~—)Ci y ’U;=UI‘D;1D;—)C,',

w, =wlp,: D, X , w;=w|p:D;—Y.
Then we have viw*(a) = (viwi(a), ..., vmw,(a)), where
v\ Jvewi(a) ifD;#0
'Ul!w’l, (a/) - {0 if Dz — w.

Similarly for b. In any case, (vyw}(a)) - (v/,wi*(b)) € £(C,) (1 < i < m) follows
from (2)’, which means

(vw*(a)) - (viw™ (b)) € F(C).
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Proposition 2.6. Let T be a Tambara functor, and p C T be a prime ideal. Let
T(G/e)C denote the subring of G-invariant elements in T(G/e):

T(G/e)® ={z € T(G/e) | gz =z ("g € G)}
Similarly for p(G/e)C:
p(G/e)® =p(G/e)NT(G/e)®
Then, p(G/e)® C T(G/e)€ is a prime ideal (in the ordinary ring-theoretic meaning).

Proof. Suppose a,b € T(G/e)C satisfies ab € p(G/e). By Lemma 2.5, it suffices to
show for any transitive C, D, D’ and any pair of diagrams in gset

’

(2.2) C & D2 Gle, C&D G/

(vew*(a)) - (viw™ (b)) € p(C) is satisfied. Since D and D' are transitive with trivial
stabilizers, we may assume D = D’ = G/e. Furthermore, modifying v and v’ by
conjugations, we may assume

C=G/H, v=v=pf:G/H—Gle
for some H < G. Thus (2.2) is reduced to the case

H H ’
G/H & Gle 2 Gle, G/H & G/e = Gle,
where w,w’ are the multiplication by some g,9’ € G. Then we have

((PF)ew*(a)) - (@F)ew™ () = (p)e((ga) - (4'b))
= (pd)s(ab) €p(G/H).

Corollary 2.7. Ifp C Q is prime, then p(G/e) C Q(G/e) is prime.

Proof. This immediately follows from the fact that Q(G/e) = Z has a trivial G-
action. O
3. Spec) FOR G =Z/qZ

In the following, we assume G = Z/qZ for some prime number g, and denote the
canonical projection by 7 = p$: G/e = G/G.
3.1. Structure of Q.

Proposition 3.1. For G = Z/qZ, Burnside Tambara functor has the following
structure.

(1) There are isomorphisms of rings
QGle) =3 Z ; £Glew ¢,
QG/G) = Z[X]/(X%-q¢X) ; mG/e+nG/G—m+nX.
(2) Under the isomorphisms in (1), the structure morphisms 7, ,m*, e are
e Lo Z[X]/(X?-gX) ; £ EX,

™ : ZX]/(X?-¢X)>Z ; m+nX »m+qn,

q
Te : Z—Z[X]/(X?-g¢X) ;€H€+£—E-£X.
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Proof. The only non-trivial part will be

q
Te(€) = £+ z—q—EX

This is shown by using the following.

Fact 3.2. (Proposition 4.17 in [4])
The following diagram is commutative.

£i———->£
Q(G/e .y

A\

G/G) e m+nX
From this fact, for any £ € Z we have
(3.1) Te(f) =€+ nX

for some n € Z. Remark that n > 0 holds if ¢ > 0.
Besides, by the definition of 7, for any ¢ € N>, we have

r.(IZIG/e AN Gle)={o|o:G/e —> IEIG/e, a section map for V},

and thus
(3:2) (7o (£)) = £9.
From (3.1) and (3.2),

q
F.(E) =€+£'q—eX

for any £ > 0. As for a negative £, since we have
Te(€) = me(—1)ma(|4]),
it will be enough to determine mq(—1).
By (3.1), we have me(—1) = —1 4+ nX for some n € Z, which should satisfy
1=me(-1)?=(~1+nX)?=1+n(gn - 2)X.

When ¢ is odd, it follows n = 0, and me(—1) = —1. For ¢ = 2, both —1 and
—1+ X satisfy (-1)2 = (-1 + X)? = 1. However, from the Mackey condition for
the pullback

IG/e —Y . Ge

| o |
Te(—1) should satisfy
T me(—1) =1,
which leads to me(—1) = ~1 + X.
In any case, we obtain

q _
To(l) = £+ ?—q—ex ("¢ € Z)

for any prime gq. O
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3.2. Decomposition into fibers. Using the structural isomorphism in Proposi-
tion 3.1, we go on to determine Spec Q2 for G = Z/qZ. By Corollary 2.7, any prime
ideal p C Q satisfies p(G/e) = (p) for some prime p or p = 0. Thus we have a map

F: SpecQ — SpecZ ; p— p(GJe).
(F will be shown to be continuous after Spec 2 is determined.)
Definition 3.3. Let p € Z be prime or p = 0. We call an ideal & C Q is over p

if it satisfies #(G/e) = (p). A prime ideal over p is simply a prime ideal p C
which is over p.

Remark 3.4. By the above arguments, we have

o F~Y(p)) = {p € Spec | prime ideal over p},
. St 11 FU@)).

(p)€SpecZ

In the following, we investigate the fibers F~1((p)), in the cases p = 0, p = g,

and p # 0,q.
For each (p) € Spec Z, its fiber F~1((p)) at least contains one maximal point. In

fact, the following was shown in [4].

Fact 3.5. (Corollary 4.42 in [4])
SpecQ D {Fp) | p € Z is prime} U {F)} U {(0)}.
Here, for each ideal I C Q(G/e), ideal £ C Q) is defined by
I1(Gle) =1, F1(G/G) = (x*)7 ().

#; is the largest one, among all ideals .# C  satisfying #(G/e) = I.
Under the isomorphism in Proposition 3.1, for any £ € Z we have

H0(Gle) = (&) <Z,
Zp(G/G) = {m+nXe Z[X]/(X? —qgX) |m+gn € ()}
= {kl+n(X —q) € Z|X]/(X*-qX) | k,n e Z}
= (,X-q) CZX]/(X?-¢X).
In this article, we denote #(;) by mp. For any prime p # 0, m; is a maximal
ideal of Q. Namely it is a closed point in Spec 2, while mg = #(¢) is not. (For this
reason, we prefer to use #g) rather than mg only for p = 0.)

On the other hand, (0) is the smallest ideal of {2, namely the generic point in
Spec 2. We have inclusions

(0) g f(O) g my
for any prime p € Z.

3.3. The smallest ideal over p.

Proposition 3.6. For a prime p € Z or p = 0, the smallest ideal I, C £ over p is
given by the following.
(1) When p # q (including the case p = 0),
L(G/G) = (p) CZX]/(X*-¢X).
(2) Whenp=gq,
L(G/G) = (¢X,X —q) = (¢, X —q) CZ[X]/(X?-qX).
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Proof. (1) (p) C I,(G/e) follows from

p q
p = (p+ P Px) P px
q pq
p?—p
pq

= 7e(p) - 7+ (p)-

To show the converse, it suffices to show that
F(G/e)=(p) SZ and F(G/G) = (p) C Z[X]/(X* - ¢X)
in fact form an ideal .# of Q. By Corollary 2.3, this is equivalent to show

™ (())
7+((p))
me((P))

However, these immediately follow from
™) =p € (p)
and

m+(lp) = €pX € (p)

£ap7 — ¢
mo(lp) = fp+ —pq—px € (p)

for any £ € Z. (Remark that 7* is a ring homomorphism.)
(2) (¢X,X — q) C I,(G/e) follows from

gX =m4(q)

and

q _
X—-q = qq‘lX—(q+q q qX) = 14(¢"7") — 7e(q).

To show the converse, it suffices to show

™(@X -9) < (9,
7T+(((])) - (QX,X - Q),
71'0((‘1)) - (QX,X - Q)

These follow from
™) =¢* m™(X-¢)=0 €(q),
and

m+(lg) = LgX € (¢X)
Te(lg) = Lg-X)+0¢'X €(¢—X,qX)

for any £ € Z. a
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3.4. All ideals over p.

For p # 0, ideals .# C 2 over p are only I, and m,,.
Claim 3.7. When p € Z is prime (# 0), then there is no ideal between I, C m,.
Proof. It suffices to show that there is no element f € Q(G/G) satisfying
(3.3) L(G/G) ¢ I,(G/G)+ (f) & (b, X — 9).
By f € (p, X — q), it should be of the form f = kp + n(X — q) for some k,n € Z.

(1) When p # g, (3.3) is equal to

)& )G ®X-9.

This will mean the existence of n € Z satisfying (p) ¢ (p,n(X —q)) & (p, X — q).
However, since

I A2 if pln
(p, (X Q))—{(p,X_q) it pfn

there should not exist such n.
(2) When p = ¢, (3.3) is equal to

@ X-9G(@*X-af)C@X~-9.
This will mean the existence of k € Z satisfying

@% X -q) S (¢, X —a,kq) C (¢, X —q).
However, since

(¢*>, X —q) if qlk
(6, X —q) if gfk ’

there should not exist such k. O

(¢®, X — q,kq) = {

On the other hand for p = 0, there are many ideals between (0) C #(q)-
Claim 3.8. If we define Fg;n) C 2 by
Fom)(G/e) = (0) , Fom)(G/G) =n(X —q),

then F(o,;n) € Q forms an ideal for each n € Z. Indeed, these are ezactly the all
ideals # C §) over 0O:

{# CQ ideal| F(Cfe) =0} = {Fom) |n €T}

Proof. Any ideal between (0) G (X —q) in Z[X]/(X%—¢X) is of the form (n(X —q))
for some n € Z. Since Fg.,)(G/e) = (0) and Fg;n)(G/G) = (n(X — q)) satisfy

m*(n(X —q)) =0, 71(0) =0, me(0) =0,

o) C 2 gives an ideal for each n € Z. O
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3.5. Criterion to be prime. Let p € Z be a prime or p = 0. Now we give a
criterion for an ideal # C 2 over p to be prime.

Proposition 3.9. Let p € Z be a prime or p=0. Let £ C Q be an ideal over p,
not equal to m,. Then # is not prime if and only if one of the following conditions
1s satisfied.

(cl) There exist a,b € my(G/G) satisfying
a¢ Z(G/G), b¢ F(G/G), abe F(G/G).
(c2) There exist a € my(G/G) and b € Q(G/e) satisfying
a ¢ I(G/G), me(b) ¢ Z(G/G), a-(me(b)) € £(G/G).

(Only here, we use the notation my = H o) for the consistency.) In particular, if
F(G/G) C QUG/G) is prime, then £ C Q is prime.

More explicitly, these can be written as follows.

(cl)’ There exist k,n,k',n' € Z satisfying

kp+n(X —q) ¢ Z(G/G), k'p+n'(X —q) ¢ I(G/G),
kk'p?® + ((n'k + nk')p + nn'q)(X - q) € #(G/G).
(c2)' There exist k,n,l € Z satisfying
kp+n(X —q) ¢ F(G/G), £+5£X ¢ #(G/G),
kp(l+ E2£X) + nl(X — q) € F(G/G).
Proof. By Lemma 2.5, # C Q is not prime if and only if there exist transitive
X,Y € Ob(gset) and a € Q(X),b € Q(Y) satisfying a ¢ #(X),b ¢ S (V) and
(0)  (vew*(a)) - (viw™*(b)) € F(C) for any
C-Dx, ¢ Dy,
with C, D, D’ transitive.
We may consider this condition in the following three cases.
(1) X=Y =G/e.

2) X =Y =G/G.
(3) X =G/G,Y = GJe.

(1) If X =Y = G/e, then (o) is reduced to
ab e F(G/e) = (p),

which implies automatically a or b is in .#(G/e). Thus we can exclude this case.

(2) If X =Y = G/G, then condition () is equivalent to
abe #(G/G), n*(a)n*(b) € £(G/Q),
(mem*(a)) -b € F(G/G), a-(men*(b)) € #(G/G),
(me*(a)) - (mam* (b)) € F(G/G.).
Since #(G/e) = (p) is prime, it follows that 7*(a) or 7*(b) is in #(G/e). Thus
we may assume 7*(a) € (p), namely a € m,(G/G). Then the above conditions are
reduced to

ab e F(G/G), a-(mar*(b) € F(G/G).
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The existence of such a and b can be divided into the following two cases. Remark
that 7*(b) ¢ #(G/e) will imply b ¢ Z(G/G).

(2-1) (the case 7*(b) ¢ (p))
There exist a € m,(G/G) and b € Q(G/G) satisfying

a ¢ J(G/G), ©*(b) ¢ F(GJe),
ab € £(G/G), a-(men*(b)) € #(G/G).
(2-2) (the case 7*(b) € (p))
There exist a,b € m,(G/G) satisfying
a¢ F(G/G), b¢ F(G/G), abe F(G/G).

(3) If X =G/G and Y = G/e, then for a € Q(G/G) and b € Q(G/e) which are not
in £, condition (o) is reduced to
(7*(a)) - b€ I(G/e), a-(m(d)) € L(G/G).
Since b ¢ #(G/e) = (p), the condition (7*(a)) - b € F(G/e) is equivalent to
w*(a) € F(G/e), namely to a € my(G/G). The existence of such a and b can
be divided into the following two cases. Remark that m4(b) ¢ £ (G/G) will imply
bé¢ #(Gfe).
(3-1) (the case m,(b) ¢ F(G/Q))
There exist a € my(G/G) and b € Q(G/e) satisfying
aéd F(G/G), me(b) € F(G/G), a-(me(b)) € £(G/G).
(3-2) (the case me(b) € F(G/Q))
There exist a € m,(G/G) and b € (G/e) satisfying
a¢ I(G/G), b¢ I(G/e), me(b) € F(G/G).
Note that, in (3-2), the conditions for a and b are completely separated. Moreover

since F(G/G) ¢ mp(G/G), such a always exists. Thus (3-2) is reduced to the
following.

(3-2)' There exists b € Q(G/e) satisfying
b¢ F(G/e) and w.(b) € F(G/G).
However, this never happens. Indeed, since we have
T me(£) = 47
for any £ € Q(G/e), we obtain
Te(f) = mme(b) € F(GJe) = L€ F(Ge).

By the arguments so far, £ C Q is not prime if and only if one of (2-1), (2-2),
(3-1) is satisfied. Furthermore, we see (2-1) implies (3). Indeed if a and b satisfy
(2-1), then a € Q(G/G) and b’ = n*(b) € Q(G/e) satisfy

a ¢ F(G/G), ¥ ¢ F(Ge),
a-(me(b')) € £(G/G), 7*(a)-b =n*(adb) € F(G/e).
Thus, we can conclude that .# C Q is not prime if and only if one of (2-2), (3-1)
is satisfied. These are respectively the conditions (cl), (c2) in the statement of the
proposition.
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The latter part can be shown easily by using m,(G/G) = (p,X — q). An easy
observation X (X — ¢) = 0 will help the calculation. O

3.6. Determine each fiber. Proposition 3.9 enables us to determine the structure
of Spec .

Corollary 3.10. Let p € Z be a prime or p = 0. In each fiber F~1((p)) over p, we
have the following.

(1) (the case p # q,0)
If p # 0 is a prime other than q, then I, C Q in Proposition 8.9 is prime.

For this reason, in the rest we denote I, by py.
(2) (the case p = q)
I, C Q) is not prime.
(3) (the case p =0)
Foin) € Q in Claim 8.8 is prime if and only if n =0 or n = £1.

Proof. (1) It suffices to show that either of (c1)’, (c2)’ does not occur. Remark that
we have p,(G/G) = (p).

(c1) For any k,n,k’,n’, since
kp+n(X —q) ¢ po(G/G) < pfn,
Kp+n'(X —q) ¢pp,(G/G) & pfn,
kk'p® + (Wk+nk)p+nn'q)(X — q) € p,(G/G) & plnn,

these never happens simultaneously.
(c2)! For any k,n,l € Z, since

kp+n(X —q) ¢ p,(G/G) & pfn,
0+ ==X ¢0lG/G) = B,

19—y
kp(£ + —q—X) +nl(X —q) € 9,(G/G) & pnt,

these never happens simultaneously.

(2) We show (c1) holds for I,. Remark that we have I,(G/G) = (¢X, X — q).
For a =b= X € my(G/G), we have

a=b¢ I,(G/G) and ab=¢X € I,(G/G).
Thus I, is not prime.
(3) We already know (0) € © and F(q) C Q are prime. It suffices to show F(g,,) C Q2
is not prime for n ¢ {-1,0,1}. We show (c2) holds for these n. Remark that we

have S0n) (G/G) = (n(X — q))
Fora=X —q € Q(G/G) and b =n € Q(G/e), we have

a ¢ Hom)(G/G),
mo(b) =n+ 22X ¢ 0, (G/G),
(X —q) - (me(b)) = n(X — q) € Ho;n)(G/G).
Thus #(g;n) is not prime for n ¢ {-1,0,1}. O
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3.7. Total picture. As a consequence, Spec {2 can be determined as
Spec Q2 {0} u{s0)}) U {ms}
U ({pp | p € Z is prime, p # q} U {m, | p € Z is prime, p # gq}).
Inclusions are

0 ¢ Jo & M
N N
Pp G WMp  (p#q) .
Especially the dimension of Spec 2 is 2.
m, and m,’s are the closed points, and (0) is the generic point in Spec Q. If we

represent the points in Spec) by their closures, Spec ) with fibration F' can be
depicted as follows. It can be also easily seen that F' is continuous.

= =

Spec Q) = ’I(‘”{ my [ mg| “.1q "‘.‘p
H ——’
Pp

o/
P2 P3
F © i

v

SpecZ= Of &) @ 6

FIGURE 1. Spec for G =Z/qZ
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