Omae's knot and 12_{a990} are ribbon

Tetsuya Abe

Research Institute for Mathematical Sciences, Kyoto University Motoo Tange

Institute of Mathematics, University of Tsukuba

ABSTRACT. The purpose of this note is twofold: First, we prove that Omae's knot is ribbon, which was known to be homotopically slice. Second, we give a sufficient condition for a given knot to be ribbon. As a corollary, we show that the knot 12_{a990} is ribbon, which was known to be slice.

1. Omae's knot is ribbon

A knot K in the 3-sphere $S^3 = \partial D^4$ is *slice* if there exists a smoothly embedded disk $D^2 \subset D^4$ such that $\partial D^2 = K$. A knot K is *ribbon* if there exists a smoothly immersed disk $D^2 \subset S^3$ with only ribbon singularities such that $\partial D^2 = K$. It is easy to see that every ribbon knot is slice. The slice-ribbon conjecture due to Fox [5] states that every slice knot is ribbon, which has been a long-standing unsolved problem in knot theory.

In the positive direction, the slice-ribbon conjecture was conformed for two-bridge knots [19, Lisca], certain pretzel knots [11, Greene-Jabuka], certain Montesinos knots [17, Lecuona] and simple slice knots [23, Shibuya]. On the other hand, potential counterexamples to the slice-ribbon conjecture are demonstrated through the study of the 4-dimensional smooth Poincaré conjecture [2, 6, 7, 9].

Omae [22] studied the knot depicted in the left of Figure 1. The first author and Jong [1] observed that Omae's knot bounds a smoothly embedded disk in a homotopy 4-ball W which is represented by the handle diagram as in the right of Figure 1 (see also Section 4). In this note, we prove the following.

Theorem 1.1. The 4-manifold W is diffeomorphic to the standard 4-ball.

FIGURE 1. Omae's knot and a homotopy 4-ball W.

Proof. Handle calculus in Figure 2 implies that W is diffeomorphic to the standard 4-ball.

Corollary 1.2. Omae's knot is slice. Furthermore, it is ribbon.

Proof. Theorem 1.1 implies that Omae's knot is slice. Recall that Omae's knot is isotopic to the boundary of cocore disk of the 2-handle (colored Grey) of the top left handle diagram in Figure 2. By chasing Omae's knot in handle diagrams in Figure 2, we obtain a ribbon presentation of Omae's knot as in Figure 3.

Remark 1.3. Another potential counterexample to the slice-ribbon conjecture is the (2, 1)-cable of the figure eight knot. Livingston and Melvin [18] and Kawauchi [14] proved that it is algebraically slice. Furthermore Kawauchi [15] showed that it is rationally slice. On the other hand, by the theorem of Casson-Gordon [4], Miyazaki [21] proved that it is not ribbon. Untill now, it is not known whether the (2, 1)-cable of the figure eight knot is slice or not. See also Gomp-Miyazaki [8].

2. The knot 12_{a990} is ribbon

The simplest slice knot which might not be ribbon is 12_{a990} . Indeed, Herald, Kirk and Livingston [12] showed that the connected sum of 12_{a990} and right- and left-handed trefoils is ribbon, implying that 12_{a990} is slice. However it was unknown whether 12_{a990} is ribbon ¹.

A t_n -move is a tangle replacement as in Figure 4. In this section, we show the following.

¹C. Livingston (e-mail communication) informed us that they knew that 12_{a990} is ribbon, however they did not write that 12_{a990} is ribbon in [12].

handle slides

isotopy

FIGURE 2. Handle diagrams which represent W.

Theorem 2.1. Let K be a knot. If we obtain the 3-component unlink from K by applying a t_{2n+1} - and $t_{-(2n+1)}$ -move, then K is ribbon.

We denote by T(p,q) the torus knot of type (p,q). First, we show the following.

Lemma 2.2. Let K be a knot. If we obtain the 3-component unlink from K by applying a t_{2n+1} - and $t_{-(2n+1)}$ -move, then K # T(2, 2n+1) # T(2, -(2n+1)) is ribbon, where # denotes the connected sum.

Proof. We may assume that a t_{2n+1} -move and a $t_{-(2n+1)}$ -move are done simultaneously. In other words, there exist two trivial tangles (B_+, T_+) and

FIGURE 3. A ribbon presentation of Omae's knot.

FIGURE 4. The definition of a t_n -move for n > 0 (left) and for n < 0 (right).

 (B_-, T_-) with $B_+ \cap B_- = \emptyset$ such that if we apply a t_{2n+1} -move for (B_+, T_+) and a $t_{-(2n+1)}$ -move for (B_-, T_-) , then we obtain the 3-component unlink. Now we consider K # T(2, 2n+1) # T(2, -(2n+1)) as in Figure 5. If we add

FIGURE 5. The knot K # T(2, 2n + 1) # T(2, -(2n + 1)).

two bands along dotted arcs in Figure 5, then the resulting 3-component link is trivial by the assumption. Therefore K # T(2, 2n+1) # T(2, -(2n+1)) is ribbon.

Now we prove Theorem 2.1.

Proof of Theorem 2.1. By the assumption, there exist two trivial tangles (B_+, T_+) and (B_-, T_-) with $B_+ \cap B_- = \emptyset$ such that if we apply a t_{2n+1} -move for (B_+, T_+) and a $t_{-(2n+1)}$ -move for (B_-, T_-) , then we obtain the 3-component unlink. If we need, by choosing another 3-balls, we may assume that two trivial tangles (B_+, T_+) and (B_-, T_-) are connected as in Figure 6. Now we consider again K # T(2, 2n+1) # T(2, -(2n+1)) as in Figure 5 with

FIGURE 6. Connectivity of two trivial tangles (B_+, T_+) and (B_-, T_-) .

two bands attached along dotted arcs. Then we deform T(2, -(2n+1)) as in Figure 7 with the band. We can see the knot T(2, 2n+1) # T(2, -(2n+1))

FIGURE 7. A deformation of T(2, -(2n+1)).

in B_+ which is known to be ribbon. We concentrate on B_+ and deform the tangle (in B_+) as in Figure 8. Then we obtain a ribbon presentation of K.

FIGURE 8. Deformations in B_+ .

As a corollary of Theorem 2.1, we obtain the following.

Corollary 2.3. The knot K_n in the left of Figure 9 is ribbon. In particular, $K_1 = 12_{a990}$ is ribbon.

FIGURE 9. Left: the knot K_n , Right: the knot 12_{a990} .

Proof. We choose two 3-balls B_+ and B_- as in the left of Figure 10. We apply a t_{2n+1} -move for $(B_+, K_n \cap B_+)$ and a $t_{-(2n+1)}$ -move for $(B_-, K_n \cap B_-)$. Then we obtain the 3-component link as in the right of Figure 10 which is trivial. Therefore K_n is ribbon by Theorem 2.1.

FIGURE 10. Left: 3-balls B_+ and B_- , Right: the 3-component unlink.

3. On the ribbon fusion number

A ribbon knot K is of *m*-fusions if K is isotopic to

$$\bigcup_{i=0}^{m} S_{i}^{1} - \operatorname{int}(\bigcup_{j=1}^{m} b_{j}(\partial I \times I) \cup \bigcup_{j=1}^{m} b_{j}(I \times \partial I)$$

where $\bigcup_{i=0}^{m} S_i^1$ is the (m + 1)-component unlink and $b_j : I \times I \longrightarrow S^3$ (j = 1, 2, ..., m) are disjoint embeddings such that

$$S_i^1 \cap b_j = \begin{cases} b_j(\{0\} \times I) & \text{if } i = 0, \\ b_j(\{1\} \times I) & \text{if } i = j, \\ \emptyset & \text{otherwise.} \end{cases}$$

It is known that a ribbon knot is of *m*-fusions for some m [20, 25]. The *ribbon fusion number* of a ribbon knot is defined to be the minimal number of such m. For the study of the ribbon fusion number, see [3, 13, 24].

Question 1. Is the ribbon fusion number of Omae's knot two?

Question 2. Is the ribbon fusion number of the knot 12_{a990} two ?

4. Homotopy 4-spheres associated to unknotting number one RIBBON KNOTS

In the conference, Intelligence of Low-dimensional Topology, the first author talked on annulus twist, diffeomorphic 4-manifolds, and slice knots. In this section, we assume some terminologies in [1]. The first author and Jong showed the following. **Proposition 4.1** ([1]). Let K be an unknotting number one knot, (A, b, c, ε) the associated band presentation and K_n the knot obtained from K by applying an annulus twist n times. If K is ribbon, then there exists a homotopy 4-ball W_n with $\partial W_n = S^3$ such that K_n bounds a smoothly embedded disk in W_n . In particular, we can associate a homotopy 4-sphere for each n.

Let K be the knot 8_{20} . Note that the unknotting number of 8_{20} is one and the associated band presentation of K is depicted in Figure 11. Let K_n the knot obtained from K by applying an annulus twist n times. Then K_1 is Omae's knot. Since 8_{20} is ribbon, we can associate a homotopy 4-sphere Σ_n for each n by Proposition 4.1. Theorem 1.1 implies that Σ_1 is standard.

FIGURE 11. The associated band presentation for 8_{20} .

Conjecture 4.2. The homotopy 4-sphere Σ_n is standard for each n.

ACKNOWLEDGMENTS

The first author was partially supported by KAKENHI, Grant-in-Aid for Research Activity start-up (No. 00614009), Japan Society for the Promotion of Science.

REFERENCES

- [1] T. Abe and I. Jong, Annulus twist and diffeomorphic 4-manifolds, preprint (2012).
- [2] S. Akbulut, Cappell-Shaneson homotopy spheres are standard Ann. of Math. (2) 171 (2010), no. 3, 2171–2175.
- [3] S. A. Bleiler and M. Eudave-Muñoz, Composite ribbon number one knots have two bridge summands, Trans. Amer. Math. Soc. 321 (1990) 231-243.
- [4] A. Casson and C. Gordon, A loop theorem for duality spaces and fibred ribbon knots, Invent. Math. 74 (1983), no. 1, 119–137.
- [5] R. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics (Proc. The Univ.of Geogia Institute), (1962), 168-176.
- [6] M. Freedman, R. Gompf, S. Morrison and K. Walker, Man and machine thinking about the smooth 4-dimensional Poincare conjecture, Quantum Topol. 1 (2010), no. 2, 171–208.
- [7] R. Gompf, More Cappell-Shaneson spheres are standard, Algebr. Geom. Topol. 10 (2010), no. 3, 1665–1681.

- [8] R. Gompf and K. Miyazaki, Some well-disguised ribbon knots, Topology Appl. 64 (1995), no. 2, 117-131.
- [9] R. Gompf, M. Scharlemann and A. Thompson, Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures, Geom. Topol. 14 (2010), no. 4, 2305-2347.
- [10] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI, 1999. xvi+558.
- [11] J. Greene and S. Jabuka, The slice-ribbon conjecture for 3-stranded pretzel knots, Amer. J. Math. 133 (2011), no. 3, 555-580.
- [12] C. Herald, P. Kirk and C. Livingston, Metabelian representations, twisted Alexander polynomials, knot slicing, and mutation, Math. Z. 265 (2010), no. 4, 925-949.
- [13] T. Kanenobu, Band Surgery on Knots and Links, J. Knot Theory Ramifications 19 (2010) 1535-1547.
- [14] A. Kawauchi, On links not cobordant to split links, Topology 19 (1980), no. 4, 321-334.
- [15] A. Kawauchi, Rational-slice knots via strongly negative-amphicheiral knots, Commun. Math. Res. 25 (2009), no. 2, 177–192.
- [16] R. Kirby, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978.
- [17] A. Lecuona, On the slice-ribbon conjecture for Montesinos knots, Trans. Amer. Math. Soc. 364 (2012), no. 1, 233-285.
- [18] C. Livingston and P. Melvin, Algebraic knots are algebraically dependent, Proc. Amer. Math. Soc. 87 (1983), no. 1, 179–180.
- [19] P. Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429-472.
- [20] Y. Marumoto, On ribbon 2-knots of 1-fusion, Math. Sem. Notes, Kobe Univ. 5 (1977) 59-68.
- [21] K. Miyazaki, Nonsimple, ribbon fibered knots, Trans. Amer. Math. Soc. 341 (1994), no. 1, 1-44.
- [22] Y. Omae, 4-manifolds which are constructed from knots and shake genus, (in japanese) Master thesis of Osaka University (2011).
- [23] T. Shibuya, Any simple slice knot is a ribbon knot, preprint (2012).
- [24] T. Tanaka, On bridge numbers of composite ribbon knots, J. Knot Theory Ramifications 9 (2000) 423-430.
- [25] T. Yanagawa, On ribbon 2-knots. I. The 3-manifold bounded by the 2-knots, Osaka J. Math. 6 (1969) 447-464.

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502

JAPAN

E-mail address: tetsuya@kurims.kyoto-u.ac.jp

京都大学・数理解析研究所 安部 哲哉

Institute of Mathematics

University of Tsukuba Ibaraki 305-8571

JAPAN

E-mail address: tange@math.tsukuba.ac.jp

筑波大学·数理物質系 丹下 基生