
On the Alexander polynomials of links with symmetry

Yongju Bae and In Sook Lee

Department of Mathematics, Kyungpook National University

1. INTRODUCTION

A symmetrec link $L$ in $\mathbb{R}^{3}$ is a link with a diagram on which a finite group can act. Figure 1
shows a link diagram, on which the Klein 4-group $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ can act. The periodic links of order
$n$ are symmetric links whose acting group is the cyclic group $\mathbb{Z}_{n}.$

FIGURE 1, Symmetric link

It is well-known in topological graph theory that the covering graph is constructed by a volt-
age assignment on the set of edges of the base graph, and that there is one-to-one correspondence
between the set of all embeddings of a graph and the set of all rotation schemes. Also, by lifting
the rotation scheme of a base graph to that of the covering graph, one can get the embedding
of the covering graph, see [16][6].

In this paper, we will introduce a method to construct symmetric links by adapting the graph
theoretical settings to link diagrams, which are 4-valent graphs embedded in S2 with under over
information, and try to calculate the Seifert matrix of such a resulting symmetric link from the
information of the base link and the information of the acting group. Also we will find a Seifert
matrix of link admitting Klein 4-group $(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ action. And by using the Seifert matrix, we
will calculate the Alexander polynomial and the determinant of links admitting Klein 4-group
action. To calculate our invariants, we shall use a new notation.

Definition 1.1. [4] $A(k, k)$ -tangle in $I^{2}$ is defined by a diagram $D\cap I^{2}$ in $I^{2}=\{(x, y)|0\leq$

$x,$ $y\leq 1\}$ , where $D$ is an unoriented link diagram in $\mathbb{R}^{2}$ such that $D\cap\partial I^{2}$ is the set
$\{(\frac{i}{k+1},1), (\frac{i}{k+1},0)|i=1,2, \cdots, k\}$ and the set is disjoint from the vertices of D. $A$ typical
example is the braid group. By a $2k$ -tangle, we mean $a(k, k)$ -tangle.

For a $2k$ -tangle $T,$ $D(T)$ , the denominator, of $T$ is defined from $T$ by applying the closure
operation ae the braid group theory. see Figure 2. In particular, if $T$ is a 4-tangle, the numerator
$N(T)$ of $T$ is defined as the last picture in Figure 2. If an orientation on $D(T)$ is given, it induces
the natural orientation of a resulting symmetric link from the the orientation of $D(T)$ .
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FIGURE 2.

Let $T$ be a 4-tangle. Suppose the denominator $D(T)$ of $T$ is oriented. The orientations of
outer arcs of $T$ are either parallel or opposite as in Figure 3. An oriented 4-tangle $T$ is said to be
$co$ -oriented if the orientations of outer arcs of $T$ are parallel, while $T$ is said to be contra-oriented
if the orientations of outer arcs of $T$ are opposite, see Figure 3.

$T$

$\mapsto$

co-oriented contra-oriented

FIGURE 3

The followings are the main results of the paper.

Theorem 1.2. Let $D(T)\cross\phi(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ be the symmetric link constructed by the base link $D(T)$

and Klein 4-group $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ action. Suppose that $D(T)$ rs oriented 4-tangle with $\phi(e)\neq\neq 1_{G}$

and $\phi(f)\neq 1_{G}$ . Suppose that $\tilde{L}=D(T)X_{\phi}(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ and $L=D(T)$ for some 4-tangle $T.$

(1) If $T$ is $co$ -oriented, then
$\triangle_{\tilde{L}}(t)=2(\triangle_{L})^{3}(t)\{\triangle_{D(T_{+})}(t)+\triangle_{D(T-)}(t)\}.$

(2) If $T$ is contm-oriented, then
$\triangle_{\tilde{L}}(t)=4(\triangle_{L})^{3}(t)\triangle_{N(T)}(t)$ .

In (1), $\tau_{+}$ and $T$-are the 4-tangles defined in Figure 4.

2. PRELIMINARY

In this section, we recall the known results which are related with the calculation of a Seifert
matrix of link and the constuction of a symmetric link, see [1][2][16][4][5][6].

A Seifert surface for an oriented link $L$ in $S^{3}$ is a connected compact oriented surface contained
in $S^{3}$ which has $L$ as its boundary. We will give a brief sketch about the Seifert algorithm.
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For

FIGURE 4.

Let $D$ be a diagram of an oriented link $L$ . In a small neighborhood of each crossing, make
the following local change to the diagram;

Delete the crossing and reconnect the loose ends in the only way compatible with
the orientation.

When this has been done at every crossing, the diagram becomes a set of disjoint simple
loops in the plane. It is a diagram with no crossings. These loops are called Seifert circles. By
attaching a disc to each Seifert circle and by connecting a half-twisted band at the place of each
crossing of $D$ according to the crossing $sign$ , we get a Seifert surface for $L$ . The Seifert graph $\Gamma$

of $D$ is constructed as follows;
Associate a vertex with each Seifert circle and connect two vertices with an edge
if their Seifert circles are connected by a twisted band.

Note that a Seifert graph $\Gamma$ is planar, and that if $D$ is connected, so do $\Gamma$ . Since $\Gamma$ is a
deformation retract of Seifert surface $F$ , their homology groups are isomorphic: $H_{1}(F)\cong H_{1}(\Gamma)$ .
Let $T$ be a spanning tree for $\Gamma$ . For each edge $e\in E(\Gamma)\backslash E(T),$ $T\cup e$ contains a unique simple
closed circuit $T_{e}$ , which represents an 1–cycle in $F$ . The set $\{T_{e}|e\in E(\Gamma)\backslash E(T)\}$ of these
1-cycles is a homology basis for $F$ . For such a circuit $T_{e}$ , let $T_{e}^{+}$ denote the circuit in $S^{3}$ obtained
by lifting slightly along the positive normal direction of $F$ . A Seifert matnx of $L$ associated to
$F$ is the $n\cross n$ matrix $M=(m_{ij})$ defined by

$m_{ij}=lk(T_{e_{i}}, T_{e_{j}}^{+})$ ,

where $E(\Gamma)\backslash E(T)=\{e_{1}, \cdots, e_{n}\}$ . The Seifert matrix of $L$ depends on the Seifert surface $F$

and the choice of generators of $H_{1}(F)$ .
Let $M$ be any Seifert matrix for an oriented link $L$ . The Alexander polynomial $\triangle_{L}(x)\in \mathbb{Z}[x^{\pm}],$

the determinant $\det(L)$ and the signature $\sigma(L)$ of $L$ are defined by

$\triangle_{L}(x) = det(xM-x^{-1}M^{T})$

$\det(L) = |\det(M+M^{T})|$

If $T_{e}\cap T_{f}$ is not an empty set, let $v_{0}$ and $v_{1}$ denote two ends of $T_{e}\cap T_{f}$ . Without loss of
generality, we may assume that the neighborhood of $v_{0}10$oks like Figure 5. In other words, the
cyclic order of edges incident to $v_{0}$ is given by $T_{e}\cap T_{f},$ $T_{e},$ $T_{f}$ with respect to the positive normal
direction of the Seifert surface. Also we may assume that the directions of $T_{e}$ and $T_{f}$ are given
so that $v_{0}$ is the starting point of $T_{e}\cap T_{f}$ . For, if the direction is reversed, one can change the
direction to adapt to our setting so that the resulting linking number changes its $sign.$

Proposition 2.1. [1] For $e,$ $f\in E(\Gamma)\backslash E(T)$ , let $p$ and $q$ denote the numbers of edges in $T_{e}\cap T_{f}$

corresponding to positive crossings and negative crossings, respectively. Suppose that the local
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posilive direction

FIGURE 5

shape of $T_{e}\cap T_{f}$ in $F$ looks like Figure 5. Then,

$lk(T_{e}, T_{f}^{+})=\{$ $- \frac{}{2}(p-q+-\frac{1}{\int}(p-q), 1)$

, if $p+qw$ odd, and
if $p+q$ is even;

$lk(T_{f}, T_{e}^{+})=\{$ $- \frac{\frac{1}{\not\in}}{2}(p-q-1)-(p-q),$

, if $p+q$ is odd.
if $p+q$ is even;

A graph $\Gamma=(V(\Gamma), E(\Gamma))$ consists of a finite set $V(\Gamma)$ of vertices and a finite set $E(\Gamma)$ of
edges. An embedding of $\Gamma$ into a surface $F$ is a continuous injection $i:\Gammaarrow F$ . An embedding
of $\Gamma$ into a surface $F$ is called a 2-cell embedding if each component of $F\backslash i(\Gamma)$ , called a region of
the embedding, is homeomorphic to the standard disc. For a vertex $v_{i}\in V(\Gamma)$ , let $V(v_{i})$ be the
set of all vertices incident to $v_{i}$ , and let $P_{v_{i}}$ : $V(v_{i})arrow V(v_{i})$ be a cyclic permutation on $V(v_{i})$ .
We call $(P_{v_{1}}P_{v_{2}}\cdots, P_{v_{n}})$ Edmond’s rotation scheme.

Proposition 2.2. [6] $A$ rotation scheme $(P_{v_{1}}, P_{v_{2}}, \cdots, P_{v_{n}})$ determine a 2-cell embedding $\Gamma(M)$

of $\Gamma$ in a surface $F$ , such that there $u$ an orientation on $F$ which a cyclic ordering of the edge
$[v_{i}, v_{k}]$ at $i$ in which the immediate successor to $[v_{l}, v_{k}]$ is $[v_{j}, P_{v_{i}}(v_{k})]$ . Conversely, for a given
2-cell embedding $i$ : $\Gammaarrow F$ in a surface $F$ with a given orientation, there is a corresponding
rotation scheme $(P_{v_{1}}, P_{v_{2}}, \cdots, P_{v_{n}})$ determining that embedding.

Let $\Gamma$ be a graph with and $G$ a finite group. Let $D(\Gamma)$ denote the set of all directed edges of $\Gamma.$

and let $\phi$ : $D(\Gamma)arrow G$ be a function, called a voltage assignment, satisfying $\phi(e^{-1})=\phi(e)^{-1}$ for
all $e\in D(\Gamma)$ . We call a triple $(\Gamma, G, \phi)$ a voltage graph. The covering graph $\Gamma\cross\phi G$ for $(\Gamma, G, \phi)$

has the vertex set $V(\Gamma)\cross G$ and each edge $e=uv$ of $\Gamma$ determines the edges $(u, g)(v, g\phi(e))$ of
$\Gamma\cross\phi G$ , for all $g\in G$ . Notice that $\Gamma X_{\phi}G$ is a $|G|$ -fold regular covering space of $\Gamma$ ; in fact, every
regular covering space of $\Gamma$ can be obtained in this manner.

Example. Let $\Gamma$ be a graph as the left of Figure 6 and let $D(\Gamma)$ be the set of directed edges
of $\Gamma$ . Let $\phi$ : $D(\Gamma)arrow \mathbb{Z}_{5}$ be a voltage assignment defined by $(u, u)arrow 1,$ $(u, v)arrow 0,$ $(v, v)arrow 2,$

where $(u, u),$ $(u, v),$ $(v, v)\in D(\Gamma)$ . Then, $\Gamma\cross\phi G$ is the graph in the right of Figure 6.

The number of components of $D\chi_{\phi}G$ can be calculated by the following proposition.

Proposition 2.3. [6] Let $D$ be a connected link diagram. Let $\phi$ : $E(D)arrow G$ be a voltage
assignment. Let $H$ be the subgroup of $G$ generated by ${\rm Im}(\phi)$ . Then the number of components
of $D\cross\phi G$ is

$[G:H]=|G|/|H|.$
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$O^{p}\ddot{\dot{u}}\ldots\ldots\ldots\overline{v}O$

FIGURE 6.

Now consider a voltage graph $(\Gamma, G, \phi)$ which is 2-cell embedded in an orientable surface $S,$

as described algebraically by the rotation scheme $P=(P_{1}, P_{2}, \ldots, P_{n})$ . We define the lift $\tilde{P}$ of
$P$ to $\Gamma\cross\phi G$ as follows: if $P_{v}(v, u)=(v, w)$ , then

$\tilde{P}_{(v,g)}((v, g), (u, g\phi(v, u)))=((v, g), (w, g\phi(v, w)))$ ,

for each $g\in G$ . Since $\tilde{P}=\{\tilde{P}_{(v,g)}|(v, g)\in V(\Gamma\cross\emptyset G)\}$ is a rotation scheme of $\Gamma\cross\phi G$ , it
determines the natural embedding of $\Gamma\cross\phi G$ into a surface $\tilde{S}.$

For a region $R$ of the embedding of $\Gamma$ on $S$ induced by $P$ , let $|R|_{\phi}$ be the order of $\phi(\partial R)=$

$\phi(e_{1})\phi(e_{2})\cdots\phi(e_{n})$ in $G$ , where $\partial R=e_{1},$ $e_{2},$ $\ldots,$
$e_{n}$ is the ordered boundary of $R$ . Since $\phi(\partial R)$

is unique up to inverses and conjugacy, $|R|_{\phi}$ is independent of the orientation of $R$ and of the
initial vertex of $w$ . The following is well-known in topological graph theory, from which one can
calculate the genus of the embedding surface $\tilde{S}.$

Proposition 2.4. [6] Let $(\Gamma, G, \phi)$ be a voltage graph with rotation scheme $P$ and $\tilde{P}$ which
determine a 2-cell embedding of $\Gamma$ and $\Gamma\cross\phi G$ on the orientable surfaces $S$ and $\tilde{S}$ , respectively.
Then, there exists a bmnched covereng $\rho$ : $\tilde{S}arrow S$ such that

(1) $\rho^{-1}(\Gamma)=\Gamma\cross\phi G.$

(2) $\rho|$ : $\Gamma X_{\phi}Garrow\Gamma$ is the graph covemng map.
(3) If $b$ is a bmnch point of multiplicity $m$ , then there exists a face $R$ in $\Gamma$ embedded in $S$

such that $b\in Int(R)$ and $|R|_{\phi}=m.$

(4) If $R$ is a k-gon in $\Gamma$ embedded in $S$ , then $\rho^{-1}(R)$ has $\frac{|G|}{|R|_{\phi}}$ components, each of which is

a $k|R|_{\phi}-gon$ region in $\Gamma\cross\phi Garrow\tilde{S}.$

Let $D$ be a diagram of $L$ embedded in $\mathbb{R}^{2}\subset S^{2}$ , which can be seen as a 4-valent graph with
under/over information at each vertex. Let $V,$ $E$ and $F$ denote the numbers of vertices, edges
and faces of the embedded 4-valent graph $D$ , respectively. Let $G$ be a finite group of order $n$

and $\phi$ : $\vec{E}(D)arrow G$ be a voltage $assignment\sim$ on a link diagram $D$ , where $E(D)$ is the set of
directed edges of $D$ . Let $D\cross\phi G\hookrightarrow S$ denote the embedding of $D\cross\phi G$ determined by the lifted
rotation scheme with $\tilde{V}$ vertices, $\tilde{E}$ edges and $\tilde{F}$ faces. If the embedding surface $\tilde{S}$ is the sphere
$S^{2}$ , one can obtain a symmetric link $D\cross\phi G$ by recovering the under/over information at each

vertex according to the under/over information of the corresponding vertex of $D$ . If $\tilde{S}$ is not the
sphere $S^{2}$ , one may see the embedding $D\cross\phi G\hookrightarrow\tilde{S}$ as a kind of virtual symmetric link.

We can calculate the genus $\tilde{g}$ of $\tilde{S}$ , by using the following propositions.
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Proposition 2.5. [1] Let $D$ be a connected link diagmm. Let $\phi$ : $\vec{E}(D)arrow G$ be a voltage
assignment. Let $H$ be the subgroup of $G$ generated by ${\rm Im}(\phi)$ . The genus $\tilde{g}$ of $\tilde{S}$ is given by

$\tilde{g}=|G|(\frac{1}{|H|}+\frac{1}{2}\sum_{R}(1-\frac{1}{|R|_{\phi}})-1)$ .

In particular, if $\tilde{S}$ is connected, then

$\tilde{g}=1-|G|+\frac{|G|}{2}\sum_{R}(1-\frac{1}{|R|_{\phi}})$ .

Proposition 2.6. [1] Suppose that $\phi$ : $\vec{E}(D)arrow G$ be a voltage assignment such that there are
exactly two edges $e$ and $f$ with non-trivial voltages $\phi(e)=a$ and $\phi(f)=b$ , and that $e$ and $f$ are
on the boundary of the same region, see Figure 7. Then

(1) if $b=a^{-1}\in G$ , then $\tilde{S}$ rs the disjoint union of $\frac{|G|}{|a|}$ copies of $S^{2}.$

(2) if $G=\mathbb{Z}_{p}$ ($p$ is prime) and $b\neq a^{-1}$ , then $\tilde{S}$ is the surface of genus $\frac{p-1}{2}.$

(3) if every element of $G$ is of order 2, then $\tilde{S}$ is a disjoint union of suitable copies of $S^{2}.$

FIGURE 7. redraw

In this paper, we will find a Seifert matrix of link admitting Klein 4-group $(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ action.
Since every element of $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ is order 2, $\tilde{S}$ is a disjoint union of suitable copies of $S^{2}$ by
Theorem 2.6. If $\phi(e)$ or $\phi(f)$ is $1_{G}$ in Figure 7, then one can calculate the Alexander polynomial
of $D\cross\phi(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ by using Proposition 2.3 and Proposition 2.6 in Figure??,

From now on, we assume that there exist two edges $e$ and $f$ in $D$ such that $\phi(e)\neq 1_{G},$

$\phi(f)\neq 1_{G}$ and $\phi(g)=1_{G}$ for every edge $g\neq e,$ $f$ and $G=\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ . If $\phi(e)=\phi(f)\neq 1_{G},$

then $D\cross\phi G$ has 2-components with $C_{1}=C_{2}\cong DX_{\phi}\mathbb{Z}_{2}$ . Then from Proposition 2.3 and
Proposition 2.5, one can know that $\triangle_{\tilde{L}}=0$ and $\det(\tilde{L})=0.$

3. PROOF OF THE MAIN THEOREM

Now we shall introduce formula for the determinant of matrix. This formula is the key tool
for the calculation of our main theorem in the paper.

Lemma 3.1. Let $A,$ $B,$ $C,$ $D$ and $E$ be $m\cross m,$ $m\cross 1,1\cross m,$ $1\cross 1$ and $1\cross 1$ matrices, respectively.
Then

$\det(\begin{array}{lllll}A 0 0 0 B0 A 0 0 B0 0 A 0 B0 0 0 A BC C C C 2(D+E)\end{array})=2(\det A)^{3}\{\det(\begin{array}{ll}A BC D\end{array})+\det(\begin{array}{ll}A BC E\end{array})\},$
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where $0$ denotes the zero-matmx.

Proof.

$\det(\begin{array}{lllll}A 0 0 0 B0 A 0 0 B0 0 A 0 B0 0 0 A BC C C C 2(D+E)\end{array})$

$(1)=$

$\det(\begin{array}{lllll}A 0 0 0 B0 A 0 0 2B0 0 A 0 B0 0 0 A B0 C C C 2(D+E)\end{array})$

$= \det(A)\det(\begin{array}{llll}A 0 |0 2B0 A |0 B \frac{00A|B}{CCC|2(D+E)} \end{array})$

$= \det(A)^{3}\det(\frac{A|4B}{C|2(D+E)})$

(2)

$= 2 \det(A)^{3}\det(\frac{A|2B}{C|(D+E)})$

$= 2\det(A)^{3}\{\det(\begin{array}{ll}A BC D\end{array})+\det(\begin{array}{ll}A BC E\end{array})\}$

The reason for the identities (1)(2) are;
(1) Add $(-1)$ ( $the$ second column) to the first column and then, add the first row to the

second row.
(2) Apply the method (1) to the matrix repeatedly.

$\square$

From now on, we assume that $T$ is a 4-tangle whose denominator $D(T)$ is oriented. If $T$ is
co-oriented, the two outer arcs of $D(T)$ have to be contained in different Seifert circles (CASE
$I)$ , see the first picture in Figure 8, while if $T$ is conta-oriented, the two outer arcs of $D(T)$ can
be contained in either the same Seifert circle (CASE II) or different Seifert circles (CASE III),
see Figure 8.

CASE I CASE II CASE III

FIGURE 8

CASE I. $T$ is $co$-oriented.
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For the convenience of readers, we may apply the Reidemeister move II between the the left
two outer strands and the right two right strands of $T$ to get a new tangle $T’$ so that Seifert
circles at the left and the right are 2-gons, and hence the corresponding vertices of the Seifert
graph have degree 2, respectively, see Figure 9. Note that $D(T’),$ $D(T_{+}’),$ $D(T_{-}’)$ and $D(\tilde{L}’)$ are
ambient isotopic to $D(T),$ $D(T_{+}),$ $D(T_{-})$ and $D(\tilde{L})$ , respectively.

$\Omega_{2}$

FIGURE 9

The Seifert graphs $\Gamma_{D(T)},$ $\Gamma_{D(T_{+})}$ and $\Gamma_{D(T-)}$ of $D(T)D(T_{+})$ and $D(T_{-})$ are of the form
in Figure 10, in which spanning trees $\tau_{D(T)},$ $\tau_{D(T_{+})}$ and $\tau_{D(T_{-})}$ of $\Gamma_{D(T)}\Gamma_{D(T_{+})}$ and $\Gamma_{D(T_{-})}$

are given by dotted edges, respectively. Notice that $r_{D(\tau_{+})}$ and $\Gamma_{D(T-)}$ are obtained from
$\Gamma_{D(T)}$ by connecting the left vertex to the right. If $E(\Gamma_{D(T’)})\backslash E(\tau_{D(T’)})=\{e_{1}, \cdots, e_{k}\}$ , then
$E(\Gamma_{D(T_{+}’)})\backslash E(\tau_{D(T_{+}’)})=\{e_{1}, \cdots, e_{k}\}\cup\{d\}$ and $E(\Gamma_{D(T_{-}’)})\backslash E(\tau_{D(T_{-}’)})=\{e_{1}, \cdots, e_{k}\}\cup\{d_{*}\},$

where $d$ and $d_{*}$ are the long (newly appeared) edge of $\Gamma_{D(T)}$ given in Figure 10,

$D(T)$

FIGURE 10

The corresponding Seifert matrix $M_{D(T)}=[m_{ij}(D(T))]$ is a $k\cross k$ matrix, while the Seifert
matrix $M_{D(T_{+})}=[m_{ij}(D(T))]$ and $M_{D(T_{-})}=[m_{ij}(D(T))]$ are $(k+1)\cross(k+1)$ matrices.
Furthermore, the linking number between $T_{e_{i}}$ and $T_{e_{j}}^{+}$ in $D(T)$ is equal to the linking num-
ber between $T_{e_{i}}$ and $T_{e_{j}}^{+}$ in $D(T_{+})$ and $D(T_{-})$ , by Proposition 2.1. Indeed, $m_{ij}(D(T))=$

$m_{ij}(D(T_{+}))=m_{ij}(D(T_{-}))$ for all $i,j=1,2,$ $\cdots,$
$k$ . Furthermore, $lk(T_{e_{i}}, T_{d}^{+})$ and $lk(T_{d}, T_{e}^{+}k))$

is equal to $lk(T_{e_{i}}, T_{d_{*}}^{+})$ and $lk(T_{d_{*}}, T_{e_{k}}^{+})$ for $i=1,2,$ $\cdots,$
$k$ , respectively. To calculate self linking

numbers of $d$ and $d_{*}$ , let $p$ and $q$ denote the number of edges between the vertex $u$ and $v$ in
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Figure 10 corresponding positive crossings and negative crossings, respectively. Since the two
outer arcs of $D(T)$ have the same orientation, $p+q$ is odd. Hence $T_{d}$ consists of $p+1$ positive
crossings and $q$ negative crossings, while $T_{d_{*}}$ consists of $p$ positive crossings and $q+1$ negative
crossings by the definition of $D(T_{+})$ and $(D(T_{-})$ , respectively. Hence by Proposition 2.1, we
obtain $lk(T_{d}, T_{d}^{+})=- \frac{1}{2}(p+1-q)\equiv D$ and $lk(T_{d_{*}}, T_{d_{*}}^{+})=- \frac{1}{2}(p-q-1)\equiv E$ . Hence the Seifert
matrix of $D(T)$ is given by

$M_{D(\tau_{+})}=$ $(M_{D(T)}c$ $DB)$ and $M_{D(T_{-})}=(^{M_{D(T)}}C$ $EB)$ ,

where $B=(lk(T_{e_{1}}, T_{d}^{+}), \cdots, lk(T_{e_{k}}, T_{d}^{+}))^{T},$ $C=(lk(T_{d}, T_{e_{1}}^{+}), \cdots, lk(T_{d}, T_{e_{k}}^{+})),$ $D=lk(T_{d}, T_{d}^{+})$

and $E=lk(T_{d_{r}}, T_{d_{*}}^{+})$ .

FIGURE 11. Seifert graph of $D(L)$

From now on, we will try to find a Seifert matrix $M_{D(\tilde{L})}$ . Notice that since $\Gamma_{D(\tau_{+})}=\Gamma_{D(\tau_{-})},$

$\tau_{D(\tau_{+})}=\tau_{D(T_{-})}$ , and then $\tau_{D(\tau_{+})_{\sim}}\cup\{d\}=\tau_{D(T_{-})}\cup\{d_{*}\}.$

The Seifert graph $\Gamma_{D(\tilde{L})}$ of $D(L)$ consists of 4 copies of $\Gamma_{D(T)}$ whose left edge and right edge
are used to connect the copies of $\Gamma_{D(T)}$ , as in Figure 11. Since $T$ is connected, the union of 4
copies of $\tau_{D(\tau_{+})}\cup\{d\}$ and $\tau_{D(T_{-})}\cup\{d_{*}\}$ have 3-closed circuits which are the same, as in Figure

11. Hence we get the following spanning tree $\tau_{D(\tilde{L})}$ of $D(\tilde{L})$ .

$E( \Gamma_{D(\tilde{L})})\backslash E(\tau(D(\tilde{L})))=\bigcup_{p=1}^{4}\{e_{1}^{p}, \cdots, e_{k}^{p}\}\cup\{d_{2}, d_{3}, d_{4}\},$

where $\{e_{1}^{p}, \cdots, e_{k}^{p}\}$ is the corresponding p-th copy of $\{e_{1}, \cdots, e_{k}\}$ . Since the linking number
between $T_{e_{i}^{p}}$ and $T_{e_{j}^{p}}^{+}$ is equal to the linking number between $T_{e_{i}}$ and $T_{e_{j}}^{+}$ in $D(T_{+})$ , we have,

for all $i,j=1,2,$ $\cdots,$
$k$ , and $p=1,2,3,4,$ $m_{i^{p}j^{p}}(D(\tilde{L}))=m_{ij}(D(T))$ , where $m_{i^{p}j^{p}}(D(\tilde{L}))=$

$lk(T_{e^{p}}. ’ T_{e_{j}^{q}}^{+})$ . If $p\neq q$ , since $T_{e_{l}^{p}}$ and $T_{e_{j}^{q}}$ do not intersect, by Proposition 2.1, $m_{i^{p}j^{q}}(D(\tilde{L}))=0$

for all $i,$ $j=1,2,$ $\cdots,$
$k$ . Hence,

$m_{i^{p}j^{q}}(D(\tilde{L}))=\{\begin{array}{ll}m_{ij}(D(T)) , if p=q;0, if p\neq q.\end{array}$
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Notice that by the construction of $D(\tilde{L}),$ $d$ and $d_{*}$ correspond to the same edge in $D(\tilde{L})$ . Let
$d_{p}$ be the corresponding $p-$ th copy of $d$ for all $p=1,2,3,4$ in $D(\tilde{L})$ .

Since $T_{e_{i}^{p}}\cap T_{d}*$ lies in the just $1\succ th$ copy of $T_{e_{i}}\cap T_{d}$ , we have $lk(T_{e_{i}^{p}}, T_{d^{*}}^{+})=lk(T_{e_{i}}, T_{d}^{+})=B$

and $lk(T_{d^{*}}, T_{e^{p}}^{+})=lk(T_{d}, T_{e_{i}}^{+})=C$ for all $p=1,2,3,4$ . Finally, since $T$ is connected, the genera-
tor $T_{d}*$ runs through 2 copies, $T_{d_{p}}$ consists of $2p$-positive crossings and $2q$ -negative crossings.
Hence by Theorem??, $lk(T_{d^{*}}, T_{d^{*}}^{+})=D+E.$

Hence we get the following lemma.

Lemma 3.2. Let $T$ be a 4-tangle whose denominator $D(T)$ is oreented. If $T$ is $co$ -oriented,
then there exist Seifert matrices $M_{D(T)},$ $M_{D(T_{+})},$ $M_{D(T-)}$ and $M_{\overline{L}}$ of $D(T),$ $D(T_{+}),$ $D(T_{-})$ and
$D(T)x_{\phi}(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ , respectively, such that

$M_{D(\tau_{+})} = (^{M_{D(T)}}C DB)$ ,

$M_{D(T_{-})}$ $=$ $(^{M_{D(T)}}C$ $EB)$ and

$M_{\tilde{L}}=(_{\frac{M_{D(T)}000|B000M_{D(T)}|B00M_{D(T)}0|B0M_{D(T)}00|B}{CCCC|2(D+E)}})$ ,

where $B$ is a row vector, $C$ is a column vector, $E=D+1.$

CASE II. $T$ is contra-oriented and the two outer arcs of $D(T)$ are $co$ntained in the same Seifert
circle.
By applying the Reidemeister move II between the top strands to get a new tangle $T’$ so that
the Seifert circle at the top is a 2-gon, and hence the corresponding vertex of the Seifert graph
has degree 2. See Figure 3. Note that $D(T’),$ $N(T’)$ and $D(\tilde{L}’)$ are ambient isotopic to $D(T)$ ,
$N(T)$ and $D(\tilde{L})$ , respectively.

$\Omega_{2}$

The Seifert graphs $\Gamma_{D(T)}$ and $\Gamma_{N(T)}$ of $D(T)$ and $N(T)$ are of the form in Figure 3, in which
spanning trees $\tau_{D(T)}$ and $\tau_{N(T)}$ of $\Gamma_{D(T)}$ and $\Gamma_{N(T)}$ are given by dotted edges, respectively.
Notice that $\Gamma_{D(T)}$ is obtained from $\Gamma_{N(T)}$ by connecting the top vertex to the bottom vertex.

If $E(\Gamma_{N(T’)})\backslash E(\tau_{N(T’)})=\{e_{1}, \cdots, e_{k}\}$ , then $E(\Gamma_{D(T’)})\backslash E(\tau_{D(T’)})=\{e_{1}, \cdots, e_{k}\}\cup\{d\}$, where
$d$ is the long (newly appeared) edge of $\Gamma_{N(T)}$ given in Figure 3.

The corresponding Seifert matrix $M_{N(T)}=[m_{ij}(N(T))]$ is a $k\cross k$ matrix, while the Seifert
matrix $M_{D(T)}=[m_{ij}(D(T))]$ is $a(k+1)\cross(k+1)$ matrix. Furthermore, the linking number

91



$D(T)$ $N(T)$

between $T_{e_{i}}$ and $T_{e_{j}}^{+}$ in $N(T)$ is equal to the linking number between $T_{e_{i}}$ and $T_{e_{j}}^{+}$ in $D(T)$ , by
Theorem 2.1. Indeed, $m_{ij}(D(T))=m_{ij}(N(T))$ for all $i,j=1,2,$ $\cdots,$

$k$ . Hence the Seifert matrix
of $D(T)$ is given by

$M_{D(T)}= (^{M_{N(T)}}C DB)$ ,

where $B=(lk(T_{e_{1}}, T_{d}^{+}), \cdots, lk(T_{e}k, T_{d}^{+}))^{T},$ $C=(lk(T_{d}, T_{e_{1}}^{+}), \cdots, lk(T_{d}, T_{e_{k}}^{+}))$ and $D=lk(T_{d}, T_{d}^{+})$ .

FIGURE 12. Seifert graph of $D(L)$

From now on, we will try to find a Seifert matrix $M_{\tilde{L}}$ . The Seifert graph $\Gamma_{D(\tilde{L})}$ of $D(L)$ consists
of 4 copies of $\Gamma_{N(T)}$ whose top edge is used to connect the copies of $\Gamma_{N(T)}$ , as in Figure 12.

92



Since $T$ is connected, the union of $n$ copies of $\tau_{N(T)}\cup\{d\}$ has 4-closed circuits which are the
same, as in Figure12. Hence we get a spanning tree

$\tau_{D(\overline{L})}$ of $D(\tilde{L})$ . Indeed,

$E( \Gamma_{D(\tilde{L})})\backslash E(\mathcal{T}(D(\tilde{L})))=\bigcup_{p=1\{e_{1}^{p},\cdots,e_{k}^{p}\}\cup\{d_{2},d_{3)}d_{4}\}}^{4},$

where $\{e_{1}^{p}, \cdots, e_{k}^{p}\}$ is the corresponding p-th copy of $\{e_{1}, \cdots, e_{k}\}.$

Since the linking number between $T_{e_{i}^{p}}$ and $T_{e_{j}^{p}}^{+}$ is equal to the linking number between $T_{e_{i}}$

and $T_{e_{j}}^{+}$ in $N(T)$ , we have, for all $i,j=1,2,$ $\cdots,$
$k$ , and $p=1\cdots,$ $4,$ $m_{i^{p}j^{p}}(D(\tilde{L}))=m_{ij}(D(T))$ ,

where $m_{i^{p}j^{p}}(D(\tilde{L}))=lk(T_{e_{i}^{p}}, T_{e_{j}^{q}}^{+})$ . If $p\neq q$ , since $T_{e_{i}^{p}}$ and $T_{e_{j}^{q}}$ do not intersect, by Theorem 2.1,
$m_{i^{p}j^{q}}(D(\tilde{L}))=0$ for all $i,$ $j=1,2,$ $\cdots,$

$k$ . Hence,

$m_{i^{p}j^{q}}(D(\tilde{L}))=\{\begin{array}{ll}m_{ij}(N(T)) , if p=q;0, if p\neq q.\end{array}$

On the other hand, since $d_{p}$ lies in the lst copy and pth copy of $T_{e_{i}}\cap T_{d_{p}}$ , we have $lk(T_{e_{\iota’}^{1}}, T_{d_{2}}^{+})=$

$lk(T_{e_{i}}, T_{d}^{+})=B,$
$lk(T_{d_{2}}, T_{e_{i}^{1}}^{+})=lk(T_{d}, T_{e_{i}}^{+})=\pm C,$ $lk(T_{e_{i}^{1}}, T_{d_{4}}^{+})=lk(T_{e_{i}}, T_{d}^{+})=B,$ $lk(T_{d_{4}}, T_{e_{i}^{1}}^{+})=$

$lk(T_{d}, T_{e_{i}}^{+})=\pm C$ , and $lk(T_{e_{i}^{1}}, T_{d_{3}}^{+})=-lk(T_{e_{i}}, T_{d}^{+})=-B$ and $lk(T_{d_{3}}, T_{e^{1}}^{+})=-lk(T_{d}, T_{e_{l}}^{+})=-C.$

Finally, since $T$ is connected, the generator $T_{d_{p}}$ runs through 2 copies, in each of which self linking
number is equal to $D=lk(T_{d}, T_{d}^{+})$ for all $p=2,3,4$ . Hence, $lk(T_{d_{p}}, T_{d}^{+})=2\cdot lk(T_{d_{p}}, T_{d}^{+})=2D$

for all $p=2,3,$ $\cdots,$ $n$ . Furthermore, since generators $T_{d_{p}}$ and $T_{d_{q}}$ mee$t^{}$ in the just lst $c^{p}opy$ and
its linking number is equal to $D=lk(T_{d}, T_{d}^{+})$ .

Hence we get the following lemma.

Lemma 3.3. Let $T$ be a 4-tangle whose denominator $D(T)$ is oriented. If $T$ is contra-oriented
and the two outer arcs of $D(T)$ is contained in the same Seifert circle, then there exist Seifert
matnces $M_{D(T)},$ $M_{N(T)}$ and $M_{\tilde{L}}$ of $D(T),$ $N(T)$ and $D(T)\cross\phi(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ , respectively, such that

$M_{D(T)}$ $=$ $(^{M_{N(T)}}C$ $DB)$ and

$M_{\tilde{L}} = ( \frac{M_{N(T)}000|BBB000M_{N(T)}|00-B00M_{N(T)}0|0B00M_{N(T)}00|B00}{C00-C|DD2DC0C0|D2DDCC00|2DDD}1$

where $B$ is a row vector, $C$ is a column vector.

CASE III. $T$ is contra-oriented and the two outer arcs of $D(T)$ are contained in different Seifert
circles.

As the CASE I, by applying the Reidemeister move II between the the left two outer strands
and the right outer strands of $T$ to get a new tangle $T’$ so that Seifert circles at the left and
the right are 2-gons, and hence the corresponding vertices of the Seifert graph have degree 2,
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respectively, see Figure 13. Note that $D(T’),$ $N(T’)$ and $D(\tilde{L}’)$ are ambient isotopic to $D(T)$ ,
$N(T)$ and $D(\tilde{L})$ , respectively.

The Seifert graphs $\Gamma_{D(T)}$ and $\Gamma_{N(T)}$ of $D(T)$ and $N(T)$ are of the form in Figure 3, in which
spanning trees $\tau_{D(T)}$ and $\tau_{N(T)}$ of $\Gamma_{D(T)}$ and $\Gamma_{N(T)}$ are given by dotted edges, respectively.
Notice that $\Gamma_{N(T)}$ is obtained from $\Gamma_{D(T)}$ by connecting the left vertex to the right vertex.

$D(T) N(T)$

If $E(\Gamma_{D(T’)})\backslash E(\tau_{D(T’)})=\{e_{1}, \cdots, e_{k}\}$ , then $E(\Gamma_{N(T’)})\backslash E(\tau_{N(T’)})=\{e_{1}, \cdots, e_{k}\}\cup\{d\}$ , where
$d$ is the long (newly appeared) edge of $\Gamma_{D(T)}$ given in Figure 3.

The corresponding Seifert matrix $M_{D(T)}=[m_{ij}(D(T))]$ is a $k\cross k$ matrix, while the Seifert
matrix $M_{N(T)}=[m_{ij}(D(T))]$ is $a(k+1)\cross(k+1)$ matrix. Furthermore, the linking number
between $T_{e_{i}}$ and $T_{e_{j}}^{+}$ in $D(T)$ is the same with the linking number between $T_{e_{i}}$ and $T_{e_{j}}^{+}$ in $N(T)$ ,
by Proposition 2.1. Indeed, $m_{ij}(D(T))=m_{ij}(N(T))$ for all $i,j=1,2,$ $\cdots,$

$k$ . Hence the Seifert
matrix of $D(T)$ is given by

$M_{N(T)}= (M_{D(T)}c DB)$ ,

where $B=(lk(T_{e_{1}}, T_{d}^{+}), \cdots, lk(T_{e_{k}}, T_{d}^{+}))^{T},$ $C=(lk(T_{d}, T_{e_{1}}^{+}), \cdots, lk(T_{d}, T_{e_{k}}^{+}))$ and $D=lk(T_{d}, T_{d}^{+})$ .
From now on, we will try to find a Seifert matrix $M_{\overline{L}}$ . The Seifert graph $\Gamma_{D(\overline{L})}$ of $D(L)$

consists of 4 copies of $\Gamma_{D(T)}$ whose left edge and right edge are used to connect the copies of
$\Gamma_{D(T)}$ , as in Figure 14.

Since $T$ is connected, the union of 4 copies of $\tau_{D(T)}\cup\{d\}$ has a closed circuit which is the
longest circle in Figure 14. By removing one of the 3 copies of the edge $d$ , e.g. $d^{*}$ in Figure 14,
we get a spanning tree $\tau_{D(\overline{L})}$

of $D(\tilde{L})$ . Indeed,

$E( \Gamma_{\tilde{L}})\backslash E(\tau(D(\tilde{L})))=\bigcup_{p=1}^{4}\{e_{1}^{p}, \cdots, e_{k}^{p}\}\cup\{d^{*}\},$

where $\{e_{1}^{p}, \cdots, e_{k}^{p}\}$ is the corresponding p-th copy of $\{e_{1}, \cdots, e_{k}\}.$
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FIGURE 14. Seifert graph of $D(L)$

Since the linking number between $T_{e_{i}^{p}}$ and $T_{e_{j}^{p}}^{+}$ is equal to the linking number between $T_{e_{i}}$

and $T_{e_{j}}^{+}$ in $D(T)$ , we have, for all $i,j=1,2,$ $\cdots,$
$k$ , and $p=1,2,3,4,$ $m_{i^{p}j^{p}}(D(\tilde{L}))=m_{ij}(D(T))$ ,

where $m_{i^{p}j^{p}}(D(\tilde{L}))=lk(T_{e_{i}^{p}}, T_{e_{j}^{q}}^{+})$ . If $p\neq q$ , since $T_{e_{\iota’}^{p}}$ and $T_{e_{j}^{q}}$ do not intersect, by Theorem 2.1,
$m_{ij^{q}}p(D(\tilde{L}))=0$ for all $i,j=1,2,$ $\cdots,$

$k$ . Hence,

$m_{i^{p}j^{q}}(D(\tilde{L}))=\{\begin{array}{ll}m_{ij}(D(T)) , if p=q;0, if p\neq q.\end{array}$

On the other hand, since $T_{e_{i}^{p}}\cap T_{d^{*}}$ lies in the just p-th copy of $T_{e_{i}}\cap T_{d}$ , we have $lk(T_{e_{t}^{1}}, T_{d^{*}}^{+})=$

$lk(T_{e_{i}}, T_{d}^{+})=B,$ $lk(T_{d^{*}}, T_{e_{i}^{1}}^{+})=lk(T_{d}, T_{e_{i}}^{+})=C,$ $lk(T_{e_{i}}{}_{2}T_{d^{*}}^{+})=-lk(T_{e_{i}}, T_{d}^{+})=-B,$ $lk(T_{d^{*}}, T_{e_{i}^{2}}^{+})=$

$-lk(T_{d}, T_{e_{i}}^{+})=-C,$ $lk(T_{e_{i}^{3}}, T_{d^{*}}^{+})=-lk(T_{e_{i}}, T_{d}^{+})=-B,$ $lk(T_{d}*, T_{e_{i}^{3}}^{+})=-lk(T_{d}, T_{e_{i}}^{+})=-C$, and
$lk(T_{e_{i}^{4}}, T_{d^{*}}^{+})=lk(T_{e_{i}}, T_{d}^{+})=B,$ $lk(T_{d}*, T_{e_{\iota’}^{4}}^{+})=lk(T_{d}, T_{e}^{+}i)=C$. We assume that the orientation
of $d^{*}$ is depicted as in Figure 14. Then we know the signs of $lk(T_{e_{i}}, T_{d}^{+})$ and $lk(T_{d}, T_{e_{i}}^{+})$ , respec-
tively. Finally, since $T$ is connected, the generator $T_{d^{*}}$ runs through all copies, in each of which
its self linking number is equal to $D=lk(T_{d}, T_{d}^{+})$ . Hence, $lk(T_{d}*, T_{d^{*}}^{+})=4\cdot lk(T_{d)}T_{d}^{+})=4D.$

Hence we get the following lemma.

Lemma 3.4. Let $T$ be a 4-tangle whose denominator $D(T)$ is oriented. If $T$ is contra-oriented
and the two outer arcs of $D(T)$ are contained in different Seifert circles, then there exist Seifert
matrices $M_{D(T)},$ $M_{N(T)}$ and $M_{\tilde{L}}$ of $D(T),$ $N(T)$ and $D(T)\cross\phi(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ , respectively, such that

$M_{N(T)}$ $=$ $(^{M_{D(T)}}C$ $DB)$ and

$M_{D(\tilde{L})} = (\begin{array}{lllll}M_{D(T)} 0 0 |0 B \frac{0M_{D(T)}00|-B00M_{D(T)}0|-B000M_{D(T)}|B}{C-C-CC|4D} \end{array})$
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where $B$ is a row vector, $C$ is a column vector.

Theorem 3.5. Let $D(T)\cross\phi(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ be the symmetrec link constructed by the base link $D(T)$

and Klein 4-group $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ action. Suppose that $D(T)$ is oriented 4-tangle with $\phi(e)\neq\neq 1_{G}$

and $\phi(f)\neq 1_{G}$ . Suppose that $\tilde{L}=D(T)\cross\phi(\mathbb{Z}_{2}\oplus \mathbb{Z}_{2})$ and $L=D(T)$ for some 4-tangle $T.$

(1) If $T$ is $co$ -oriented, then

$\triangle_{\overline{L}}(t)=2(\triangle_{L})^{3}(t)\{\triangle_{D(T_{+})}(t)+\triangle_{D(T_{-})}(t)\}.$

(2) If $T$ is contm-oriented, then

$\Delta_{\tilde{L}}(t)=4(\triangle_{L})^{3}(t)\triangle_{N(T)}(t)$ .

In (1), $T_{+}$ and $T_{-}$ are the 4-tangles defined in Fiure 4.

Proof. If $T$ is co-oriented (CASE I), we have, by Lemma 3.2 and Lemma 3.1,

$\Delta_{D(\tau_{+})} = \det (^{xM_{D(T)}-x^{-1}M_{D(T)^{T}}}xC-x^{-1}B^{T} xB-x^{-1}C^{T}(x-x^{-1})D)$ ,

$\triangle_{D(T-)}$ $=$ $\det$ $(^{xM_{D(T)}-x^{-1}M_{D(T)^{T}}}xC-x^{-1}B^{T}$ $xB-x^{-1}C^{T}(x-x^{-1})E)$ , and

$\triangle_{\tilde{L}} = \det(^{xM_{D(T)}-x^{-1}M_{D(T)^{T}}}xC-x^{-1}B^{T}0 xM_{D(T)}-x^{-1}M_{D(T)^{T}}xC-x^{-1}B^{T}0 2x(D+E)-2x^{-1}(D+E)xB-x^{-1}C^{T}xB-x^{-1}C^{T)}$

$=2\det(xM_{D(T)}-x^{-1}M_{D(T)^{T}})^{3}\cross\{\det(^{xM_{D(T)}-x^{-1}M_{D(T)^{T}}}xC-x^{-1}B^{T} xB-x^{-1}C^{T}(x-x^{-1})D)$

$+\det (^{xM_{D(T)}-x^{-1}M_{D(T)^{T}}}xC-x^{-1}B^{T} xB-x^{-1}C^{T}(x-x^{-1})E)\}$

$=2(\triangle_{D(T)})^{3}\{\triangle_{D(\tau_{+})}+\triangle_{D(T_{-})}\}.$

If $T$ is contra-oriented and the two outer arcs of $D(T)$ are contained in the same Seifert circle
(CASE II), by Lemma 3.3 and Lemma??,by lemma 3.3 in [3],

$\triangle_{D(T)}=\det$ $(^{xM_{N(T)}-x^{-1}M_{N(T)^{T}}}xC-x^{-1}B^{T}$ $xB-x^{-1}C^{T}(x-x^{-1})D)$ , and

$\triangle_{\tilde{L}}$

$=\det(x-x0^{-1}c-x^{-1}$

$xM_{N(T)}-xM_{N(T)^{T}}-(x+B^{T})0^{-1}$

$xB-x^{-1}C^{T}2(x-x^{-1})D(x-x^{-1})D(x-x^{-1})D0$ $-(xB-x^{-1}C^{T})xB-x^{-1}C^{T}2(x-x^{-1})D(x-x^{-1})D(x-x^{-1})D)$

$=4\det(xM_{N(T)}-x^{-1}M_{N(T)^{T}})\det(^{xM_{N(T)}-x^{-1}M_{N(T)^{T}}}xC-x^{-1}B^{T}$ $xB-x^{-1}C^{T}(x-x^{-1})D)^{3}$

$=4\triangle_{N(T)}(\triangle_{D(T)})^{3}.$
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If $T$ is contra-oriented and the two outer arcs of $D(T)$ are contained in different Seifert circles
(CASE III), we have, by Lemma 3.4 and Lemma 3.5 [2],

$\triangle_{N(T)}$ $=$ $\det$ $(^{xM_{D(T)}-x^{-1}M_{D(T)^{T}}}xC-x^{-1}B^{T}$ $xB-x^{-1}C^{T}(x-x^{-1})D)$ , and

$\triangle_{\tilde{L}} = \det(0 xM_{D(T)}-x^{-1}M_{D(T)^{T}}xC-x^{-1}B^{T}0 xB-x^{-1}C^{T)}xB-x^{-1}C^{T}4(x-x^{-1})D$

$= 4\det(xM_{D(T)}-x^{-1}M_{D(T)^{T}})^{3}\det(^{xM_{D(T)}-x^{-1}M_{D(T)^{T}}}xC-x^{-1}B^{T} xB-x^{-1}C^{T}(x-x^{-1})D)$

$= 4(\triangle_{D(T)})^{s_{\triangle_{N(T)}}}.$

$\square$
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