THE REAL REPRESENTATION ASSOCIATED WITH COPRIME NORMAL SUBGROUPS

Masaharu Morimoto
Graduate School of Natural Science and Technology, Okayama University

Dedicated to Professor K. Shimakawa on his 60th birthday

Abstract. Let G be a finite group. In this article, we introduce a mutually coprime family of normal subgroups of G and the real G-module associated with the family, and we report interesting results on the real G-module.

1. PRELIMINARY

Throughout this paper, G is a finite group. We mean by a real G-module a real G-representation space of finite dimension. Let $S(G)$ denote the set of all subgroups of G.

In the study of smooth G-actions on disks and spheres, there are important families of normal subgroups of G: for examples, $\{G\}$, $\{G^{(2)}\}$, $\{G^{\text{nil}}\}$,

$$\mathcal{K}(G) = \{G^{(p)} \mid p \text{ is a prime}\},$$

and

$$\mathcal{N}_p(G) = \{H \triangleleft G \mid |G/H| = 1 \text{ or } p\},$$

where $G^{(p)}$ is the smallest normal subgroup H such that G/H has order of p-power (possibly $|G/H| = 1$), and G^{nil} is the smallest normal subgroup N such that G/N is nilpotent.

Let \mathcal{L} be a set of subgroups of G such that each minimal element of \mathcal{L} is a normal subgroup of G. Let $\mathbb{R}[G]$ denote the regular representation of G and let $\mathbb{R}[G]^\mathcal{L}$ denote the smallest G-submodule of $\mathbb{R}[G]$ containing all $\mathbb{R}[G]^L$ with $L \in \mathcal{L}$. Let $\mathbb{R}[G]_\mathcal{L}$ be

2010 Mathematics Subject Classification. Primary 20C15; Secondary 57S17.
Key words and phrases. real representation, gap condition, real projective space.
Partially supported by a Grant-in-Aid for Scientific Research (KAKENHI) no. 22540085.
the orthogonal complement of $\mathbb{R}[G]^{\mathcal{L}}$ in $\mathbb{R}[G]$ with respect to some G-invariant inner product on $\mathbb{R}[G]$, i.e.
$$\mathbb{R}[G]_{\mathcal{L}} = \mathbb{R}[G] - \mathbb{R}[G]^{\mathcal{L}}.$$ In this paper we call $\mathbb{R}[G]_{\mathcal{L}}$ the real G-module associated with \mathcal{L}.

Definition 1.1. A nonempty family \mathcal{K} of normal subgroups of G is called *mutually coprime* if either
1. $\mathcal{K} = \{G\}$, or
2. $G \notin \mathcal{K}$ and $|G/K|$'s are mutually prime integers, i.e.
$$(|G/K|, |G/K'|) = 1 \text{ for all } K, K' \in \mathcal{K} \text{ such that } K \neq K'.$$

If \mathcal{K} is a mutually coprime family of normal subgroups of G, then the equality

$$(1.1) \quad \mathbb{R}[G]_{\mathcal{K}} = (\mathbb{R}[G] - \mathbb{R}) - \bigoplus_{K \in \mathcal{K}} (\mathbb{R}[G/K] - \mathbb{R})$$

holds, where \mathbb{R} is the 1-dimensional trivial real G-module.

Definition 1.2. Let \mathcal{L} be a set of subgroups of G. Then we define the *upper closure* $\overline{\mathcal{L}}$ of \mathcal{L} by

$$(1.2) \quad \overline{\mathcal{L}} = \{H \in S(G) \mid H \supset L \text{ for some } L \in \mathcal{L}\},$$

and the *exterior* $\underline{\mathcal{L}}$ of \mathcal{L} by

$$(1.3) \quad \underline{\mathcal{L}} = S(G) \setminus \overline{\mathcal{L}}.$$

With this notation, we have $\mathcal{L}(G) = \overline{\mathcal{K}(G)}$ and $\mathcal{M}(G) = \mathcal{K}(G)$, cf. E. Laitinen-M. Morimoto [1].

Definition 1.3. Let V be a real G-module and \mathcal{H} a family of subgroups of G. We say that V is *\mathcal{H}-complete* if for each $H \in \mathcal{H}$, any irreducible real H-module is isomorphic to a submodule of $\text{res}^{G}_{H}V$.

The main results which will be reported in this article are Theorems 2.1, 2.2 and 3.2. The proofs will appear somewhere else.
2. Completeness and Gap Property

Let \mathcal{K} be a mutually coprime family of normal subgroups of G. We introduce two practically important properties of $\mathbb{R}[G]_{\mathcal{K}}$ as the theorems below.

Theorem 2.1. Let G be a finite group and let \mathcal{K} be a mutually coprime family of normal subgroups of G. Then for any $H \in \mathcal{K}$, $\text{res}^G_H \mathbb{R}[G]_{\mathcal{K}}$ contains a real H-submodule isomorphic to $\mathbb{R}[H]$. Hence the real G-module $\mathbb{R}[G]_{\mathcal{K}}$ is \mathcal{K}-complete.

Theorem 2.2. Let G be a finite group and let \mathcal{K} be a mutually coprime family of normal subgroups of G. Then the real G-module $\mathbb{R}[G]_{\mathcal{K}}$ possesses the following properties.

1. $\mathbb{R}[G]_{\mathcal{K}}^H \neq 0$ if and only if $H \in \mathcal{K}$.
2. Let p be a prime and $H < K \leq G$ with $|K : H| = p$. Then
 \[
 \dim \mathbb{R}[G]_{\mathcal{K}}^H \geq p \dim \mathbb{R}[G]_{\mathcal{K}}^K
 \]
 holds; the equality holds if and only if there exists $K_k \in \mathcal{K}$ such that $p ||G : K_k|$, $|KK_k : HK_k| = p$, and $HK_i = G$ for all $K_i \in \mathcal{K} \smallsetminus \{K_k\}$.
3. Let $H < K \leq G$. Then
 \[
 \dim \mathbb{R}[G]_{\mathcal{K}}^H \geq 2 \dim \mathbb{R}[G]_{\mathcal{K}}^K
 \]
 holds; the equality holds if and only if
 (a) $H \in \overline{\mathcal{K}}$, or
 (b) $K \in \mathcal{K}$, $|K : H| = 2$, there exists $K_k \in \mathcal{K}$ such that $2 ||G : K_k|$, $|KK_k : HK_k| = 2$ and $HK_i = G$ for all $K_i \in \mathcal{K} \smallsetminus \{K_k\}$.

The next proposition has been used in the induction argument of the equivariant surgery theory, cf. [1, 4, 5].

Proposition 2.3. Let G be an Oliver group, and let P, H_1, H_2 be subgroups of G such that $P \in \mathcal{P}(G)$, $P < H_1$, and $P < H_2$. If the equality

\[
2 \dim \mathbb{R}[G]_{\mathcal{L}(G)}^{H_1} = \dim \mathbb{R}[G]_{\mathcal{L}(G)}^P
\]

holds for each $i = 1$ and 2, then the smallest subgroup K containing H_1 and H_2 belongs to $\mathcal{M}(G) = S(G) \smallsetminus \mathcal{L}(G)$.

46
3. Canonical line bundle of real projective space

Let V be a real G-module (of finite dimension). The real projective space $P(V)$ is the space of all 1-dimensional real vector subspaces of V, and $P(V)$ has the canonically induced G-action. Let γ_M, where $M = P(V)$, denote the canonical line bundle of M.

Lemma 3.1. Let V be a real G-module and $M = P(V)$. Then the following equalities hold as real G-vector bundles via canonical isomorphisms.

1. $\text{Hom}(\gamma_M, \gamma_M) = \epsilon_M(\mathbb{R})$.
2. $\text{Hom}(\gamma_M, \epsilon_M(\mathbb{R})) = \gamma_M$.
3. $T(M) = \text{Hom}(\gamma_M, \gamma_M^\perp)$.
4. $T(M) \oplus \epsilon_M(\mathbb{R}) = \text{Hom}(\gamma_M, \epsilon_M(V))$.
5. $\text{Hom}(\gamma_M, \epsilon_M(V)) = \gamma_M \otimes V$.

The equalities (1)–(4) above follow from the proof of [3, Lemma 4.4]. The equality (5) holds because

$$\text{Hom}(\gamma_M, \epsilon_M(V)) = \text{Hom}(\gamma_M, \epsilon_M(\mathbb{R})) \otimes_{\mathbb{R}} V = \gamma_M \otimes_{\mathbb{R}} V.$$

Theorem 3.2. Let \mathcal{K} be a mutually coprime family of normal subgroups of G and let V be a real G-module such that $V = V^\mathcal{K}$. Then for $K_i \in \mathcal{K},$

1. $P(V)^{K_i} = \begin{cases} P(V^{K_i}) & \text{if } 2 \mid |G : K_i| \\ P(V^{K_i}) \prod_{L \in \mathcal{A}_i} P(V_{G/L}^{L}) & \text{if } 2 \nmid |G : K_i| \end{cases}$

and

2. $\gamma_{P(V)}|_{P(V)^{K_i}} = \begin{cases} \gamma_{P(V^{K_i})} & \text{if } 2 \mid |G : K_i| \\ \gamma_{P(V^{K_i})} \prod_{L \in \mathcal{A}_i} \gamma_{P(V_{G/L}^{L})} & \text{if } 2 \nmid |G : K_i|, \end{cases}$

where \mathcal{A}_i is the set of all subgroups L such that $|G : L| = 2$ and $|K_i : K_i \cap L| = 2$.

In addition

$$\left(\gamma_{P(V)} \otimes_{\mathbb{R}} V\right)^{K_i} = \begin{cases} \gamma_{P(V^{K_i})} \otimes_{\mathbb{R}} V^{K_i} & \text{if } 2 \mid |G : K_i| \\ \gamma_{P(V^{K_i})} \otimes_{\mathbb{R}} V^{K_i} \prod_{L \in \mathcal{A}_i} \gamma_{P(V_{G/L}^{L})} \otimes_{\mathbb{R}} V_{G/L}^{L} & \text{if } 2 \nmid |G : K_i| \end{cases}$$
REFERENCES

Graduate School of Natural Science and Technology
Okayama University
Tsushimanaka 3-1-1
Okayama, 700-8530 Japan
E-mail address: morimoto@ems.okayama-u.ac.jp