Torus Actions and the Halperin-Carlsson Conjecture

Mayumi Nakayama

Department of Mathematics and Information of Sciences Tokyo Metropolitan University

We report some results concerning the Halperin-Carlsson conjecture. This is obtained as a joint work with Y. Kamishima.

1. INTRODUCTION

Recently the real Bott tower and its generalization have been studied by several people ([3], [10], [14], [15], [8]). A real Bott manifold is originally defined to be the set of real points in the Bott manifold [6]. Among several characterizations by group actions, the Halperin-Carlsson conjecture is true for real Bott manifolds. The Halperin-Carlsson torus conjecture says that if there is an almost free torus action T^k on a closed *n*-manifold M, the following inequality holds:

(1)
$$2^k \le \sum_{j=0}^n b_j.$$

Here $b_j = \operatorname{rank} H_j(M; \mathbb{Z})$ is the j-th Betti number of M. See [16] for details and the references therein, see also [7].

Another characterization is that a real Bott manifold M is a euclidean space form (Riemannian flat manifold). It is conceivable whether the Halperin-Carlsson conjecture holds for compact euclidean space forms more generally.

By this motivation we revisit the Conner-Raymond's injective torus actions [5]. In this direction, we shall introduce *injective-splitting action* of a torus T^k on closed aspherical manifolds more generally. Our purpose is to prove the Halperin-Carlsson conjecture for such torus actions affirmatively.

2. INJECTIVE-SPLITTING ACTION

Let T^k be a k-dimensional torus $(k \ge 1)$. Given an effective T^k -action on a closed manifold M, the orbit map at $x \in M$ is defined to be $\operatorname{ev}(t) = tx \ (\forall t \in T^k)$. If we denote $\pi_1(T^k) = H_1(T^k; \mathbb{Z}) = \mathbb{Z}^k$ and $\pi_1(M) = \pi$, then the map ev induces a homomorphism $\operatorname{ev}_{\#} : \mathbb{Z}^k \to \pi$ and $\operatorname{ev}_* : \mathbb{Z}^k \to H_1(M; \mathbb{Z})$ respectively.

According to the definition of Conner-Raymond [5], if $ev_{\#}$ is *injective*, the action (T^k, M) is said to be *injective*. (Note that the definition is independent of the choice of the base point $x \in M$ [11, Theorem 2.4.2, also Subsection 11.1].) Classically it is known that $ev_{\#}$ is injective for closed *aspherical* manifolds [4].

Let (T^k, M) be an injective T^k -action on a closed manifold M. We see that $\operatorname{Im}(\operatorname{ev}_{\#}) \leq C(\pi)$ where $C(\pi)$ is the center of π (cf. [9]). Put $\operatorname{Im}(\operatorname{ev}_{\#}) = \mathbb{Z}^k$. Letting $Q = \pi/\mathbb{Z}^k$, there is a central group extension:

(2)
$$1 \to \mathbb{Z}^k \to \pi \longrightarrow Q \to 1.$$

Definition 2.1. A T^k -action is said to be *injective-splitting* if there exists a finite index normal subgroup Q' of Q such that the induced extension splits;

$$\pi' = \mathbb{Z}^k \times Q'.$$

3. STATEMENTS AND RESULTS

Theorem A. Suppose that a closed manifold M admits an injective-splitting T^k -action. Then the following holds.

 $_kC_j \leq b_j.$

(3)

In particular the Halperin-Carlsson conjecture is true.

On the other hand, if $ev_* : \mathbb{Z}^k \to H_1(M;\mathbb{Z})$ is injective, then the T^k -action is said to be homologically injective (cf. [5]). Any homologically injective action is obviously injective.

Proposition 3.1. Any homologically injective T^k -action on a closed manifold M is injective-splitting.

Proof. The proof is essentially the same as [5, 2.2. Lemma]. Let $1 \to \mathbb{Z}^k \to \pi \longrightarrow Q \to 1$ be the central group extension. As $\operatorname{ev}_* : H_1(T^k; \mathbb{Z}) = \mathbb{Z}^k \to H_1(M; \mathbb{Z}) = \mathbb{Z}^\ell \oplus F$ is injective, $\operatorname{ev}_*(\mathbb{Z}^k) \leq \mathbb{Z}^k$ such that $\operatorname{ev}_*(\mathbb{Z}^k) \oplus \mathbb{Z}^{\ell-k} \leq \mathbb{Z}^\ell$. If $q: \pi \to H_1(M; \mathbb{Z})$ is a canonical projection, then $\pi' = q^{-1}(\operatorname{ev}_*(\mathbb{Z}^k) \oplus \mathbb{Z}^{\ell-k} \oplus F)$ is a finite index normal splitting subgroup of π .

Theorem B. If T^k is a homologically injective action on a closed n-manifold M, then (4) $_kC_j \leq b_j \ (j = 0, ..., k).$

In particular the Halperin-Carlsson conjecture is true.

Corollary B. Every effective T^k -action on a compact n-dimensional euclidean space form M is injective-splitting. Thus $_kC_j \leq b_j$, the Halperin-Carlsson conjecture (1) holds.

We obtain a characterization of *holomorphic* torus actions originally observed by Carrell [2].

Corollary C. Every holomorphic action of the complex torus $T_{\mathbb{C}}^k$ on a compact Kähler manifold is homologically injective. In particular, $_{2k}C_j \leq b_j$, the Halperin-Carlsson conjecture holds.

4. Preliminaries for a proof of Theorem A

Suppose (T^k, M) is an *injective action* on a closed manifold M. Let \tilde{M} be the universal covering space of M. Since $\mathbb{Z}^k \leq C(\pi)$, letting $Q = \pi/\mathbb{Z}^k$, there is a central group extension:

(5)
$$1 \to \mathbb{Z}^k \to \pi \longrightarrow Q \to 1.$$

Now the universal covering group \mathbb{R}^k of T^k acts properly and freely on \tilde{M} such that $\tilde{M} = \mathbb{R}^k \times W$ where $W = \tilde{M}/\mathbb{R}^k$ is a simply connected smooth manifold. The central group extension (5) represents a 2-cocycle f in $H^2(Q;\mathbb{Z}^k)$ in which π is viewed as the product $\mathbb{Z}^k \times Q$ with group law:

$$(n,\alpha)(m,\beta) = (n+m+f(\alpha,\beta),\alpha\beta).$$

Let $Map(W, \mathbb{R}^k)$ (respectively $Map(W, T^k)$) be the set of smooth maps of W into \mathbb{R}^k (respectively T^k) endowed with a Q-module structure in which there is an exact sequence of Q-modules [4]:

$$1 \to \mathbb{Z}^k \to Map(W, \mathbb{R}^k) \xrightarrow{\exp} Map(W, T^k) \to 1.$$

When Q acts properly discontinuously on W with compact quotient, we have the vanishing theorem from [4, Lemma 8.5], [11]:

(6)
$$H^i(Q, Map(W, \mathbb{R}^k)) = 0 \ (i \ge 1).$$

By (6), the connected homomorphism induces an isomorphism :

$$\delta: H^1(Q; Map(W, T^k)) \to H^2(Q; \mathbb{Z}^k).$$

From this, there exists a map $\chi: Q \to Map(W, \mathbb{R}^k)$ such that $\delta^1 \chi = f$. Then the action of π on \tilde{M} can be described as

(7)
$$(n,\alpha)(x,w) = (n+x+\chi(\alpha)(\alpha w),\alpha w) ({}^{\forall}(n,\alpha) \in \pi, {}^{\forall}(x,w) \in \mathbb{R}^k \times W).$$

The π -action may depend on the choice of χ' such that $\delta^1 \chi' = f$. However, the vanishing cohomology group (6) shows that

Proposition 4.1. Such π -actions are equivalent to each other.

5. Proof of Theorem A

Proof. Algebraic part. (5) induces a commutative diagram:

Here Q/Q' is a finite group by Definition 2.1. For the cocycle f representing the upper group extension, it follows $\iota'^*[f] = 0 \in H^2(Q'; \mathbb{Z}^k)$ by the hypothesis. We may assume (9) $f|_{Q'} = 0.$

On the other hand, if
$$\tau : H^2(Q'; \mathbb{Z}^k) \to H^2(Q; \mathbb{Z}^k)$$
 is the transfer homomorphism, then $\tau \circ \iota'^* = |Q : Q'| : H^2(Q; \mathbb{Z}^k) \to H^2(Q; \mathbb{Z}^k)$ so that $[f]$ is a torsion in $H^2(Q; \mathbb{Z}^k)$. There exists an integer ℓ such that $\ell \cdot f = \delta^1 \tilde{\lambda}$ for some function $\tilde{\lambda} : Q \to \mathbb{Z}^k$. Put $\lambda = \frac{\tilde{\lambda}}{\ell} : Q \to \mathbb{R}^k$. Then

(10)
$$f = \delta^1 \lambda.$$

The equation (9) shows $[\lambda|_{Q'}] \in H^1(Q; \mathbb{R}^k)$. Viewed $\mathbb{R}^k \leq Map(W, \mathbb{R}^k)$ as constant maps, $[\lambda|_{Q'}] \in H^1(Q; Map(W, \mathbb{R}^k)) = 0$ by (6). So there is an element $h \in Map(W, \mathbb{R}^k)$ such that $\lambda|_{Q'} = \delta^0 h$. The equality $\lambda(\alpha') = \delta^0 h(\alpha')(w)$ ($\forall \alpha' \in Q', \forall w \in W$) implies

(11)
$$h(w) = h(\alpha'w) + \lambda(\alpha').$$

(12)
$$(n,\alpha)(x,w) = (n+x+\lambda(\alpha),\alpha w) \quad (\forall (x,w) \in \mathbb{R}^k \times W).$$

Recall that π has the splitting subgroup $\pi' = \mathbb{Z}^k \times Q'$. Obviously we have the product action of $\mathbb{Z}^k \times Q'$ on $\mathbb{R}^k \times W$ such that $\mathbb{R}^k \times W/\mathbb{Z}^k \times Q' = T^k \times W/Q'$. Define a diffeomorphism $\tilde{G} : \mathbb{R}^k \times W \to \mathbb{R}^k \times W$ to be $\tilde{G}(x, w) = (x + h(w), w)$. Using (11), it is easy to check that $\tilde{G} : (\pi', \mathbb{R}^k \times W) \to (\mathbb{Z}^k \times Q', \mathbb{R}^k \times W)$ is an equivariant diffeomorphism with respect to the action (12) and the product action. Putting $\mathbb{R}^k \times W/\pi' = T^k \times W_{Q'}$ as a quotient space, \tilde{G} induces a diffeomorphism $G : T^k \times W \to T^k \times W/Q'$. Let q : $T^k \times W \to T^k \times W$ be the covering map (q(t, w) = [t, w]). Then

(13)
$$G \circ q(t, w) = G([t, w]) = (t \exp 2\pi \mathbf{i}h(w), [w])$$

Noting (12), π induces an action of Q on $\tilde{M}/\mathbb{Z}^k = T^k \times W$ such that

(14)
$$\alpha(t,w) = (t \exp 2\pi \mathbf{i}\lambda(\alpha), \alpha w) \ (\forall \alpha \in Q).$$

F = Q/Q' has an induced action on $T^k \underset{Q'}{\times} W$ by $\hat{\alpha}[t, w] = [t \exp 2\pi i \lambda(\alpha), \alpha w] (\forall \hat{\alpha} \in F)$ which gives rise to a covering map:

(15)
$$F \to T^k \underset{Q'}{\times} W \xrightarrow{\nu} T^k \underset{Q}{\times} W = M.$$

For any $\alpha \in Q$, consider the commutative diagram:

in which $H_j(T^k) \otimes H_0(W) \leq H_j(T^k \times W)$. By the formula (14), the *Q*-action on the T^k summand is a translation by $\exp 2\pi i\lambda(\alpha) \in T^k$ so the homology action α_* on $H_j(T^k) \otimes H_0(W)$ is trivial. If $H_j(T^k \times W)^F$ denotes the subgroup left fixed under the homology action for every element $\hat{\alpha} \in F$, it follows

(17)
$$q_*(H_j(T^k) \otimes H_0(W)) \le H_j(T^k \underset{Q'}{\times} W)^F$$

Using the transfer homomorphism, ν of (15) induces an isomorphism:

$$\nu_*: H_j(T^k \underset{Q'}{\times} W; \mathbb{Q})^F \longrightarrow H_j(M; \mathbb{Q}).$$

In particular, $\nu_* : q_*(H_j(T^k; \mathbb{Q}) \otimes H_0(W; \mathbb{Q})) \to H_j(M; \mathbb{Q})$ is injective.

On the other hand, let $q': W \to W/Q'$ be the projection q'(w) = [w]. Define a homotopy $\Psi_{\theta}: T^k \times W \to T^k \times W/Q'$ ($\theta \in [0,1]$) to be

$$\Psi_{ heta}(t,w) = (t \exp 2\pi \mathbf{i}(heta \cdot h(w)), [w]).$$

Then $\Psi_0 = \mathrm{id} \times q' \simeq G \circ q$ from (13). As $G_* \circ q_* = \mathrm{id} \times q'_* : H_j(T^k; \mathbb{Q}) \otimes H_0(W; \mathbb{Q}) \to H_j(T^k; \mathbb{Q}) \otimes H_0(W/Q'; \mathbb{Q})$ is obviously isomorphic, it implies that $q_* : H_j(T^k; \mathbb{Q}) \otimes H_j(T^k; \mathbb{Q}) \otimes H_j(T^k; \mathbb{Q})$

 $H_0(W;\mathbb{Q}) \longrightarrow H_j(T^k \underset{Q'}{\times} W;\mathbb{Q})$ is injective. If $p = \nu \circ q : T^k \times W \to M$ is the projection, then $p_* : H_j(T^k;\mathbb{Q}) \otimes H_0(W;\mathbb{Q}) \longrightarrow H_j(M;\mathbb{Q})$ becomes injective. This shows Theorem A.

6. Application to Euclidean space forms

Let M be a compact euclidean space form \mathbb{R}^n/π with rank $H_1(M) = k$, and set $s = \operatorname{rank} C(\pi)$. In [5, § 7], Conner and Raymond stated (without proof) that Calabi's theorem [1] shows the existence of a T^k -action. From this, we see that $k \leq s$ because $\mathbb{Z}^k \leq C(\pi)$. On the other hand, using the algebraic hull argument, it is easy to see that M admits an effective T^s -action, so by Corollary B, $s \leq k$. Therefore, we obtain:

Theorem E. A compact n-dimensional euclidean space form M admits an action of T^k , where $k = \operatorname{rank} H_1(M)$, in which $\operatorname{rank} C(\pi) = \operatorname{rank} H_1(M)$.

References

- [1] E. Calabi, Closed locally euclidean 4-dimensional manifolds, Bull. of AMS, 63 (1957) p.135.
- [2] J. Carrell, Holomorphically injective complex toral actions, Proc. Second conference on Compact transformation groups, Part II, Lecture notes in Math., 299, Springer, New York 1972 205-236.
- [3] S. Choi, M. Masuda and D. Y. Suh, Topological classification of generalized Bott towers, preprint.
- [4] P.E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds, Proceedings Inst. Univ. of Georgia, Athens, 1969, Markham (1970), 227-264.
- [5] P.E. Conner and F. Raymond, Injective operations of the toral groups, Topology 10, (1971) 283-296.
- [6] M. Grossberg and Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J. 76 (1994) 23-58.
- S. Halperin, Rational homotopy and torus actions, Aspects of Topology, London Math. Soc. Lecture Note Ser. 93 (1985), 293-306.
- [8] Y. Kamishima and A. Nazra, Seifert fibred structure and rigidity on real Bott towers, Contemp. Math., vol. 501, (2009), 103-122.
- Y. Kamishima and M. Nakayama, Torus Actions and the Halperin-Carlsson Conjecture, arXiv:1206.4790v1 (math.GT.) 2012.
- [10] J.B. Lee and M. Masuda, Topology of iterated S¹-bundles, arXiv:1108.4790 (math.AT.) 2011.
- [11] K.B. Lee and F. Raymond, Seifert fiberings, Mathematical Surveys and Monographs, vol. 166, 2010.
- [12] K.B. Lee and F. Raymond, Topological, affine and isometric actions on flat Riemannian manifolds, J. Differential Geom. 16 (1981), 255-269.
- [13] K.B. Lee and F. Raymond, Maximal torus actions on solumanifolds and double coset spaces, Int. J. Math. 92 (1991), 67-76.
- [14] M. Masuda and T. Panov, Semi-free circle actions, Bott towers, and quasitoric manifolds, Sb. Math. 199 (2008), no. 7-8, 1201-1223
- [15] M. Nakayama, On the S^1 -fibred nil-Bott Tower, to appear in Osaka Jour. of Math,
- [16] V. Puppe, Multiplicative aspects of the Halperin-Carlsson conjecture, Georgian Math. J. 16 (2009), no. 2, 369-379.

Department of Mathematics and Information of Sciences Tokyo Metropolitan University

Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, JAPAN E-mail address: nakayama-mayumi@ed.tmu.ac.jp