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In this article we discuss topological properties of spaces of uniform embeddings and

groups of uniform homeomorphisms in metric covering spaces over compact manifolds and

metric spaces with Euclidean ends.

1. SPACES OF UNIFORMLY CONTINUOUS MAPS

First we recall some basic facts on uniformly continuous maps and the uniform topology

on the space of uniformly continuous maps. In this article, maps between topological

spaces are always assumed to be continuous. For a topological space $X$ and a subset $A$ of
$X$ , the symbols Int$x^{A,cl_{X}A}$ and $Fr_{X}A$ denote the topological interior, closure and frontier

of $A$ in $X.$

Suppose ( $X$ , d) and $(Y, \rho)$ are metric spaces. $A$ map $h$ : $(X, d)arrow(Y, \rho)$ is said to

be uniformly continuous if for each $\epsilon>0$ there is a $\delta>0$ such that if $x,$ $x’\in X$ and
$d(x, x’)<\delta$ then $\rho(f(x), f(x’))<\epsilon$ . The map $h$ is called a uniform homeomorphism if $h$ is

bijective and both $h$ and $h^{-1}$ are uniformly continuous. $A$ uniform embedding is a uniform

homeomorphism onto its image.
Let $C(X, Y)$ and $C^{u}((X, d), (Y, \rho))$ denote the space of maps $f$ : $Xarrow Y$ and the subspace

of uniformly continuous maps $f$ : $(X, d)arrow(Y, \rho)$ . The metric $\rho$ on $Y$ induces the sup-

metric on $C(X, Y)$ defined by

$\rho(f, g)=\sup\{\rho(f(x), g(x))|x\in X\}\in[0, \infty].$

The topology on $C(X, Y)$ induced by this $\sup$-metric $\rho$ is called the uniform topology. Below
the space $C(X, Y)$ and its subspaces are endowed with the $\sup$-metric $\rho$ and the uniform

topology, otherwise specified. To emphasize this point, sometimes we use the symbol
$C(X, Y)_{u}$ . On the other hand, when the space $C(X, Y)$ is endowed with the compact-open

topology, we use the symbol $C(X, Y)_{co}$ . When $X$ is compact, we have $C^{u}((X, d), (Y, \rho))_{u}=$

$C(X, Y)_{co}$ . It is important to notice that the composition map

$C^{u}((X, d), (Y, \rho))_{u}\cross C^{u}((Y, \rho), (Z, \eta))_{u}arrow C^{u}((X, d), (Z, \eta))_{u}.$

is continuous, while the composition map $C(X, Y)_{u}\cross C(Y, Z)_{u}arrow C(X, Z)_{u}$ is not neces-
sarily continuous.
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Let $\mathcal{E}(X, Y)$ and $\mathcal{E}^{u}((X, d), (Y, \rho))$ denote the space of embeddings $f$ : $Xarrow Y$ and the
subspace of uniform embeddings $f$ : $(X, d)arrow(Y, \rho)$ (both with the $\sup$-metric and the
uniform topology). For a subset $A$ of $X$ let $\mathcal{E}_{A}(X, Y)=\{f\in \mathcal{E}(X, Y)|f|_{A}=id_{A}\}$ . When
$X\subset Y\subset Z$ , for a subset $C$ of $Z$ we also use the symbol $\mathcal{E}(X, Y;C)$ to denote $\mathcal{E}_{X\cap C}(X, Y)$

and for $\epsilon>0$ let $\mathcal{E}(i_{X}, \epsilon;X, Y;C)$ denote the $\epsilon$-neighborhood of the inclusion $i_{X}$ : $X\subset Y$ in
the space $\mathcal{E}(X, Y;C)$ . The meaning of the symbols $\mathcal{E}_{A}^{u}((X, d), (Y, \rho)),$ $\mathcal{E}^{u}((X, d), (Y, \rho);C)$ ,
etc are obvious.

Similarly $\mathcal{H}_{A}(X)$ and $\mathcal{H}_{A}^{u}(X, d)$ denote the group of homeomorphisms $h$ of $X$ onto itself
and the subgroup of uniform homeomorphisms $h$ of ($X$ , d) with $h|A=id_{A}$ (both endowed
with the uniform topology). We denote by $\mathcal{H}_{A}^{u}(X, d)_{0}$ the connected component of the
identity map $id_{X}$ of $X$ in $\mathcal{H}_{A}^{u}(X, d)$ and define the subgroup

$\mathcal{H}_{A}^{u}(X, d)_{b}=\{h\in \mathcal{H}_{A}^{u}(X, d)|d(h, id_{X})<\infty\}.$

It follows that $\mathcal{H}_{A}^{u}(X, d)$ is a topological group and $\mathcal{H}_{A}^{u}(X, d)_{b}$ is an open (and closed)
subgroup of $\mathcal{H}_{A}^{u}(X, d)$ , so that $\mathcal{H}_{A}^{u}(X, d)_{0}\subset \mathcal{H}_{A}^{u}(X, d)_{b}$ . When $X-A$ is relatively compact
in $X$ , the group $\mathcal{H}_{A}^{u}(X, d)$ coincides with the whole group $\mathcal{H}_{A}(X)$ . As usual, the symbol
$A$ is suppressed when it is an empty set.

Recall that a family $f_{\lambda}\in C(X, Y)(\lambda\in\Lambda)$ is said to be equi-continuous if for any $\epsilon>0$

there exists $\delta>0$ such that if $x,$ $x’\in X$ and $d(x, x’)<\delta$ then $\rho(f_{\lambda}(x), f_{\lambda}(x’))<\epsilon$ for any
$\lambda\in\Lambda$ . More generally, we say that a family of maps $\{f_{\lambda} : (X_{\lambda}, d_{\lambda})arrow(Y_{\lambda}, \rho_{\lambda})\}_{\lambda\in\Lambda}$ between
metric spaces is equi-continuous if for any $\epsilon>0$ there exists $\delta>0$ such that for any $\lambda\in\Lambda$

if $x,$ $x’\in X_{\lambda}$ and $d_{\lambda}(x, x’)<\delta$ then $\rho_{\lambda}(f_{\lambda}(x), f_{\lambda}(x’))<\epsilon$. For embeddings, we also use
the following terminology: a family of embeddings $\{h_{\lambda} : (X_{\lambda}, d_{\lambda})arrow(Y_{\lambda}, \rho_{\lambda})\}_{\lambda\in\Lambda}$ is equi-
uniform if both of the families $\{h_{\lambda} : (X_{\lambda}, d_{\lambda})arrow(Y_{\lambda}, \rho_{\lambda})\}_{\lambda\in\Lambda}$ and $\{(h_{\lambda})^{-1}$ : $(h_{\lambda}(X_{\lambda}), \rho_{\lambda})arrow$

$(X_{\lambda}, d_{\lambda})\}_{\lambda\in\Lambda}$ are equi-continuous.

The following lemmas are used in the proof of the main theorems. Let $(X, d),$ $(Y, \rho)$ and
$(Z, \eta)$ be metric spaces. For a subset $C$ of $C(X, Y)$ , the symbol $cl_{u}C$ means the closure of
$C$ in $C(X, Y)_{u}.$

Lemma 1.1. (1) $cl_{u}\mathcal{E}^{u}(X, Y)\subset C^{u}(X, Y)$ .

(2) Suppose $C\subset \mathcal{E}^{u}(X, Y)$ . If $C’=\{f^{-1} : f(X)arrow X|f\in C\}$ is equi-continuous, then
$cl_{u}C\subset \mathcal{E}^{u}(X, Y)$ .

The word “function” means a correspondence not assumed to be continuous.

Lemma 1.2. Suppose $P$ is a topological space, $f$ : $Parrow C(X, Y)_{u},$ $g:Parrow C(X, Z)_{u}$ are
continuous maps and $h:Parrow C^{u}(Y, Z)_{u}$ is a function. If $f_{p}$ is surjective and $h_{p}f_{p}=g_{p}$ for
each $p\in P$ , then $h$ is continuous.
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Lemma 1.3. Suppose $S$ is a compact subset of $X$ which has an open collar neighborhood
$\theta$ : $(S\cross[0,4), S\cross\{0\})\approx(N, S)$ in $X$ . Let $N_{a}=\theta(S\cross[0, a])(a\in[0,4))$ . Then there

exists a strong deformation retraction $\varphi_{t}(t\in[0,1])$ of $\mathcal{H}_{N_{1}}^{u}(X)_{b}$ onto $\mathcal{H}_{N_{2}}^{u}(X)_{b}$ such that

$\varphi_{t}(h)=h$ on $h^{-1}(X-N_{3})-N_{3}$ for any $(h, t)\in \mathcal{H}_{N_{1}}^{u}(X)_{b}\cross[0,1].$

2. SPACES OF UNIFORM EMBEDDINGS IN METRIC COVERING SPACES OVER COMPACT

MANIFOLDS

In [3] R. D. Edwards and R. C. Kirby obtained a fundamental local deformation theorem
for embeddings of a compact subspace in a manifold (see \S 2.1). From this theorem and the
Arzela-Ascoli theorem (cf. [2, Theorem 6.4]) we can deduce a local deformation lemma for
uniform embeddings in a metric covering space over a compact manifold (Theorem 2.2).

2.1. Basic deformation theorem for topological embeddings in topological man-
ifolds.

First we recall the basic deformation theorem on embeddings of a compact subset in
topological manifold (R. D. Edwards and R. C. Kirby [3]). Suppose $M$ is a topological n-
manifold possibly with boundary and $X$ is a subspace of $M$ . An embedding $f$ : $Xarrow M$ is
said to be proper if $f^{-1}(\partial M)=X\cap\partial M$ (and quasi-proper if $f(X\cap\partial M)\subset\partial M$). For any
subset $C\subset M$ , let $\mathcal{E}_{*}(X, M;C)$ denote the subspaces of $\mathcal{E}(X, M;C)$ consisting of proper
embeddings.

Theorem 2.1. ([3, Theorem 5.1]) Suppose $M$ is a topological $n$-manifold possibly with
boundary, $C$ is a compact subset of $M,$ $U$ is a neighborhood of $C$ in $M$ and $D$ and $E$

are two closed subsets of $M$ such that $D\subset$ Int$ME$ . Then, for any compact neighborhood
$K$ of $C$ in $U$ , there exists a neighborhood $\mathcal{U}$ of $i_{U}$ in $\mathcal{E}_{*}(U, M;E)_{co}$ and a homotopy
$\varphi$ : $\mathcal{U}\cross[0,1]arrow \mathcal{E}_{*}(U, M;D)_{co}$ such that

(1) for each $f\in \mathcal{U},$

(i) $\varphi_{0}(f)=f$ , (ii) $\varphi_{1}(f)|c=i_{C}$ , (iii) $\varphi_{t}(f)=f$ on $U-K(t\in[0,1])$ ,

(iv) if $f=$ id on $U\cap\partial M$ , then $\varphi_{t}(f)=$ id on $U\cap\partial M(t\in[0,1])$ ,

(2) $\varphi_{t}(i_{U})=i_{U}(t\in[0,1])$ .

Remark 2.1. Theorem 2.1 still holds if we replace the spaces of proper embeddings,
$\mathcal{E}_{*}(U, M;D)$ and $\mathcal{E}_{*}(U, M;E)$ , by the spaces of quasi-proper embeddings, $\mathcal{E}_{\#}(U, M;D)$ and
$\mathcal{E}_{\#}(U, M;E)$ . Note that $\mathcal{E}_{\#}(X, M;C)$ is closed in $\mathcal{E}(X, M;C)$ , while $\mathcal{E}_{*}(U, M;D)$ is not
necessarily closed.

92



2.2. Metric covering projections.
Since the notion of uniform continuity depends on the choice of metrics, it is necessary

to select a reasonable class of metrics to obtain a suitable conclusion on spaces of uniform
embeddings of a metric manifold $(M, d)$ . In [1] (cf, [5, Section 5.6]) A. $V.$ $\check{C}ernavski_{1}^{\cup}$

considered the case where $M$ is the interior of a compact manifold $N$ and the metric $d$ is a
restriction of some metric on $N$ . In this article we consider the case where $M$ is a covering
space over a compact manifold $N$ and the metric $d$ is the pull-back of some metric on $N.$

The natural model is the class of Riemannian coverings in the smooth category. In order
to remove the extra requirements in the smooth setting, here we introduce the notion of
metric covering projection. For the basics on covering spaces, we refer to [6, Chapter 2,
Section 1]. If $p$ : $Marrow N$ is a covering projection and $N$ is a topological $n$-manifold
possibly with boundary, then so is $M$ and $\partial M=\pi^{-1}(\partial N)$ .

Suppose ($X$ , d) is a metric space. $A$ neighborhood $U$ of $A$ in $X$ is called a uniform
neighborhood of $A$ in ($X$ , d) if $U$ contains a $\delta$-neighborhood of $A$ for some $\delta>0$ . For $\epsilon>0$

a subset $A$ of $X$ is said to be $\epsilon$-discrete if $d(x, y)\geq\epsilon$ for any distinct points $x,$ $y\in A$ . We
say that $A$ is uniformly discrete if it is $\epsilon$-discrete for some $\epsilon>0.$

Definition 2.1. $A$ map $\pi$ : ( $X$ , d) $arrow(Y, \rho)$ between metric spaces is called a metric
covering projection if it satisfies the following conditions:

$(*)_{1}$ There exists an open cover $\mathcal{U}$ of $Y$ such that for each $U\in \mathcal{U}$ the inverse $\pi^{-1}(U)$ is
the disjoint union of open subsets of $X$ each of which is mapped isometrically onto
$U$ by $\pi.$

$(*)_{2}$ For each $y\in Y$ the fiber $\pi^{-1}(y)$ is uniformly discrete in $X.$

$(*)_{3}\rho(\pi(x), \pi(x’))\leq d(x, x’)$ for any $x,$ $x’\in X.$

When the map $\pi$ satisfies the condition $(*)_{1}$ , we say that each $U\in \mathcal{U}$ is isometrically
evenly covered by $\pi$ . If an open subset $U$ of $Y$ is connected and isometrically evenly covered
by $\pi$ , then each connected component of $\pi^{-1}(U)$ is mapped isometrically onto $U$ by $\pi$ . If
$\pi$ : $(X, d)arrow(Y, \rho)$ is a metric covering projection and $Y$ is compact, then there exists
$\epsilon>0$ such that each fiber of $\pi$ is $\epsilon$-discrete. Riemannian covering projections are typical
examples of metric covering projections.

2.3. Deformation theorem for uniform embeddings.
When $(M, d)$ is a topological manifold possibly with boundary with a fixed metric $d$

and $X,$ $C$ are subspaces of $M$ , we denote by $\mathcal{E}_{*}^{u}(X, M;C)$ the space of uniform proper
embeddings $f$ : $(X, d|_{X})arrow(M, d)$ such that $f=$ id on $X\cap C$ . This space is endowed with
the uniform topology induced from the $\sup$-metric The following is our first main theorem.
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Theorem 2.2. Suppose $\pi$ : $(M, d)arrow(N, \rho)$ is a metric covering projection, $N$ is a compact

topological $n$-manifold possibly with boundary, $X$ is a closed subset of $M,$ $W’\subset W$ are
uniform neighborhoods of $X$ in $(M, d)$ and $Z,$ $Y$ are closed subsets of $M$ such that $Y$ is

a uniform neighborhood of $Z$ . Then there exists a neighborhood $\mathcal{W}$ of the inclusion map
$\iota_{W}$ : $W\subset M$ in $\mathcal{E}_{*}^{u}(W, M;Y)$ and a homotopy $\varphi$ : $\mathcal{W}\cross[0,1]arrow \mathcal{E}_{*}^{u}(W, M;Z)$ such that

(1) for each $h\in \mathcal{W}$

(i) $\varphi_{0}(h)=h$ , (ii) $\varphi_{1}(h)=$ id on $X$ , (iii) $\varphi_{t}(h)=h$ on $W-W’(t\in[O, 1])$ ,

(2) $\varphi_{t}(\iota_{W})=\iota_{W}(t\in[0,1])$ .

In [1] it is shown that $\mathcal{H}^{u}(M, d)$ is locally contractible in the case where $M$ is the interior
of a compact manifold $N$ and the metric $d$ is a restriction of some metric on $N$ . The next

corollary is a direct consequence of Theorem 2.2.

Corollary 2.1. Suppose $\pi$ : $(M, d)arrow(N, \rho)$ is a metric covering projection onto a compact

topological $n$-manifold $N$ possibly with boundary. Then $\mathcal{H}^{u}(M, d)$ is locally contractible.

We conclude this section by indicating how to use the Arzela-Ascoli theorem in the proof

of Theorem 2.2.

Idea of proof of Theorem 2.2.
We consider the special but essential case where $Marrow N$ is the product metric covering

projection $M=N\cross \mathbb{N}arrow N$ and $X=\pi^{-1}(C)$ for some compact subset $C$ of $N$ (and
$Z=Y=\emptyset)$ . For simplicity we pretend that $W=W’=X$ . We apply Theorem 2.1

to the compact subset $C$ of the topological manifold $N$ (pretending that $U=K=C$),

so to obtain a neighborhood $\mathcal{U}$ of the inclusion $i_{C}$ in $\mathcal{E}_{*}(C, N)_{co}$ and a deformation $\psi$ :
$\mathcal{U}\cross[0,1]arrow \mathcal{E}_{*}(C, M)_{co}$ as in Theorem 2.1.

Suppose a proper uniform embedding $f$ : $Xarrow M$ is sufficiently close to the inclusion $i_{X}.$

We have to construct the homotopy $\varphi_{t}(f)$ as in Theorem 2.2. On each sheet $N_{i}\equiv N\cross\{i\}$

$(i\in \mathbb{N})$ , the embedding $f$ restricts to an embedding $f_{i}:X\cap N_{i}arrow N_{i}$ , which induces the

embedding $\overline{f}_{i}$ : $Carrow N$ . Then $\varphi_{t}(f)|_{N_{i}}$ is defined as the lift of $\psi_{t}(\overline{f}_{i})$ by the isometry
$\pi$ : $N_{i}arrow N$ . Since $f$ is a uniform embedding, the families $\{f_{i}\}_{i\in \mathbb{N}}$ and $\{\overline{f}_{i}\}_{i\in \mathbb{N}}$ are equi-

uniform, so that $cl\{\overline{f}_{i}\}_{i\in \mathbb{N}}$ is compact by the Arzela-Ascoli theorem. This implies that
$\psi(cl\{\overline{f}_{i}\}_{i\in \mathbb{N}}\cross[0,1])$ is also compact and that $\{\psi_{t}(\overline{f}_{i})\}_{i\in N,t\in[0,1]}$ is equi-uniform. Hence we
obtain the required homotopy $\varphi_{t}(f)$ in $\mathcal{E}_{*}^{u}(X, M)_{u}.$

3. GROUPS OF UNIFORM HOMEOMORPHISMS OF METRIC SPACES WITH $BI$-LIPSCHITZ
EUCLIDEAN ENDS

In this section we discuss some global topological properties of groups of uniform home-

omorphisms of metric spaces with bi-Lipschitz Euclidean ends.
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3. 1. The Euclidean ends.
The Euclidean space $\mathbb{R}^{n}$ with the standard Euclidean metric admits the canonical Rie-

mannian covering projection $\pi$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}/\mathbb{Z}^{n}$ onto the flat torus. Therefore we can
apply the local deformation theorem, Theorem 2.2, to uniform embeddings in $\mathbb{R}^{n}$ . In this
situation, the important feature of $\mathbb{R}^{n}$ is the existence of similarity transformations

$k_{\gamma}:\mathbb{R}^{n}\approx \mathbb{R}^{n}$ : $k_{\gamma}(x)=\gamma x$ $(\gamma>0)$ .

This enables us to deduce a global deformation of uniform embeddings from a local one.
In a relation to other metric spaces we are especially concerned with the end of the

Euclidean space $\mathbb{R}^{n}$ . The model of Euclidean end is the complement $\mathbb{R}_{r}^{n}=\mathbb{R}^{n}-O(r)$

of the round open $r$-ball $O(r)$ centered at the origin. If we combine Theorem 2.2 with
the similarity transformation $k_{\gamma}$ for a sufficiently large $\gamma>0$ , then we have the following
conclusion.

Lemma 3.1. For any $c,$ $s_{0}>0$ and $\beta>\alpha>1$ there exist $s>s_{0}$ and a homotopy

$\psi:\mathcal{E}^{u}(\iota_{s}, c;\mathbb{R}_{S}^{n}, \mathbb{R}^{n})\cross[0,1]arrow \mathcal{E}^{u}(\iota_{S}, s;\mathbb{R}_{s}^{n}, \mathbb{R}^{n})$

such that

(1) for each $h\in \mathcal{E}^{u}(\iota_{S}, c;\mathbb{R}_{s}^{n}, \mathbb{R}^{n})$

(i) $\psi_{0}(h)=h$ , (ii) $\psi_{1}(h)=$ id on $\mathbb{R}_{\beta s}^{n}$ , (iii) $\psi_{t}(h)=h$ on $\mathbb{R}_{S}^{n}-\mathbb{R}_{\alpha s}^{n}(t\in[0,1])$ ,
(2) $\psi_{t}(\iota_{S})=\iota_{s}(t\in[0,1])$

(3) $\psi(\mathcal{E}^{u}(\iota_{s}, c;\mathbb{R}_{s}^{n}, \mathbb{R}_{r}^{n})\cross[0,1])\subset \mathcal{E}^{u}(\iota_{s}, s;\mathbb{R}_{s}^{n}, \mathbb{R}_{r}^{n})$ for any $r<s.$

3.2. Bi-Lipschitz Euclidean ends.
In order to transfer to more general metric spaces, we introduce the notion of bi-Lipschitz

Euclidean ends. Recall that a map $h$ : $(X, d)arrow(Y, \rho)$ between metric spaces is said to
be Lipschitz if there exists a constant $C>0$ such that $\rho(f(x), f(x’))\leq Cd_{X}(x, x’)$ for
any $x,$ $x’\in X$ . The map $h$ is called a bi-Lipschitz homeomorphism if $h$ is bijective and
both $h$ and $h^{-1}$ are Lipschitz maps. The Euclidean ends $\mathbb{R}_{r}^{n}(r>0)$ are bi-Lipschitz
homeomorphic to each other under similarity transformations.

Definition 3.1. $A$ bi-Lipschitz $n$-dimensional Euclidean end of a metric space ($X$ , d) is a
closed subset $L$ of $X$ which admits a bi-Lipschitz homeomorphism of pairs, $\theta$ : $(\mathbb{R}_{1}^{n}, \partial \mathbb{R}_{1}^{n})\approx$

$((L, Fr_{X}L), d|_{L})$ and satisfies the condition $d(X-L, L_{r})arrow\infty$ as $rarrow\infty$ , where $L_{r}=\theta(\mathbb{R}_{r}^{n})$

$(r\geq 1)$ . We set $L’=\theta(\mathbb{R}_{2}^{n})$ and $L”=\theta(\mathbb{R}_{3}^{n})$ .

The following is our 2nd main theorem.

Theorem 3.1. Suppose $X$ is a metric space and $L_{1},$ $\cdots$ , $L_{m}$ are mutually disjoint bi-
Lipschitz Euclidean ends of $X$ . Let $L’=L_{1}’\cup\cdots\cup L_{m}’$ and $L”=L_{1}"\cup\cdots\cup L_{m}"$ . Then there
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exists a strong deformation retraction $\varphi$ of $\mathcal{H}^{u}(X)_{b}$ onto $\mathcal{H}_{L’}^{u},(X)$ such that

$\varphi_{t}(h)=h$ on $h^{-1}(X-L’)-L’$ for any $(h, t)\in \mathcal{H}^{u}(X)_{b}\cross[0,1].$

The following lemmas are used in the proof of Theorem 3.1. We keep the notations in

Definition 3.1. We set $\mathcal{H}^{u}(X;\lambda)=\{h\in \mathcal{H}^{u}(X, d)|d(h, id_{X})<\lambda\}.$

Lemma 3.2. For any $\lambda>0$ and $r>r_{0}\geq 1$ there exist $\lambda’>0$ and a homotopy $\chi$ :
$\mathcal{H}^{u}(X;\lambda)\cross[0,1]arrow \mathcal{H}^{u}(X;\lambda’)$ such that for each $h\in \mathcal{H}^{u}(X;\lambda)$

(i) $\chi_{0}(h)=h$ , (ii) $\chi_{1}(h)=$ id on $L_{r}$ , (iii) $\chi_{t}(h)=h$ on $h^{-1}(X-L_{r0})-L_{r0}(t\in[O, 1])$ ,

(iv) if $h=$ id on $L_{r_{0}}$ , then $\chi_{t}(h)=h(t\in[0,1])$ .

Lemma 3.3. For any $r\in(1,2)$ there exists a homotopy $\psi$ : $\mathcal{H}^{u}(X)_{b}\cross[0,1]arrow \mathcal{H}^{u}(X)_{b}$

such that for each $h\in \mathcal{H}^{u}(X)_{b}$

(i) $\psi_{0}(h)=h$ , (ii) $\psi_{1}(h)=$ id on $L_{2}$ , (iii) $\psi_{t}(h)=h$ on $h^{-1}(X-L_{r})-L_{r}(t\in[O, 1])$ ,

(iv) if $h=$ id on $L_{r}$ , then $\psi_{t}(h)=h(t\in[0,1])$ ,

(v) for any $\lambda>0$ there exists $\mu>0$ such that $\psi_{t}(\mathcal{H}^{u}(X;\lambda))\subset \mathcal{H}^{u}(X;\mu)(t\in[0,1])$ .

Proposition 3.1. For any $1<s<r<2$ there exists a strong deformation retraction $\varphi$

of $\mathcal{H}^{u}(X)_{b}$ onto $\mathcal{H}_{L_{r}}^{u}(X)_{b}$ such that

$\varphi_{t}(h)=h$ on $h^{-1}(X-L_{s})-L_{s}$ for any $(h, t)\in \mathcal{H}^{u}(X)_{b}\cross[0,1].$

3.3. Some examples.

Example 3.1. $\mathcal{H}^{u}(\mathbb{R}^{n})_{b}$ is contractible for every $n\geq 0$ . In fact, $\mathbb{R}^{n}$ has the model Eu-

clidean end $\mathbb{R}_{1}^{n}$ and hence there exists a strong deformation retraction of $\mathcal{H}^{u}(\mathbb{R}^{n})_{b}$ onto
$\mathcal{H}_{\mathbb{R}_{3}^{n}}^{u}(\mathbb{R}^{n})$ . The latter is contractible by Alexander’s trick.

Remark 3.1. Let $B(1)$ denote the closed unit ball in $\mathbb{R}^{n}$ centered at the origin. Using

a suitable shrinking homeomorphism $\mathbb{R}^{n}\approx O(1)$ we can construct a natural continuous
injection $\mathcal{H}^{u}(\mathbb{R}^{n})_{b}arrow \mathcal{H}_{\partial}(B(1))$ . The Alexander’s trick yields a canonical contraction of
$\mathcal{H}_{\partial}(B(1))$ . However, the contraction of $\mathcal{H}^{u}(\mathbb{R}^{n})_{b}$ induced by this injection is not continu-
ous. In fact, it would mean that any $h\in \mathcal{H}^{u}(\mathbb{R}^{n})_{b}$ could be approximated by compactly

supported homeomorphisms in the $\sup$-metric. But this does not hold, for example, for
any translation $h(x)=x+a(a\neq 0)$ .

Example 3.2. The $n$-dimensional cylinder $M=\mathbb{S}^{n-1}\cross \mathbb{R}$ is the product of the $(n-1)-$

sphere $\mathbb{S}^{n-1}$ and the real line $\mathbb{R}$ . If $M$ is asigned a metric so that $\mathbb{S}^{n-1}\cross(-\infty, -1]$ and
$\mathbb{S}^{n-1}\cross[1, \infty)$ are two bi-Lipschitz Euclidean ends of $M$ , then $\mathcal{H}^{u}(M)_{b}$ includes the subgroup
$\mathcal{H}_{\mathbb{S}^{n-1}\cross \mathbb{R}_{1}}(\Lambda f)\approx \mathcal{H}_{\partial}(\mathbb{S}^{n-1}\cross[-1,1])$ as a strong deformation retract. This implies that
$\mathcal{H}^{u}(M)_{0}$ admits a strong deformation retraction onto $\mathcal{H}_{\mathbb{S}^{n-1}\cross \mathbb{R}_{1}}(M)_{0}\approx \mathcal{H}_{\partial}(\mathbb{S}^{n-1}\cross[-1,1])_{0}.$

96



Example 3.3. In dimension 2, we have a more explicit conclusion. Suppose $N$ is a
compact connected 2-manifold with a nonempty boundary and $C= \bigcup_{i=1}^{m}C_{i}$ is a nonempty
union of some boundary circles of $N$ . If the noncompact 2-manifold $M=N-C$ is
assigned a metic $d$ such that for each $i=1,$ $\cdots,$ $m$ the end $L_{i}$ of $M$ corresponding to
the boundary circle $C_{i}$ is a bi-Lipschitz Euclidean end of $(M, d)$ , then it follows that
$\mathcal{H}^{u}(M, d)_{0}\simeq \mathcal{H}_{L’}^{u},(M)_{0}\approx \mathcal{H}_{C}(N)_{0}\simeq*.$

3.4. Conjecture.
In [4] we studied the topological type of $\mathcal{H}^{u}(\mathbb{R})_{b}$ as an infinite-dimensional manifold and

showed that it is homeomorphic to $\ell_{\infty}$ . Example 1.lleads to the following conjecture.

Conjecture 3.1. $\mathcal{H}^{u}(\mathbb{R}^{n})_{b}$ is homeomorphic to $\ell_{\infty}$ for any $n\geq 1.$
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