Description of a mean curvature sphere of a surface by quaternionic holomorphic geometry

Katsuhiro Moriya
University of Tsukuba

1 Introduction

In this paper, we collect definitions and propositions from the surface theory in terms of quaternions. These are selected so that they complement the paper [7]. Proofs are omitted. The details are described in [2], [3] and [5].

2 Mean curvature spheres

We explain the notion of a mean curvature sphere of a conformal map.

2.1 Sphere congruences

We model S^4 on the quaternionic projective line $\mathbb{H}P^1$. Set

$$Z := \{ C \in \text{End}(\mathbb{H}^2) \mid C^2 = -\text{Id} \}.$$

This is the set of all quaternionic linear complex structures of \mathbb{H}^2. Then two-spheres are parametrized by Z:

Lemma 1 ([2], Proposition 2).

$$\{\text{oriented two-spheres in } \mathbb{H}P^1\} = Z.$$

In a classical terminology, a sphere congruence is a smooth family of two-spheres. Hence a map from a Riemann surface M to Z is a sphere congruence in $\mathbb{H}P^1$ parametrized by M.

2.2 Mean curvature spheres

Let M be a Riemann surface with complex structure J and $f : M \to \mathbb{R}^4$ a conformal map.

Definition 1. At a point $p \in M$, a two-sphere in M is called the mean curvature sphere of f at p if
• the sphere is tangent to \(f(M) \) at \(p \),
• the sphere is centered in the direction of the mean curvature vector at \(p \), and
• the radius of the sphere is equal to the reciprocal of the norm of the mean curvature vector at \(p \).

A sphere congruence parametrized by \(M \) which consists of the mean curvature spheres of \(f \) is called the mean curvature sphere of \(f \).

We see that \(f \) is the envelop of the mean curvature sphere of \(f \). The mean curvature of \(f \) at \(p \in M \) is equal to the mean curvature of the mean curvature sphere of \(f \) at \(p \).

Let \(S \) be the mean curvature sphere of \(f \) and \(\tau \) a conformal transformation of \(\mathbb{R}^4 \). Then \(\tau \circ S \) is the mean curvature sphere of \(\tau \circ f \). Hence the mean curvature sphere is a concept for conformal geometry of surfaces in \(S^4 \). For a conformal map \(f: M \to S^4 \cong \mathbb{H}P^1 \), the mean curvature sphere is a map from \(M \) to \(Z \).

2.3 Conformal Gauss maps

A mean curvature sphere is called a conformal Gauss map in [1]. This terminology is valid as follows. For \(C \in \text{End}(\mathbb{H}^2) \), we set \(\langle C \rangle := \frac{1}{8} \text{tr}_\mathbb{R} C \). Then an indefinite scalar product \(\langle \ , \ \rangle \) of \(\text{End}(\mathbb{H}^2) \) is defined by setting \(\langle C_1, C_2 \rangle := \langle C_1 C_2 \rangle \) for \(C_1, C_2 \in \text{End}(\mathbb{H}^2) \).

Lemma 2 ([1], [2], Proposition 4). The mean curvature sphere \(S \) of a conformal map \(f: M \to S^4 \) is conformal with respect to \(\langle \ , \ \rangle \).

2.4 Energy of a sphere congruence

Let \(C: M \to Z \) be a sphere congruence. For a one-form \(\omega \) on \(M \), we set \(\ast \omega := \omega \circ J \).

Definition 2 ([2], Definition 7).

\[
E(C) := \int_M \langle dC \wedge \ast dC \rangle
\]

is called the energy of a sphere congruence.

Because \(\langle \ , \ \rangle \) is indefinite, the functional \(E \) might take negative values. Set \(A_C := \frac{1}{4}(\ast dC + C dC) \). The Euler-Lagrange equation of \(E(C) \) is written by the one-form \(A_C \).

Proposition 1 ([2], Proposition 5). A sphere congruence \(C \) is harmonic if and only if \(d \ast A_C = 0 \).

3 Associated vector bundles

We explain a conformal map in terms of vector bundles.
3.1 Conformal maps

Let \mathbb{H}^2 be the trivial right quaternionic vector bundle over M of rank two. We consider a standard basis e_1, e_2 of \mathbb{H}^2 as a section of \mathbb{H}^3. Then $de_1 = de_2 = 0$. A conformal map $f: M \to \mathbb{H}P^1$ with mean curvature sphere S is translated in terms of vector bundles as Table 1 (See [2], Section 4, Section 5).

<table>
<thead>
<tr>
<th>map</th>
<th>vector bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f: M \to \mathbb{H}P^1$: map</td>
<td>$L \subset \mathbb{H}^2$: quaternionic line subbundle $L_p = f(p)$</td>
</tr>
<tr>
<td>$df: TM \to T\mathbb{H}P^1$</td>
<td>$\pi: \mathbb{H}^2 \to \mathbb{H}^2/L$: projection $\delta := \pi d\Gamma(L)$</td>
</tr>
<tr>
<td>f: conformal</td>
<td>$S\delta = L$</td>
</tr>
<tr>
<td>S: the mean curvature sphere</td>
<td>$*\delta = S\delta = \delta S</td>
</tr>
</tbody>
</table>

Table 1: Vector bundles

3.2 The Willmore functional

Let L be a conformal map with mean curvature sphere S.

Definition 3 ([2], Definition 8).

$$W(L) := \frac{1}{\pi} \int_M (A_S \wedge *A_S)$$

is called the Willmore energy of L.

Lemma 3 ([2], Lemma 8). For any conformal map L, the functional W takes non-negative values.

A critical conformal map of the Willmore functional is called a Willmore conformal map.

Theorem 1 ([4], [8], [2]). A conformal map with mean curvature sphere S is Willmore if and only if S is harmonic.

By Proposition 1, the mean curvature sphere S is harmonic if and only if $d * A_S = 0$.

We connect the above discussion with the classical terminology. Let L be a conformal map and $f: M \to \mathbb{H}$ a stereographic projection of S^4 followed by L. We induce a (singular) metric on M by a conformal map $f: M \to \mathbb{H}$. Let K be the Gauss curvature, K^\perp the normal curvature, and \mathcal{H} the mean curvature vector of f.

Lemma 4 ([2], Example 19).

$$W(L) = \frac{1}{4\pi} \int_M (|\mathcal{H}|^2 - K - K^\perp)|df|^2.$$
4 Transforms

We explain transforms of conformal maps and sphere congruences.

4.1 Darboux transforms

Let L be a conformal map with mean curvature sphere S. For $\phi \in \Gamma(\mathbb{H}^2/L)$, we denote by $\tilde{\phi} \in \Gamma(\mathbb{H}^2)$ a lift of ϕ, that is $\pi \tilde{\phi} = \phi$. Set

$$D(\phi) := \frac{1}{2}(\pi d\tilde{\phi} + S \ast \pi d\tilde{\phi}).$$

We denote by \widetilde{M} the universal covering of M. Similarly, for an object B defined on M, we denote by \tilde{B} for the object induced from B by the universal covering map of M.

Theorem 2 ([3], Lemma 2.1). Let $\phi \in \Gamma(\mathbb{H}^2/L)$. If $D(\phi) = 0$, then there exists $\tilde{\phi} \in \Gamma(\mathbb{H}^2)$ uniquely such that $\pi \tilde{\phi} = 0$. The line bundle $\tilde{L} := \tilde{\phi} \mathbb{H}$ is conformal.

Definition 4 ([3], Definition 2.2). The line bundle \tilde{L} in the above theorem is called the Darboux transform of L.

4.2 μ-Darboux transforms

Let $C : M \to Z$. We set $I \phi := \phi i$. We identify \mathbb{H}^2 with \mathbb{C}^4 by taking I as a complex structure.

Theorem 3 ([5], Theorem 4.1). The sphere congruence C is harmonic if and only if $d_{\lambda} := d + (\lambda - 1)A_{C}^{(1,0)} + (\lambda^{-1} - 1)A_{C}^{(0,1)}$ is flat for all $\lambda \in \mathbb{C} \setminus \{0\}$.

Definition 5. We call d_{λ} the associated family of d.

Theorem 4 ([5], Theorem 4.2). We assume that $C : M \to Z$ is harmonic, $A_{C} \neq 0$, $\mu \in \mathbb{C} \setminus \{0\}$, $\psi_1, \psi_2 \in \Gamma(\mathbb{H}^2)$ are linearly independent over \mathbb{C}, $d_{\mu}\psi_1 = d_{\mu}\psi_2 = 0$, $W_{\mu} := \text{span}\{\psi_1, \psi_2\}$, and $\Gamma(\mathbb{H}^2) = W_{\mu} \oplus jW_{\mu}$. Then for $G := (\psi_1, \psi_2) : M \to \text{GL}(2, \mathbb{H})$, $a = G \left(\frac{\mu + \mu^{-1}}{2}E_2\right)G^{-1}$, $b = G \left(I\left(\frac{\mu^{-1}-\mu}{2}E_2\right)\right)G^{-1}$, and $T := C(a - 1) + b$, the sphere congruence $\hat{C} := T^{-1}CT : M \to Z$ is harmonic.

Definition 6 ([5]). The sphere congruence \hat{C} is called the μ-Darboux transform of C.

It is known that a μ-Darboux transform is a Darboux transform.

Let S be a mean curvature sphere of a Willmore conformal map L. Then S is harmonic by Theorem 1. Hence a harmonic sphere congruence \hat{S} is defined.

Theorem 5 ([5], Theorem 4.4). Let L be a Willmore conformal map with harmonic mean curvature sphere S such that $A_S \neq 0$. Then, $\hat{L} := T(a - 1)^{-1}L$ is a Willmore conformal map and \hat{S} is the mean curvature sphere of \hat{L}.

Hence a μ-Darboux transform of a mean curvature sphere induces a transform of a Willmore conformal map.
4.3 Simple factor dressing

Let L be a conformal map with the mean curvature sphere S. Because S is a harmonic sphere congruence, the associated family d_λ is defined. We assume that $r_\lambda: M \to \text{GL}(4, \mathbb{C})$ is a map parametrized by $\lambda \in \mathbb{C} \setminus \{0\}$ such that, with respect to λ, it is meromorphic with the only simple pole on $\mathbb{C} \setminus \{0\}$ and holomorphic at 0 and ∞.

Definition 7 ([6]). If $\hat{d}_\lambda := r_\lambda \circ d_\mu \circ r_\lambda^{-1}$ is an associated family of a harmonic map \hat{C}, then \hat{C} is called a simple factor dressing of C.

A simple factor dressing is a harmonic map.

References

