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1 Introduction

1.1 Algebraic probability spaces and probability distributions

In this article, $\mathcal{A}$ always denotes a unital $*$-algebra over $\mathbb{C}$ , or sometimes a unital $C^{*}$-algebra

if needed. $\varphi$ denotes a state, that is, a linear functional from $\mathcal{A}$ to $\mathbb{C}$ satisfying $\varphi(X^{*}X)\geq 0$

and $\varphi(1)=1$ . An algebraic probability space is a pair $(\mathcal{A}, \varphi)$ of $a*$-algebra and a state. $X\in \mathcal{A}$

is called a random variable. The probability distribution $\mu x$ of a self-adjoint random variable
$X\in \mathcal{A}$ is defined by

$\int_{\mathbb{R}}f(x)d\mu_{X}(x)=\varphi(f(X))$ for all polynomials $f(x)$ .

$\mu x$ necessarily exists. Moreover, $\mu x$ is unique if the moment problem for the sequence $\{\varphi(X^{n})\}_{n\geq 0}$

is determinate. In particular, $\mu x$ uniquely exists as a probability measure with a compact sup-

port if $X$ is an element of a $C^{*}$-algebra.

1.2 Independence in probability theory

Independence is a fundamental concept in probability theory. We look at this concept $in^{\backslash }$

terms of non-commutative probability. Remarkably, independence is not unique in an algebraic
probability space: for instance, free independence [30] is another possible independence. The

usual one, which we call tensor independence, is the most basic.
Let $(\Omega, \mathcal{F}, P)$ be a probability space. Random variables $X,$ $Y\in L^{\infty}(\Omega, \mathcal{F})$ are independent

if and only if
$E[X^{m}Y^{n}]=E[X^{m}]E[Y^{n}]$ for all $m,$ $n\in \mathbb{N}.$

We can prove this equivalence easily as follows. It is immediate that $E[P(X)Q(Y)]=E[P(X)]E[Q(Y)]$

for all polynomials $P,$ $Q$ . Weierstrass’ polynomial approximation then implies that $E[f(X)g(Y)]=$

$E[f(X)]E[g(Y)]$ for all $f,$ $g\in C_{b}(\mathbb{R})$ . It is well known that this is equivalent to the independence
of $X$ and $Y.$

The above formulation of independence is important when we try to extend tensor inde-
pendence to non-commutative algebras. We note that a-fields $\mathcal{F}_{1},$ $\mathcal{F}_{2}\subset \mathcal{F}$ are independent if
and only if $X,$ $Y$ are independent for all $X\in L^{\infty}(\Omega, \mathcal{F}_{1})$ and $Y\in L^{\infty}(\Omega, \mathcal{F}_{2})$ . Therefore, it is
enough to consider only bounded random variables in this sense.

数理解析研究所講究録
第 1819巻 2012年 48-58 48



The associativity of independence is an important property. Let $X,$ $Y$ be bounded and
independent random variables. Then

$E(X^{p}Y^{q})=E(X^{p})E(Y^{q})$ .

Now we consider three random variables $X,$ $Y,$ $Z$ . First we assume that $X,$ $Y$ are independent
and moreover, $\{X, Y\}$ and $Z$ are independent. The notation $\{X, Y\}$ means the $\sigma$-field generated
by $X$ and $Y$ . Then

$E((X^{p}Y^{q})Z^{r})=E(X^{p}Y^{q})E(Z^{r})=E(X^{P})E(Y^{q})E(Z^{r})$ .

Next we assume that $X$ and $\{Y, Z\}$ are independent, and moreover, $Y,$ $Z$ are independent.
Then

$E(X^{p}(Y^{q}Z^{r}))=E(X^{p})E(Y^{q}Z^{r})=E(X^{P})E(Y^{q})E(Z^{r})$ .
Therefore, these two results coincide. The above argument seems to be trivial, but is important
when we generalize independence to non-commutative probability spaces.

A consequence of the associativity is that we only have to define independence for two
random variables; independence for more than two random variables can be naturally defined
via associativity.

1.3 Universal independence and natural independence
We define four independences in an algebraic probability space $(\mathcal{A}, \varphi)$ . Each independence
allows us to calculate joint moments of independent random variables and, moreover, satisfies
the condition of associativity. It is known that independence satisfying nice conditions such
as associativity is classified into five kinds [4, 22, 23, 28]. The fifth independence, called anti-
monotone independence, is essentially the same as monotone independence in this article, and
therefore it is omitted here.

Let $\{\mathcal{A}_{i}\}_{i=1}^{\infty}\subset \mathcal{A}$ be subalgebras containing the unit of $\mathcal{A}.$

Definition 1.1. (Tensor independence). $\{\mathcal{A}_{i}\}_{i=1}^{\infty}$ are said to be tensor independent if

$\varphi(X_{1}\cdots X_{n})=\prod_{j}\varphi(\prod_{X_{i}\in \mathcal{A}_{j}}X_{i})$
.

Definition 1.2. (Free independence [30]). $\{\mathcal{A}_{i}\}_{i=1}^{\infty}$ are said to be free independent if

$\varphi(X_{1}\cdots X_{n})=0$

holds whenever $\varphi(X_{k})=0X_{k}\in \mathcal{A}_{i_{k}}$ for any $k$ and $i_{1}\neq\cdots\neq i_{n}$ . The last symbol denotes that
$i_{j}\neq i_{j+1}$ for any $1\leq j\leq n-1.$

By contrast, the following two independences are meaningful only for subalgebras without
containing the umit of $\mathcal{A}$ . Therefore, we let $\{\mathcal{A}_{i}\}_{i=1}^{\infty}\subset \mathcal{A}$ be subalgebras which do not contain
the unit of $\mathcal{A}.$

Definition 1.3. (Boolean independence [29]). $\{\mathcal{A}_{i}\}_{i=1}^{\infty}$ are said to be Boolean independent if

$\varphi(X_{1}\cdots X_{n})=\prod_{i}\varphi(X_{i})$ .

for $X_{k}\in \mathcal{A}_{i_{k}},$ $i_{1}\neq\cdots\neq i_{n}.$
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Definition 1.4. (Monotone independence [20]). $\{\mathcal{A}_{i}\}_{i=1}^{\infty}$ are said to be monotone independent
if

$\varphi(X_{1}\cdots X_{n})=\varphi(X_{j})\varphi(X_{1}\cdots\check{X}_{j}\cdotsX_{n})$

for $X_{k}\in \mathcal{A}_{i_{k}}$ and $j$ satisfying $i_{j-1}<i_{j}>i_{j+1}.$

The above independences are called natural independences. Among them, tensor, free and
Boolean independences are called universal independences. Universal independences satisfy a
stronger condition of $\omega$mmutativity which will be explained later.

Remark 1.5. In the usual probability theory, a canonical realization of independence is known:
random variables $X_{1}(\omega)$ $:=\omega_{1},$ $X_{2}(\omega)$ $:=\omega_{2}(\omega=(\omega_{1}, \omega_{2})\in \mathbb{R}^{2})$ are tensor independent in
$(\mathbb{R}^{2}, \mathcal{B}(\mathbb{R}^{2}), \mu_{1}\cross\mu_{2})$ . Any one of natural independences has a similar canonical construction by
using the free product of algebras [20].

If we consider two or more states such as an algebraic probability space $(\mathcal{A}, \varphi_{1}, \psi, \cdots)$ ,
other nontrivial independences appear [9, 15, 16]. Also in this setting, one can introduce many
probabilistic concepts such as cumulants, central hmit theorems, convolutions of probability
measures, analogues for the Fourier transform and infinitely divisible distributions. These
problems are currently studied by researchers: see [2, 9, 15, 19, 25] for instance.

We define three independences in two states.

Definition 1.6. (Conditionally free independence [8]). Let $\mathcal{A}_{i}be*$-subalgebras of $\mathcal{A}$ containing
the unit of $\mathcal{A}.$ $\{\mathcal{A}_{i}\}_{i=1}^{\infty}$ is said to be conditionally (or c- for short) free independent if:

$CF$ l The equality

$\varphi(X_{1}\cdots X_{n})=\prod_{i=1}^{n}\varphi(X_{i})$ (1.1)

holds whenever $\psi(X_{k})=0,$ $X_{k}\in \mathcal{A}_{i_{k}}$ for all $k$ and $i_{1}\neq\cdots\neq i_{n}.$

$CF$2 $\{A\}_{i=1}^{\infty}$ is a free independent family with respect to $\psi.$

Definition 1.7. (Conditionally monotone independence [15]) Let $(\mathcal{A}, \varphi, \psi)$ be an algebraic
probability space. We consider sublagebras $\{\mathcal{A}_{i}\}_{i\in I}$ , each of which does not contain the unit
of $\mathcal{A}.$ $\mathcal{A}_{i}$ are said to be $c$-monotone independent if the following properties are satisfied for all
elements $X_{i}\in \mathcal{A}_{k}$. and indices $i_{1},$ $\cdots,$

$i_{n},$ $n\geq 1$ :

$CM$ l $\varphi(X_{1}\cdots X_{n})=\varphi(X_{1})\varphi(X_{2}\cdots X_{n})$ whenever $i_{1}>i_{2}$ ;

$CM$2 $\varphi(X_{1}\cdots X_{n})=\varphi(X_{1}\cdots X_{n-1})\varphi(X_{n})$ whenever $i_{n}>i_{n-1}$ ;

$CM$3 $\varphi(X_{1}\cdots X_{n})=(\varphi(X_{j})-\psi(X_{j}))\varphi(X_{1}\cdots X_{j-1})\varphi(X_{j+1}\cdots X_{n})+\psi(X_{j})\varphi(X_{1}\cdots X_{j-1}X_{j+1}\cdots X_{n})$

whenever $j$ satisfies $i_{j-1}<i_{j}>i_{j+1}$ and $2\leq j\leq n-1$ ;

$CM$4 $A$ are monotone independent with respect to $\psi.$

For a tuple $(i_{1}, \cdots, i_{n})$ of natural numbers with neighboring numbers different, we define the
sets of bottoms and peaks. Let $B(i_{1}, \cdots, i_{n})$ be the set of points $k$ such that $i_{k-1}>i_{k}<i_{k+1}$

and $P(i_{1}, \cdots, i_{n})$ the set of points $k$ such that $i_{k-1}<i_{k}>i_{k+1}$ . If $k=1$ or $n$ , one inequality
is eliminated.
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Definition 1.8. (Ordered free independence [16]) Let $\mathcal{A}_{i}$ be subalgebras of $\mathcal{A}$ containing the
unit of $\mathcal{A}$ . Then $\mathcal{A}_{i}$ are said to be ordered free independent if the following property holds for
any $X_{k}\in \mathcal{A}_{i_{k}}$ and $(i_{1}, \cdots , i_{n})$ with neighboring numbers different.

$OF$ $\varphi(X_{1}\cdots X_{n})=0$ and $\psi(X_{1}\cdots X_{n})=0$ whenever $\varphi(X_{k})=0$ holds for $k\in P(i_{1}, \cdots, i_{n})$

and $\psi(X_{k})=0$ holds for $k\in B(i_{1}, \cdots, i_{n})$ .

All the above independences, except for tensor independence, are unified by $0$ne indepen-
dence in three states.

Definition 1.9. (Indented independence [16]) Let $(\mathcal{A}, \varphi, \psi, \theta)$ be an algebraic probability space
equipped with three states. Let $\mathcal{A}_{i}$ be subalgebras of $\mathcal{A}$ containing the unit of $\mathcal{A}$ . Then $\lambda$ are
said to be indented independent if the following properties hold for any $X_{k}\in A.k$ and tuple
$(i_{1}, \cdots, i_{n})$ with neighboring numbers different.

Il 4 are ordered free independent with respect to $(\psi, \theta)$ .

I2 $\varphi(X_{1}\cdots X_{n})=0$ whenever $\varphi(X_{1})=0,$ $\psi(X_{k})=0$ for $k\in P(i_{1}, \cdots, i_{n})\backslash \{1\}$ and $\theta(X_{k})=$

$0$ for $k\in B(i_{1}, \cdots, i_{n})\backslash \{1\}.$

The concept of natural independence can be easily extended to algebraic probability spaces
with two or three states. In such an extended sense, the above independences are natural.
In particular, they are associative. However, there are no results on classffication of natural
independences in more than one states. This is partially because a special difficulty arises
in more than one states. In one state, natural independence was classified into five ones by
Muraki without the use of positivity of a state; a unital linear functional is enough to classify
the five ones. By contrast, there are many natural independences in two or more states if the
assumption of positivity is removed [17].

We mention how several independences are unified by indented independence; see [16] for
details. First, using indented independence, one can understand the reasons why subalgebras $\mathcal{A}_{i}$

are assumed not to contain the unit of $\mathcal{A}$ in monotone, Boolean and $c$-monotone independences.
Second, the associative law of monotone independence had been proved differently from free

independence. However, indented independence enables us to understand the associative laws
of monotone and free independences at the same time.

Third, indented independence explains how monotone partitions appear from linearly or-
dered non-crossing partitions.

Thus, indented independence unifies free, monotone and Boolean ones. $A$ remaining impor-
tant question is if it is possible to unify also tensor independence in terms of natural indepen-
dence in multi states.

Tensor, free, Boolean and $c$-free independences are commutative in the sense that random
variables $X$ and $Y$ are independent if and only if $Y$ and $X$ are independent. This concept of mu-
tual independence, however, is not valid for monotone, $c$-monotone, ordered free and indented
independences: $Y$ and $X$ are not independent in generic cases even if $X$ and $Y$ are indepen-
dent. This asymmetry arises, for instance, in the characterization of a monotone convolution;
see Theorem 3.1. This asymmetry sometimes makes it difficult to analyze convolutions and cu-
mulants. In spite of such a difficulty, there is still similarity between asymmetric independences
and symmetric ones. Such examples are found in Theorems 4.1, 4.2, 4.4, 4.5, 5.2.
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2 Central Limit Theorems

Since we have several kinds of independence, there are several central limit theorems (or CLTs
for short). Given a concept of independence, a CLT is formulated as follows. If $X_{1},$ $X_{2},$ $X_{3},$ $\cdots\in$

$\mathcal{A}$ are i.i. $d$ . random variables satisfying $\varphi(X_{1})=0,$ $\varphi(X_{1}^{2})=1$ , then the normalized sum

$Y_{N}:= \frac{X_{1}+\cdots+X_{N}}{\sqrt{N}}$

is known to converge to a limit in the sense of weak convergence of probability distributions.
In other words, there exists a probability measure $\mu$ such that

$\mu_{Y_{N}}arrow\mu (Narrow\infty)$ .

If the number of states is larger than one, a CLT is formulated as follows. What we consider
is an algebraic probability space $(\mathcal{A}, \varphi, \psi, \theta, \cdots)$ equipped with states. Let $X_{i}$ be self-adjoint

random variables such that

(1) $X_{i}$ are identically distributed, that is, for any $n$ , the moments $\varphi(X_{i}^{n}),$ $\psi(X_{i}^{n}),$ $\theta(X_{i}^{n}),$ $\cdots$

do not depend on $i.$

(2) $X_{i}$ are independent.

(3) $X_{i}$ have zero means and finite variances: $\varphi(X_{i})=0,$ $\psi(X_{i})=0,$ $\theta(X_{i})=0,$ $\cdots$ , and
$\varphi(X_{i}^{2})=\alpha^{2},$ $\psi(X_{i}^{2})=\beta^{2},$ $\theta(X_{i}^{2})=\gamma^{2},$ $\cdots.$

We have not assumed that the variances are equal to one, since difference among the variances
yields a variety of limit distributions. Then we consider limit distributions $\lambda,$

$\mu,$ $\nu,$ $\cdots$ which
respectively appear as the distributions of $\frac{X_{1}+\cdots+X_{N}}{\sqrt{N}}$ under the states $\varphi,$

$\psi,$ $\theta,$ $\cdots.$

The limit distributions are shown in Table 1. Except for the tensor independence, all limit
distributions are expressed in terms of the Kesten distributions. In the table, $\lambda=\frac{t-1}{2t-1}$ for

$t>1$ and $\lambda=0$ for $0\leq t\leq 1.$ $a$ is defined by $a=t\sqrt{\frac{2s}{2t-1}}$ . The parameters $s,$ $t$ are expressed
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in terms of $\alpha^{2},$ $\beta^{2},$
$\gamma^{2}:(s, t)=(\beta^{2}+\gamma^{2}, \overline{\beta}^{z_{+}^{\alpha^{2}}\approx_{\gamma}})$ for indented independence; $(s, t)=(2\beta^{2\alpha^{2}}\overline{2}\beta^{\pi})$

for $c$-free independence; $(s, t)=( \alpha^{2}+\beta^{2}, \frac{\alpha^{2}}{\alpha^{2}+\beta^{2}})$ for ordered independence; $(s, t)=( \beta^{2}, \frac{\alpha^{2}}{\beta^{2}})$ for
$c$-monotone independence.

Wigner’s semicircle law, arcsine law and Bernoulli’s law are all special cases of the Kesten
distributions. This is a natural consequence of the fact that indented independence unffies free,
monotone and Boolean independences.

3 Convolutions of probability distributions
Let $X,$ $Y$ be self-adjoint elements of a $C^{*}$-algebra and be independent in some sense. The
convolution of $\mu_{X}$ and $\mu_{Y}$ is defined by $\mu_{X+Y}$ and is denoted as $\mu_{X}\star\mu_{Y}$ . Depending on a
choice of independence, $\star$ is denoted $as*$ for tensor independence, ffl for free independence, $\triangleright$

for monotone independence and $\cup$ for Boolean independence.
The tensor convolution is characterized by the multiplication of the Fourier transforms. The

other three convolutions also have analogous characterizations. However, these three convolu-
tions sharply differ from the tensor one since they are characterized by the Stieltjes transform,
not by the Fourier transform.

We define the Stieltjes transform $G_{\mu}(z)$ $:= \sum_{n=0_{z^{n}}\neg+}^{\infty m_{n}(\mu)}=\int_{\mathbb{R}}\frac{1}{z-x}d\mu(x)$ for $z\not\in \mathbb{R}$ and the
Fourier transform $\mathcal{F}_{\mu}(z)$ $:= \int_{\mathbb{R}}e^{izx}\mu(dx),$ $z\in \mathbb{R}.$ $F_{\mu}(z)$ $:= \frac{1}{G_{\mu}(z)}$ is called the reciprocal Cauchy
transform of $\mu.$ $\phi_{\mu}(z)$ $:=F_{\mu}^{-1}(z)-z$ is defined in an open set $\Omega_{\mu}\subset \mathbb{C}$ and is called the
Voiculescu transform [7]. We note that $\phi_{\mu}(\frac{1}{z})$ and sometimes $z \phi_{\mu}(\frac{1}{z})$ are called the $R$-transform
of $\mu.$

Theorem 3.1. (1) $\mathcal{F}_{\mu*\nu}(z)=\mathcal{F}_{\mu}(z)\mathcal{F}_{\nu}(z),$ $z\in \mathbb{R}.$

(2) (Bercovici-Voiculescu [7]) $\phi_{\mu ffl\nu}(z)=\phi_{\mu}(z)+\phi_{\nu}(z),$ $z\in\Omega_{\mu}\cup\Omega_{\nu}.$

(3) (Speicher- Woroudi [29]) $F_{\mu \mathfrak{G}\nu}(z)=F_{\mu}(z)+F_{\nu}(z)-z,$ $z\not\in \mathbb{R}.$

(4) (Muraki $[20J)F_{N^{\nu}}(z)=F_{\mu}(F_{\nu}(z))$ for $z\not\in \mathbb{R}.$

If we take the logarithm of the Fourier transforms, the tensor convolution is characterized by
the sum of such transforms. In this sense, only monotone convolution is different from the other
three. Still there exists a similar transform which is a vector field $A_{\mu}$ defined in an open set $U_{\mu}$

of $\mathbb{C}$ such that the flow $F_{t}(z)$ generated by $A_{\mu}$ satisfies $F_{1}=F_{\mu}$ . The existence of such a vector
field is proved by using the uniformization theorem for a simply connected Riemannian surface.
The reader is referred to [10] for the definition. In generic cases, $A_{\mu\triangleright\nu}\neq A_{\mu}+A_{\nu}$ ; however,
this transform behaves additively for powers of a probability measure:. $A_{\mu}\triangleright n(z)=nA_{\mu}(z)$ . This
property is also observed in monotone cumulants [12].

4 Infinitely divisible distributions
$\mu$ is said to be $\star$-infinitely divisible if for any $n$ , there exists a probability measure $\mu_{n}$ such
that $\mu=\mu_{n}^{\star n}$ . Infinitely divisible distributions appear as the probability distributions of L\’evy
processes. We however focus only on probability distributions, not on processes in this article.
Accordingly to the four kinds of convolutions, there are four concepts of infinitely divisible
distributions. The following theorem is classical and well known in probability theory [27].
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Theorem 4.1. The follounng are equivalent.
(1) $\mu is*$ -infinitely divisible.
(2) There $ex\iota st\gamma\in \mathbb{R}$ and a non-negative finite measure $\tau$ such that

$\mathcal{F}_{\mu}(z)=\exp(i\gamma z+\int_{\mathbb{R}}(e^{izx}-1-\frac{ixz}{1+x^{2}})\frac{1+x^{2}}{x^{2}}\tau(dx))$.

(3) There exists a weakly continuous $*$ -convolution semigroup $\{\mu_{t}\}_{t\geq 0}$ such that $\mu_{0}=\delta_{0}$ and
$\mu_{1}=\mu.$

The representation in (2) is called the L\’evy-Khintchine formula.
Analogous results are known for free [7] and monotone convolutions [1, 20].

Theorem 4.2. The following are equivalent.
(1) $\mu$ is ffl-infinitely divisible.
(2) There exist $\gamma\in \mathbb{R}$ and a non-negative finite measure $\tau$ such that

$\phi_{\mu}(z)=\gamma+\int_{\mathbb{R}}\frac{1+xz}{z-x}\tau(dx)$ .

(3) There exists a weakly $\omega$ntinuous ffl-convolution semigroup $\{\mu_{t}\}_{t\geq 0}$ such that $\mu_{0}=\delta_{0}$ and
$\mu_{1}=\mu.$

Theorem 4.3. The followmg are equivalent.
(1) $\mu\iota s\triangleright$ -infinitely divisible.
(2) There $ex\uparrow sts$ a vector field $A_{\mu}$ of such a form as

$A_{\mu}(z)=- \gamma+\int_{\mathbb{R}}\frac{1+xz}{x-z}\tau(dx)$ ,

where $\gamma\in \mathbb{R}$ and $\tau$ is a non-negative finite measure, and $F_{\mu}$ coincides with $\exp(A_{\mu})$ . $\exp(A_{\mu})$

denotes the time one mapping $F_{1}$ of a flow $\{F_{t}\}_{t\geq 0}$ generated from the differential equation
$\frac{d}{dt}F_{t}(z)=A_{\mu}(F_{t}(z)),$ $F_{0}(z)=z.$

(3) There $ex\iota sts$ a weakly continuous $\triangleright$ -convolution semigroup $\{\mu_{t}\}_{t\geq 0}$ such that $\mu_{0}=\delta_{0}$ and
$\mu_{1}=\mu.$

Examples are shown in Table 2-4.
For the Boolean convolution, any probabihty measure is $\oplus$-infinitely divisible. The L\’evy-

Khintchine formula exists for any probability measure in the form

$F_{\mu}(z)-z=- \gamma+\int_{\mathbb{R}}\frac{1+xz}{x-z}\tau(dx)$ .

The probability distribution of an increasing L\’evy process is intensively studied in proba-
bility theory. Such a distribution is important in the theory of subordination, that is, a random
time change of a L\’evy process. $A$ basic example is a Poisson distribution. Such a probability
distribution is characterized as follows. The reader is referred to [27] for the proof.

Theorem 4.4. Let $\{\mu_{t}\}_{t\geq 0}$ be a weakly continuous $*-\omega$nvolution semigroup with $\mu_{0}=\delta_{0}$ . Then
the following statements are equivalent:

(1) there exqsts $t>0$ such that supp $\mu_{t}\subset[0, \infty)$ ;
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The Marchenko-Pastur law is the Poisson distribution in free probability.

$E^{-1}$ is an inverse function of $z\mapsto ze^{z}$ and $a,$ $b$ are functions of $\lambda$ . See [21] for details.

(2) supp $\mu_{t}\subset[0, \infty)$ for any $t>0$ ;

(3) supp $\tau\subset[0, \infty),$ $\tau(\{0\})=0,$ $\int_{0}^{\infty}\frac{1}{x}d\tau(x)<\infty$ and $\gamma\geq\int_{0}^{\infty}\frac{1}{x}d\tau(x)$ .

There are analogues of the above result for monotone and Boolean convolution: the result
for the monotone convolution was proved in [14] and for Boolean convolution in [3].

Theorem 4.5. Let $\{\mu_{t}\}_{t\geq 0}$ be a weakly continuous $\triangleright$ (resp. $\cup$)-convolution semigroup with
$\mu_{0}=\delta_{0}$ . Then the following statements are equivalent:

(1) there exists $t>0$ such that supp $\mu_{t}\subset[0, \infty)$ ;

(2) supp $\mu_{t}\subset[0, \infty)$ for any $t>0$ ;

(3) supp $\tau\subset[0, \infty),$ $\tau(\{0\})=0,$ $\int_{0}^{\infty}\frac{1}{x}d\tau(x)<\infty$ and $\gamma\geq\int_{0}^{\infty}\frac{1}{x}d\tau(x)$ .

The above theorem is not true for ffl-convolution semigroups. However, (2) and (3) are still
equivalent also in free probabihty [5]. Probability measures satisfying the mutually equivalent
conditions (2) and (3) are said to be regular [26]. Thus, among the four independences, only
free probability shows an exceptional property of probability measures on $[0, \infty)$ .
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5 Convergence of probability measures to Cauchy dis-
tributions

In probability theory, stable distributions are well investigated. They can be defined at least
in two ways [11, 27]: the first one is in terms of self-similarity of a L\’evy process; the second
is in terms of domains of attraction. There are also analogues for free, Boolean and monotone
independences. The aspect of self-similarity is found in [7, 13, 29] and the aspect of domains
of attraction is in [6, 18].

For Boolean independence, every stable distribution is strictly stable. The property has not
been proved for monotone independence. These situations are due to the fact that Boolean and
monotone independences for subalgebras become trivial if the subalgebras contain the unit of
the whole algebra. As a consequence, $\delta_{a}\theta\mu$ and $\delta_{a}\triangleright\mu$ differ from the shifted measure $\delta_{a}*\mu.$

For this reason, we will define domains of attraction for Boolean and monotone convolutions in
a slightly different way.

From now on, let us consider only Cauchy distributions which are in particular important
in tensor, free, Boolean and monotone independences. This is because they are strictly 1-stable
distributions in the four independences. Let

$\mu_{a,b}(dx)=\frac{1}{\pi}\cdot\frac{b}{(x-a)^{2}+b^{2}}dx$

be the Cauchy distribution with parameters $a\in \mathbb{R}$ and $b\geq 0.$ $\mu_{a,0}$ is defined to be $\delta_{a}.$ $A$

probability measure $\mu$ is said to belong to the domain of attraction of the Cauchy distribution
$\mu_{a,b}$ if there exist $a_{n}\in \mathbb{R},$ $b_{n}>0$ such that for i.i. $d$ . random variables $X_{n}$ with distribution $\mu,$

the random variables
$\frac{X_{1}+\cdots+X_{n}}{b_{n}}-a_{n}$

converge to $\mu_{a,b}$ in distribution. These definitions are valid for tensor and free convolutions.
For monotone and Boolean convolutions, this definition causes a problem since the constant $a_{n}$

is not independent of $X_{i}$ ’s in generic cases. Therefore, we also require $a_{n}=0$ for monotone and
Boolean convolutions.

Thus we have four kinds of domains of attractions accordingly to tensor, free, Boolean and
monotone independences. Theorem 4.1 of the paper [6] imphes the following result as a special
case.

Theorem 5.1. The domain of attraction of $\mu_{a,b}$ for the free convolution coincides with that for
the tensor convolution.

This is a consequence of the fact that $\mu_{a,b}$ is fixed by the Bercovici-Pata bijection [6].
In a paper [18], we proved the following result for the monotone convolution.

Theorem 5.2. $\mu$ belongs to $the\triangleright$ -domain of attraction of $\mu_{a,b}$ if:
(1) there exists $R>0$ such that $\mu|_{|x|\geq R}$ has a density of the form $\sum_{n=2}^{\infty}\frac{a_{n}}{x^{\mathfrak{n}}}$ which absolutely

converges for $|x|\geq R$ ;

(2) the first complex moment of $\mu$ rs equal to $a+ib.$

The nth complex moment of $\mu$ is defined as the coefficient of $:\neg_{z^{n+}}1$ in the power expansion
of $G_{\mu}(z),$ ${\rm Im} z<0$ . The reader is referred to [18] for details.
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