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This article summarizes the results obtained by the author [4] who explored
a combinatorial approach when capacities are defined over a finite lattice. Let L
be a finite lattice with partial ordering <, and let 0 and 1 denote the minimum
and the maximum element of L. A monotone function ¢ on L is called a capacity
if ¢(0) = 0 and (1) = 1. Let £ denote the collection of nonempty dual order
ideals in L, and let X be an L-valued random variable on some probability space
(Q,P), distributed as P(X = V) = f(V). If P(0 € X) = 0 then

1) p(z) =P(z € X)

gives a capacity, which is viewed as a marginal condition for X. From another
viewpoint, the collection of capacities on L is a convex polytope, every element of
which can be represented as the convex combination

(2) @) =3 fV)xw (), zel,

Vel

where xy denotes an indicator function of V. It should be noted, however, that
the choice of f is not necessarily unique. In the way of formulating (2), the weight
f(V) determines a probability mass function (pmf) for X, in which (2) is deemed
to be (1). This probabilistic interpretation of a capacity was first considered by
Choquet [1] and independently by Murofushi and Sugeno [6].

For aj,aq,... € L, we define the difference operator V,, by

(3) , Valgp(x) = (p(ﬁl?) - SO("L' N al)’ z €L,

and the successive difference operator V,, . .. recursively by

.....

(4) Vaswan® = Va,(Vay,an19)y n=2,3,....

The monotonicity of ¢ is characterized by Vap > 0 for any a € L; furthermore, ¢
is called completely monotone (or monotone of order oo; see [1]) if Vai,anp >0
for any aj,...,a, € L and for any n > 1.
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Let X be an L-valued random variable with pmf f(z) = P(X = z). If f(0) =0
then

(5) p(z)=) ), zel,

y<z

gives a capacity, which is viewed as a cumulative distribution function (cdf), also
known as a belief function in [2]. The existence of the cdf (5) for a capacity
¢ is necessary and sufficient for the completely monotonicity of ¢. This crucial
observation, known as Choquet’s theorem, was made by Choquet [1] for the class
of compact sets in a topological space, and it has been instrumental in the studies
of random sets. See [5] for a comprehensive review on random sets on topological
spaces. This result in case of lattices was due to Norberg [7] who studied measures
on continuous posets.

The function f in (5) is called the Mdbius inverse of v, by which the successive
difference operators are fully characterized as follows.

Theorem 1. The Mébius inverse f of ¢ satisfies

(6) Va,..anp(Z Z{f Yiy<z,2yfLaforalli=1...,n}

Particularly we can show the Choquet’s theorem for a finite lattice via combi-
natorial techniques.

Corollary 2. Assume ¢(0) > 0. Then the Mobius inverse f of ¢ is nonnegative
if and only if ¢ is completely monotone.

The collection L is itself a distributive lattice when it is equipped with the
order relation U < V by U 2 V. The lattice L is embedded as the subposet

= {{a)* : @ € L} of principal dual order ideals. Here we introduce a completely
monotone capacity ® on £, and call it a completely monotone extension of o if it
satisfies the marginal condition

(7) p(z) = 2((z)*), zel.

The marginal condition (7) is equivalent to (2), in which the weight f(V) deter-
mines the Mébius inverse of ®. By the same token, (1) and (7) are the same when
we express ®(U) = P(X <X U) as a cdf for L-valued random variable X'

Kellerer [3] and Riischendorf [8] investigated the optimal bounds analogous to
the classical Fréchet bounds systematically for various marginal problems. Let
R(L) be the space of real-valued functions on L. Given & € My (L) we can
formulate the nonnegative linear functional

= 3" 1Vg(V), g€ R(L),

Vel



where f is the Mobius inverse of ®. Assuming ¢ € M;(L), we can define the
Fréchet bound

(8) By(g9) = min{®(g) : [I(?) = ¢}

for any g € R(L). Duality follows from the relationship between primal and
dual problem of linear programming, but it is also viewed as a straightforward
application of the Hahn-Banach theorem (cf. Kellerer [3]).

Theorem 3. The dual problem

(9) S“’(g)::max{Zngp(x) Y T gg(V),VEE}.
z€L zeV
satisfies By(g) = S¥(g) for any g € R(L).

In particular we formulate the optimal lower bound A(y;a,b) = By((a,b)*)
at the dual order ideal (a,b)* generated by a pair {a,b} of L. Then we apply
the value A(g;a,z) to replace ¢(a A x) in (3)—(4), and propose the A-difference
operator A, by

(10) Aap(z) = ¢(z) = Mp;a,2), z€L,
and the successive A-difference operator recursively by
(11) Aa1,...,an§0 - Aa.ﬂ (Aal,...,a,n_l ‘P)a n = 27 3) cees

Then we consider a stochastic comparison between ¢(z) = P(z € X) and ¢(y) =
P(Y < y), and obtain a sufficient condition for P(Y € X) = 1.

Theorem 4. If

(12)  Agyanp(D) < Vo a,(1)  for every monotone path (ay, ..., ax),

.....

then there ezists a joint cdf T' for (X,Y) satisfying P(Y € X) = 1 given the
marginal conditions.

References

[1] Choquet, G. (1954). Theory of capacities. Ann. Inst. Fourier 5, 131-295.

[2] Grabisch, M. (2009). Belief functions on lattices. Int. J. Intell. Syst. 24, T6-
95.

[3] Kellerer, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch.
Verw. Gebiete 67, 399-432.

91



92

[4] Machida, M. (2011). Capacities on a finite lattice. Submitted for publication,
preprint available at arxiv.org.

[5] Molchanov, I. (2005). Theory of Random Sets. Springer-Verlag, London.

[6] Murofushi, T. and Sugeno, M. (1991). A theory of fuzzy measures: Repre-
sentations, the Choquet integral, and null sets. J. Math. Anal. Appl. 159,
532-549.

[7] Norberg, T. (1989). Existence theorems for measures on continuous posets
with applications to random set theory. Math. Scand. 64, 15-51.

[8] Riischendorf, L. (1991). Fréchet bounds and their applications. In Advances in
Probability Distributions with Given Marginals, 151-187. Kluwer Academic
Publishers, Netherlands.



