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This article summarizes the results obtained by the author [4] who explored
a combinatorial approach when capacities are defined over a finite lattice. Let $L$

be a finite lattice with partial ordering $\leq$ , and let $\hat{0}$ and $i$ denote the minimum
and the maximum element of $L.$ $A$ monotone function $\varphi$ on $L$ is called a capacity
if $\varphi(\hat{0})=0$ and $\varphi(i)=1$ . Let $\mathcal{L}$ denote the collection of nonempty dual order
ideals in $L$ , and let $\mathcal{X}$ be an $\mathcal{L}$-valued random variable on some probability space
$(\Omega, \mathbb{P})$ , distributed as $\mathbb{P}(\mathcal{X}=V)=f(V)$ . If $\mathbb{P}(\hat{0}\in \mathcal{X})=0$ then

(1) $\varphi(x)=\mathbb{P}(x\in \mathcal{X})$

gives a capacity, which is viewed as a marginal condition for $\mathcal{X}$ . From another
viewpoint, the collection of capacities on $L$ is a convex polytope, every element of
which can be represented as the convex combination

(2)
$\varphi(x)=\sum_{V\in \mathcal{L}}f(V)\chi_{V}(x) , x\in L,$

where $\chi_{V}$ denotes an indicator function of $V$ . It should be noted, however, that
the choice of $f$ is not necessarily unique. In the way of formulating (2), the weight
$f(V)$ determines a probability mass function (pmf) for $\mathcal{X}$ , in which (2) is deemed
to be (1). This probabilistic interpretation of a capacity was first considered by
Choquet [1] and independently by Murofushi and Sugeno [6].

For $a_{1},$ $a_{2},$ $\ldots\in L$ , we define the difference operator $\nabla_{a1}$ by

(3) $\nabla_{a}1\varphi(x)=\varphi(x)-\varphi(x\wedge a_{1}) , x\in L,$

and the successive difference operator $\nabla_{a,\ldots,a_{n}}1$ recursively by

(4) $\nabla_{a_{1},\ldots,a_{n}}\varphi=\nabla_{a_{n}}(\nabla_{a1,\ldots,a_{n-1}}\varphi) , n=2,3, \ldots.$

The monotonicity of $\varphi$ is characterized by $\nabla_{a}\varphi\geq 0$ for any $a\in L$ ; furthermore, $\varphi$

is called completely monotone (or monotone of order $\infty$ ; see [1]) if $\nabla_{a1,\ldots,a_{n}}\varphi\geq 0$

for any $a_{1},$
$\ldots,$

$a_{n}\in L$ and for any $n\geq 1.$
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Let $X$ be an $L$-valued random variable with pmf $f(x)=\mathbb{P}(X=x)$ . If $f(\hat{0})=0$

then

(5) $\varphi(x)=\sum_{y\leq x}f(y) , x\in L,$

gives a capacity, which is viewed as a cumulative distribution function (cdf), also
known as a belief function in [2]. The existence of the cdf (5) for a capacity
$\varphi$ is necessary and sufficient for the completely monotonicity of $\varphi$ . This crucial
observation, known as Choquet’s theorem, was made by Choquet [1] for the class
of compact sets in a topological space, and it has been instrumental in the studies
of random sets. See [5] for a comprehensive review on random sets on topological
spaces. This result in case of lattices was due to Norberg [7] who studied measures
on continuous posets.

The function $f$ in (5) is called the M\"obius inverse of $\varphi$ , by which the successive
difference operators are fully characterized as follows.

Theorem 1. The M\"obius inverse $f$ of $\varphi$ satisfies

(6) $\nabla_{a1,\ldots,a_{n}}\varphi(x)=\sum\{f(y)$ : $y\leq x,$ $y\not\leq a_{i}$ for all $i=1,$ $\ldots,$
$n\}.$

Particularly we can show the Choquet’s theorem for a finite lattice via combi-
natorial techniques.

Corollary 2. Assume $\varphi(\hat{0})\geq 0$ . Then the M\"obius inverse $f$ of $\varphi$ is nonnegative
if and only if $\varphi$ is completely monotone.

The collection $\mathcal{L}$ is itself a distributive lattice when it is equipped with the
order relation $U\preceq V$ by $U\supseteq V$ . The lattice $L$ is embedded as the subposet
$\mathcal{L}_{0}$ $:=\{\langle a\rangle^{*}:a\in L\}$ of principal dual order ideals. Here we introduce a completely
monotone capacity $\Phi$ on $\mathcal{L}$ , and call it a completely monotone extension of $\varphi$ if it
satisfies the marginal condition

(7) $\varphi(x)=\Phi(\langle x\rangle^{*}) , x\in L.$

The marginal condition (7) is equivalent to (2), in which the weight $f(V)$ deter-
mines the M\"obius inverse of $\Phi$ . By the same token, (1) and (7) are the samo when
we express $\Phi(U)=\mathbb{P}(\mathcal{X}\preceq U)$ as a cdf for $\mathcal{L}$-valued random variable $\mathcal{X}.$

Kellerer [3] and R\"uschendorf [8] investigated the optimal bounds analogous to
the classical Fr\’echet bounds systematically for various marginal problems. Let
$R(\mathcal{L})$ be the space of real-valued functions on $\mathcal{L}$ . Given $\Phi\in M_{\infty}(\mathcal{L})$ we can
formulate the nonnegative linear functional

$\Phi(g)=\sum_{V\in \mathcal{L}}f(V)g(V) , g\in R(\mathcal{L})$
,
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where $f$ is the M\"obius invcrse of $\Phi$ . Assuming $\varphi\in M_{1}(L)$ , we can define the
Fr\’echet bound

(8) $B_{\varphi}(g)= \min\{\Phi(g);\Pi(\Phi)=\varphi\}$

for any $g\in R(\mathcal{L})$ . Duality follows from the relationship between primal and
dual problem of linear programming, but it is also viewed as a straightforward
application of the Hahn-Banach theorem (cf. Kellerer [3]).

Theorem 3. The dual problem

(9) $S^{\varphi}(g)= \max\{\sum_{x\in L}r_{x}\varphi(x)$ :
$\sum_{x\in V}r_{x}\leq g(V),$

$V\in \mathcal{L}\}.$

satisfies $B_{\varphi}(g)=S^{\varphi}(g)$ for any $g\in R(\mathcal{L})$ .

In particular we formulate the optimal lower bound $\lambda(\varphi;a, b)=B_{\varphi}(\langle a, b\rangle^{*})$

at the dual order ideal $\langle a,$ $b\rangle^{*}$ generated by a pair $\{a, b\}$ of $L$ . Then we apply
the value $\lambda(\varphi;a, x)$ to replace $\varphi(a\wedge x)$ in (3)$-(4)$ , and propose the $\lambda$-difference
operator $\Lambda_{a}$ by

(10) $\Lambda_{a}\varphi(x)=\varphi(x)-\lambda(\varphi;a, x) , x\in L,$

and the successive $\lambda$ -difference operator recursively by

(11) $\Lambda_{a1,\ldots,a_{n}}\varphi=\Lambda_{a_{n}}(\Lambda_{a1,\ldots,a_{n-1}}\varphi) , n=2,3, \ldots.$

Then we consider a stochastic comparison between $\varphi(x)=\mathbb{P}(x\in \mathcal{X})$ and $\psi(y)=$

$\mathbb{P}(Y\leq y)$ , and obtain a sufficient condition for $\mathbb{P}(Y\in \mathcal{X})=1.$

Theorem 4. If
(12) $\Lambda_{aa}1,\ldots,k\varphi(i)\leq\nabla_{a_{1},\ldots,a_{k}}\psi(i)$ for every monotone path $(a_{1}, \ldots, a_{k})$ ,

then there exists a joint $cdf\Gamma$ for $(\mathcal{X}, Y)$ satisfying $\mathbb{P}(Y\in \mathcal{X})=1$ given the
marginal conditions.
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