Motoya Machida

Department of Mathematics, Tennessee Technological University, Cookeville, TN mmachida@tntech.edu

This article summarizes the results obtained by the author [4] who explored a combinatorial approach when capacities are defined over a finite lattice. Let Lbe a finite lattice with partial ordering \leq , and let $\hat{0}$ and $\hat{1}$ denote the minimum and the maximum element of L. A monotone function φ on L is called a *capacity* if $\varphi(\hat{0}) = 0$ and $\varphi(\hat{1}) = 1$. Let \mathcal{L} denote the collection of nonempty dual order ideals in L, and let \mathcal{X} be an \mathcal{L} -valued random variable on some probability space (Ω, \mathbb{P}) , distributed as $\mathbb{P}(\mathcal{X} = V) = f(V)$. If $\mathbb{P}(\hat{0} \in \mathcal{X}) = 0$ then

(1)
$$\varphi(x) = \mathbb{P}(x \in \mathcal{X})$$

gives a capacity, which is viewed as a marginal condition for \mathcal{X} . From another viewpoint, the collection of capacities on L is a convex polytope, every element of which can be represented as the convex combination

(2)
$$\varphi(x) = \sum_{V \in \mathcal{L}} f(V) \chi_V(x), \quad x \in L,$$

where χ_V denotes an indicator function of V. It should be noted, however, that the choice of f is not necessarily unique. In the way of formulating (2), the weight f(V) determines a *probability mass function* (pmf) for \mathcal{X} , in which (2) is deemed to be (1). This probabilistic interpretation of a capacity was first considered by Choquet [1] and independently by Murofushi and Sugeno [6].

For $a_1, a_2, \ldots \in L$, we define the difference operator ∇_{a_1} by

(3)
$$\nabla_{a_1}\varphi(x) = \varphi(x) - \varphi(x \wedge a_1), \quad x \in L,$$

and the successive difference operator ∇_{a_1,\ldots,a_n} recursively by

(4)
$$\nabla_{a_1,\ldots,a_n}\varphi = \nabla_{a_n}(\nabla_{a_1,\ldots,a_{n-1}}\varphi), \quad n = 2, 3, \ldots$$

The monotonicity of φ is characterized by $\nabla_a \varphi \ge 0$ for any $a \in L$; furthermore, φ is called *completely monotone* (or monotone of order ∞ ; see [1]) if $\nabla_{a_1,\ldots,a_n} \varphi \ge 0$ for any $a_1,\ldots,a_n \in L$ and for any $n \ge 1$.

Let X be an L-valued random variable with pmf $f(x) = \mathbb{P}(X = x)$. If $f(\hat{0}) = 0$ then

(5)
$$\varphi(x) = \sum_{y \le x} f(y), \quad x \in L,$$

gives a capacity, which is viewed as a cumulative distribution function (cdf), also known as a belief function in [2]. The existence of the cdf (5) for a capacity φ is necessary and sufficient for the completely monotonicity of φ . This crucial observation, known as Choquet's theorem, was made by Choquet [1] for the class of compact sets in a topological space, and it has been instrumental in the studies of random sets. See [5] for a comprehensive review on random sets on topological spaces. This result in case of lattices was due to Norberg [7] who studied measures on continuous posets.

The function f in (5) is called the *Möbius inverse* of φ , by which the successive difference operators are fully characterized as follows.

Theorem 1. The Möbius inverse f of φ satisfies

(6)
$$\nabla_{a_1,\ldots,a_n}\varphi(x) = \sum \{f(y) : y \le x, y \not\le a_i \text{ for all } i = 1,\ldots,n \}.$$

Particularly we can show the Choquet's theorem for a finite lattice via combinatorial techniques.

Corollary 2. Assume $\varphi(\hat{0}) \geq 0$. Then the Möbius inverse f of φ is nonnegative if and only if φ is completely monotone.

The collection \mathcal{L} is itself a distributive lattice when it is equipped with the order relation $U \leq V$ by $U \supseteq V$. The lattice L is embedded as the subposet $\mathcal{L}_0 := \{\langle a \rangle^* : a \in L\}$ of principal dual order ideals. Here we introduce a completely monotone capacity Φ on \mathcal{L} , and call it a *completely monotone extension* of φ if it satisfies the marginal condition

(7)
$$\varphi(x) = \Phi(\langle x \rangle^*), \quad x \in L.$$

The marginal condition (7) is equivalent to (2), in which the weight f(V) determines the *Möbius inverse* of Φ . By the same token, (1) and (7) are the same when we express $\Phi(U) = \mathbb{P}(\mathcal{X} \leq U)$ as a cdf for \mathcal{L} -valued random variable \mathcal{X} .

Kellerer [3] and Rüschendorf [8] investigated the optimal bounds analogous to the classical Fréchet bounds systematically for various marginal problems. Let $R(\mathcal{L})$ be the space of real-valued functions on \mathcal{L} . Given $\Phi \in M_{\infty}(\mathcal{L})$ we can formulate the nonnegative linear functional

$$\Phi(g) = \sum_{V \in \mathcal{L}} f(V)g(V), \quad g \in R(\mathcal{L}),$$

where f is the Möbius inverse of Φ . Assuming $\varphi \in M_1(L)$, we can define the Fréchet bound

(8)
$$B_{\varphi}(g) = \min\{\Phi(g) : \Pi(\Phi) = \varphi\}$$

for any $g \in R(\mathcal{L})$. Duality follows from the relationship between primal and dual problem of linear programming, but it is also viewed as a straightforward application of the Hahn-Banach theorem (cf. Kellerer [3]).

Theorem 3. The dual problem

(9)
$$S^{\varphi}(g) = \max\left\{\sum_{x \in L} r_x \varphi(x) : \sum_{x \in V} r_x \le g(V), V \in \mathcal{L}\right\}.$$

satisfies $B_{\varphi}(g) = S^{\varphi}(g)$ for any $g \in R(\mathcal{L})$.

In particular we formulate the optimal lower bound $\lambda(\varphi; a, b) = B_{\varphi}(\langle a, b \rangle^*)$ at the dual order ideal $\langle a, b \rangle^*$ generated by a pair $\{a, b\}$ of L. Then we apply the value $\lambda(\varphi; a, x)$ to replace $\varphi(a \wedge x)$ in (3)–(4), and propose the λ -difference operator Λ_a by

(10)
$$\Lambda_a \varphi(x) = \varphi(x) - \lambda(\varphi; a, x), \quad x \in L,$$

and the successive λ -difference operator recursively by

(11)
$$\Lambda_{a_1,\ldots,a_n}\varphi = \Lambda_{a_n}(\Lambda_{a_1,\ldots,a_{n-1}}\varphi), \quad n = 2, 3, \ldots$$

Then we consider a stochastic comparison between $\varphi(x) = \mathbb{P}(x \in \mathcal{X})$ and $\psi(y) = \mathbb{P}(Y \leq y)$, and obtain a sufficient condition for $\mathbb{P}(Y \in \mathcal{X}) = 1$.

Theorem 4. If

(12) $\Lambda_{a_1,\ldots,a_k}\varphi(\hat{1}) \leq \nabla_{a_1,\ldots,a_k}\psi(\hat{1})$ for every monotone path (a_1,\ldots,a_k) ,

then there exists a joint cdf Γ for (\mathcal{X}, Y) satisfying $\mathbb{P}(Y \in \mathcal{X}) = 1$ given the marginal conditions.

References

- [1] Choquet, G. (1954). Theory of capacities. Ann. Inst. Fourier 5, 131–295.
- [2] Grabisch, M. (2009). Belief functions on lattices. Int. J. Intell. Syst. 24, 76– 95.
- [3] Kellerer, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 399-432.

- [4] Machida, M. (2011). Capacities on a finite lattice. Submitted for publication, preprint available at arxiv.org.
- [5] Molchanov, I. (2005). Theory of Random Sets. Springer-Verlag, London.
- [6] Murofushi, T. and Sugeno, M. (1991). A theory of fuzzy measures: Representations, the Choquet integral, and null sets. J. Math. Anal. Appl. 159, 532-549.
- [7] Norberg, T. (1989). Existence theorems for measures on continuous posets with applications to random set theory. *Math. Scand.* **64**, 15–51.
- [8] Rüschendorf, L. (1991). Fréchet bounds and their applications. In Advances in Probability Distributions with Given Marginals, 151–187. Kluwer Academic Publishers, Netherlands.