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ABSTRACT. We propose a generalization of the notion of (joint) cumulants,
associated to various notions of “independence” in the context of noncommu-
tative probability. This note is mainly based on [6, 7].
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1. WHAT ARE CUMULANTS?

In the usual context of probability theory, the n-th cumulant $k_{n}(X)$ for a random
variable $X$ with all m-th moments $M_{m}(X)$ $:=E(X^{m})$ is defined as follows:

$\exp(\sum_{n=1}^{\infty}\frac{k_{n}(X)}{n!}t^{n})=\sum_{m=0}^{\infty}\frac{M_{m}(X)}{m!}t^{m}$

For example, $k_{1}(X)=E(X)$ is nothing but the usual expectation of $X$ and $k_{2}(X)=$

$V(X)$ $:=E((X-E(X))^{2})$ is called the variance of $X$ . We pick up three essential
properties of $k_{n}(X)$ :

(kl) $k_{n}(\lambda X)=\lambda^{n}k_{n}(X)$

(k2) There exists a polynomial $P_{n}$ such that
$k_{n}(X)=M_{n}(X)+P_{n}(\{M_{p}(X)\}_{1\leq p\leq n-1})$ .

(k3) For independent random variables $X$ and $Y,$ $k_{n}(X+Y)=k_{n}(X)+k_{n}(Y)$ .
By making use of these properties, you can easily derive the central limit thoerem
or Poisson’s law of small numbers (at least for the random variables with all finite
moments). It shows that cumulants and their properties above play essential role
in probability theory.

Moreover, we can define the multivariate version of cumulants, so called “joint
cumulants” (multivariate cumulants), which satisfy the following:

(Kl) Multihnearity: $K_{n}$ : $\mathcal{A}^{n}arrow \mathbb{C}$ is multilinear, where $\mathcal{A}$ denotes an algebra of
random variables (with all finite moments).

(K2) Polynomiality: There exists a polynomial $P_{n}$ such that

$K_{n}(X_{1}, \cdots, X_{n})=E(X_{1}\cdots X_{n})+P_{n}(\{E(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq n-1 ,i_{1}<\cdots<i_{p}},)$.

(K3) Vanishment: If $X_{1},$ $\cdots,$ $X_{n}$ are divided into two independent parts, i.e.,
there exist nonempty, disjoint subsets $I,$ $J\subset\{1, \cdots, n\}$ such that $I\cup J=$

$\{1, \cdots, n\}$ and $\{X_{i}, i\in I\},$ $\{X_{\iota}, i\in J\}$ are independent, then

$K_{n}(X_{1}, \cdots, X_{n})=0.$
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Covariance $C(X, Y)$ $:=E((X-E(X))(Y-E(Y)))$ is an example of joint cu-
mulants ($n=2$ case). As is well known, covariance is useful to evaluate the degree
of interdependence between random variables $(e.g., C(X, Y)=0$ if $X$ and $Y$ are
independent). In general, we have quantitative evaluation of “independence” by
making use of joint cumulants.

In this paper, we propose a generalization of (joint) cumulants associated to
“various kinds of independence” in the context of noncommutative probability,
which is discussed in the next section.

2. NONCOMMUTATIVE PROBABILITY

In noncommutative probabihty theory, we have many kinds of generalized notion
of “independence”. The essential idea is that a notion of “independence” provides
canonical factorization rules for (joint) moments such as $\varphi(X_{1}\ldots X_{n})$ .

Let $(\mathcal{A}, \varphi)$ be an algebraic probability space, i. e., a pair of a unital $*$-algebra and a
state on it. Let $\mathcal{A}_{\lambda}be*$-subalgebras, where $\lambda\in\Lambda$ are indices. The above mentioned
four independences are defined as rules to calculate moments $\varphi(X_{1}\cdots X_{n})$ for

$X_{i}\in \mathcal{A}_{\lambda_{t}}, \lambda_{i}\neq\lambda_{i+1},1\leq i\leq n-1, n\geq 2.$

Definition 2.1. (1) Tensor independence: $\{\mathcal{A}_{\lambda}\}$ is tensor independent if

$\varphi(X_{1}\ldots X_{n})=\prod_{\lambda\in\Lambda}\varphi(\prod_{i;X_{i}\in \mathcal{A}_{\lambda}}X_{i})arrow,$

where $\vec{\prod}_{i\in V}X_{i}$ is the product of $X_{i},$ $i\in V$ in the same order as they appear in
$X_{1}\cdots X_{n}.$

(2) Free independence [19]: We assume all $\mathcal{A}_{\lambda}$ contain the unit of $\mathcal{A}.$ $\{\mathcal{A}_{\lambda}\}$ is free
independent if

$\varphi(X_{1}\ldots X_{n})=0$

holds whenever $\varphi(X_{1})=\ldots=\varphi(X_{n})=0.$

(3) Boolean independence [18]: $\{\mathcal{A}_{\lambda}\}$ is Boolean independent if

$\varphi(X_{1}\ldots X_{n})=\varphi(X_{1})\cdots\varphi(X_{n})$.

(4) Monotone independence [10]: We assume that $\Lambda$ is equipped with a hnear order
$<$ . Then $\{\mathcal{A}_{\lambda}\}$ is monotone independent if

$\varphi(X_{1}\ldots X_{i}\ldots X_{n})=\varphi(X_{i})\varphi(X_{1}\ldots X_{i-1}X_{i+1}\ldots X_{n})$

holds when $i$ satisfies $\lambda_{i-1}<\lambda_{i}$ and $\lambda_{i}>\lambda_{i+1}$ (one of the inequalities is eliminated
when $i=1$ or $i=n$).

Many probabilistic notions have been introduced for each kind of independence.
Analogy of cumulants is a central topic in this field ([19, 20, 16] for free case, [18, 8]
for Boolean case).

Lehner [8] unified many kinds of cumulants in noncommutative probability the-
ory in terms of Good’s formula. $A$ crucial idea was a very general notion of indepen-
dence called an exchangeability system. Monotone cumulants however cannot be
defined in Lehner’s approach. This is because monotone independence is noncom-
mutative: if $X$ and $Y$ are monotone independent, then $Y$ and $X$ are not necessarily
monotone independent. Therefore, the concept of “mutual independece of random
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variables” fails to hold. In spite of this, we found a way to define monotone cu-
mulants uniquely for single variable in [6]. In the present paper, we generalize the
method to define joint cumulants for monotone independence.

For tensor, free and Boolean cumulants, the following properties are considered
to be basic, as we have discussed for classical case (a special case for tensor case)
in introduction.

(Kl) Multilinearity: $K_{n}:\mathcal{A}^{n}arrow \mathbb{C}$ is multilinear.
(K2) Polynomiality: There exists a polynomial $P_{n}$ such that

$K_{n}(X_{1}, \cdots, X_{n})=\varphi(X_{1}\cdots X_{n})+P_{n}(\{\varphi(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq n-1 ,i_{1}<\cdots<i_{p}},)$
.

(K3) Vanishment: If $X_{1},$ $\cdots,$
$X_{n}$ are divided into two independent parts, i.e.,

there exist nonempty, disjoint subsets $I,$ $J\subset\{1, \cdots, n\}$ such that $I\cup J=$

$\{$ 1, $\cdots,$ $n\}$ and $\{X_{i}, i\in I\},$ $\{X_{i}, i\in J\}$ are independent, then $K_{n}(X_{1}, \cdots, X_{n})=$

$0.$

Cumulants for single variable can be defined from joint cumulants: $K_{n}(X)$ $:=$

$K_{n}(X, \cdots, X)$ . Clearly the additivity of cumulants for single variable follows from
the property (K3): $K_{n}(X+Y)=K_{n}(X)+K_{n}(Y)$ if $X$ and $Y$ are independent.

The additivity of monotone cumulants for single variable does not hold because
of the noncommutativity of monotone independence. Instead, we proved in [6] that
monotone cumulants for single variable satisfy that $K_{n}^{M}(N.X_{1})$ $:=K_{n}^{M}(X_{1}+\cdots+$

$X_{N})=NK_{n}^{M}(X_{1})$ holds if $X_{1}\cdots,$ $X_{N}$ are identically distributed and monotone
independent.

The notion of a “dot operation” such as $N.X_{1}$
” is important throughout this

paper. This notion was used in the classical umbral calculus [14]. The next sec-
tion is devoted to the definition of the dot operation associated to each notion of
independence.

It enables us to define joint cumulants for natural independence in a unified way,
in the section 4, along an idea similar to [6]. The new notion here is monotone
joint cumulants denoted as $K_{n}^{M}$ . The property (K3) however does not hold for the
reason above. Altematively, it is expected that (K3) holds for identically distributed
random variables in view of the single-variable case. This is, however, not the case;
as we shall see later, $K_{3}^{M}(X, Y, X)\neq 0$ for monotone independent, identically
distributed $X$ and $Y$ . To solve this problem, we generahze the condition (K3) in
Section 4. We can prove the uniqueness of joint cumulants under the generalized
condition. Moreover, we prove the moment-cumulant formulae for the monotone
case in Section 5.

3. DOT OPERATION

We used in [6] the dot operation associated to a given notion of independence.
This is also crucial in the deflmition of joint cumulants for natural independence,
that is, tensor, free, Boolean and monotone ones.

Definition 3.1. We fix a notion of independence among tensor, free, Boolean and
monotone. Let $(\mathcal{A}, \varphi)$ be an algebraic probability space. We take copies $\{X(j)\}_{j\geq 1}$

(in some extended algebraic probability space) for every $X\in \mathcal{A}$ such that
(1) $\varphi(X_{1}^{(j)}X_{2}^{(j)}\cdots X_{n}^{(j)})=\varphi(X_{1}X_{2}\cdots X_{n})$ for any $X_{i}\in \mathcal{A},$ $j,$ $n\geq 1$ ;
(2) the subalgebras $\mathcal{A}^{(j)}$ $:=\{X^{(j)}\}_{X\in A},$ $j\geq 1$ are independent.
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Then we define the dot operation $N.X$ by
$N$. $X=X^{(1)}+\cdots+X^{(N)}$

for $X\in \mathcal{A}$ and a natural number $N\geq 0$ . We understand that 0.$X=0$ . Similarly
we can iterate the dot operation more than once; for instance $N.(M.X)$ can be
defined (in a suitable space. For details, see [7]).

Remark 3.2. The notation $N.X$ is inspired from “the classical umbral calculus”
[14]. Indeed, this notion can be used to develop some kind of umbral calculus in
the context of quantum probability.

The power of “dot operation methods” is based on the next proposition;

Proposition 3.3. (Associativity of dot operation). We fix a notion of independence
among the four. Then the dot operation satisfies that

$\varphi(N.(M.X_{1})\cdots N.(M.X_{n}))=\varphi((MN).X_{1}\cdots(MN).X_{n})$

for any $X_{i}\in \mathcal{A},$ $n\geq 1.$

Proof. $N.(M.X_{i})$ is the sum

(3.1) $X_{i}^{(1,1)}+X_{i}^{(2,1)}+\cdots+X_{i}^{(M,1)}+X_{i}^{(1,2)}+\cdots+X_{i}^{(M,N)},$

where $\{X_{i}^{(1,j)}\}_{i=1}^{n},$
$\cdots,$

$\{X_{i}^{(M,j)}\}_{i=1}^{n}$ are independent for each $j$ and $\{X_{i}^{(1,j)}+X_{i}^{(2,j)}+$

$+X_{i}^{(M,j)}\}_{i=1}^{n}(j=1, \cdots, N)$ are independent. On the other hand, $(NM).X_{i}$ is
the sum
(3.2) $X_{i}^{(1)}+\cdots+X_{i}^{(NM)},$

where $\{X_{i}^{(1)}\}_{i=1}^{n},$ $\cdots$ , $\{X_{i}^{(NM)}\}_{i=1}^{n}$ are independent. Since natural independence
is associative, the random variables in (3.2) satisfy a stronger condition of inde-
pendence than those in (3.1). By the way, the condition of independence in (3.1)
is enough to calculate the expectation only by sums and products of joint mo-
ments of $X_{1},$ $\cdots,$ $X_{n}$ . Therefore, $\varphi(N.(M.X_{1})\cdots N.(M.X_{n}))$ must be equal to
$\varphi((MN).X_{1}\cdots(MN).X_{n})$ . $\square$

4. GENERALIZED CUMULANTS

The following properties are basic forjoint cumulants in tensor, free and Boolean
independences.

(Kl) Multihnearity: $K_{n}:\mathcal{A}^{n}arrow \mathbb{C}$ is multilinear.
(K2) Polynomiahty: There exists a polynomial $P_{n}$ such that

$K_{n}(X_{1}, \cdots, X_{n})=\varphi(X_{1}\cdots X_{n})+P_{n}(\{\varphi(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq n-1 ,i_{1}<\cdots<i_{p}},)$ .

(K3) Vanishment: If $X_{1},$ $\cdots,$
$X_{n}$ are divided into two independent parts, i.e.,

there exist nonempty, disjoint subsets $I,$ $J\subset\{1, \cdots, n\}$ such that $I\cup J=$

$\{$ 1, $\cdots,$ $n\}$ and $\{X_{i}, i\in I\},$ $\{X_{i}, i\in J\}$ are independent, then $K_{n}(X_{1}, \cdots , X_{n})=$

$0.$

Monotone cumulants do not satisfy (K3), even if $X_{i}s$ are identically distributed.
For instance, $K_{3}^{M}(X, Y, X)= \frac{1}{2}(\varphi(X^{2})\varphi(Y)-\varphi(X)\varphi(Y)\varphi(X))$ if $X$ and $Y$ are
monotone independent (see Example 5.4 in Section 5). Instead we consider the
following property.

(K3’) Extensivity: $K_{n}(N.X_{1}, \cdots, N.X_{n})=NK_{n}(X_{1}, \cdots, X_{n})$ .

165



ON A GENERALIZED NOTION OF CUMULANTS

The terminology of extensivity is taken from the property of Boltzmann entropy.

Remark 4.1. More generally, the following condition is enough to prove the
uniqueness of cumulants.
(K3”) There exists a polynomial $Q_{n}$ without a constant or a linear term with

respect to $N$ such that
$K_{n}(N.X_{1}, \cdots, N.X_{n})=NK_{n}(X_{1}, \cdots, X_{n})+Q_{n}(N, \{\varphi(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq n-1},)$ .

There is no change in the proof and we do not consider this condition anymore in
this paper.

In the tensor, free and Boolean cases, it is well known that there exist cumulants
which satisfy (Kl), (K2) and (K3), and hence generalized cumulants exist obviously.

Here we discuss the uniqueness of generahzed cumulants for all natural indepen-
dences, including monotone independence.

Theorem 4.2. For any one of tensor, free, Boolean and monotone independences,
joint cumulants satisfying $(Kl),$ $(K2)$ and $(K3)$ are unique.

Proof. We fix a notion of independence. Let $K_{n}^{(1)}$ and $K_{n’}^{(2)}$ be two cumulants with
possibly different polynomials in the condition (K2). Then $\varphi(N.X_{1}\cdots N.X_{n})$ is of
such a form as
(4.1)

$\varphi(N.X_{1}\cdots N.X_{n})=NK_{n}^{(1)}(X_{1}, \cdots, X_{n})+$

$N^{2}$ . (a polynomial of $N$ and $\{K_{p}^{(1)}(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq P\leq n-1},$ )

$=NK_{n}^{(2)}(X_{1}, \cdots, X_{n})+$

$N^{2}$ . (a polynomial of $N$ and $\{K_{p}^{(2)}(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq n-1},$).

The coefficients of $N$ in the above two lines must be the same. Therefore, $K_{n}^{(1)}=$

$K_{n}^{(2)}.$ $\square$

The above theorem imphes that generahzed cumulants coincide with the usual
cumulants in tensor, free and Boolean independences since (K3’) is weaker than
(K3). This is nothing but a new characterization of those cumulants.

The existence of cumulants is not trivial. $A$ key fact is the following.

Proposition4.3. For tensor, free, Boolean and monotone independence, $\varphi(N.X_{1}\cdots N.X_{n})$

is a polynomial of $N$ and $\varphi(X_{i_{1}}\cdots X_{i_{k}})(1\leq k\leq n, i_{1}<\cdots<i_{k})$ without a con-
stant term with respect to $N.$

Proof. First we notice that there exists a polynomial $S_{n}$ (depending on the choice
of independence) for any $n\geq 1$ such that if $\{X_{i}\}_{i=1}^{n}$ and $\{Y_{j}\}_{j=1}^{n}$ are independent,

(4.2)
$\varphi((X_{1}+Y_{1})\cdots(X_{n}+Y_{n}))=\varphi(X_{1}\cdots X_{n})+\varphi(Y_{1}\cdots Y_{n})$

$+S_{n}(\{\varphi(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq n-1},, \{\varphi(Y_{j_{1}}\cdots Y_{j_{q}})\}_{1\leq q\leq n-1},)i_{1}<\cdots<i_{p}j_{1}<\cdots<j_{q}.$

Let $\{X_{i}^{(j)}\}_{1\leq i\leq n,j\geq 1}$ be copies of $X_{1},$ $\cdots,$
$X_{n}$ appearing in Definition 3.1. We prove

the theorem by induction about $n$ . The claim is obvious for $n=1$ since the
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expectation is linear. We assume that the claim is the case for $n\leq k$ . We replace
$X_{i}$ and $Y_{i}$ in (4.2) by $X_{\iota}^{(1)}$ and $X_{i}^{(2)}+\cdots+X_{i}^{(L+1)}$ , respectively. Then one has
$\varphi((L+1).X_{1}\cdots(L+1).X_{k+1})-\varphi(L.X_{1}\cdots L.X_{k+1})$

$=\varphi(X_{1}\cdots X_{k+1})+S_{k+1}(\{\varphi(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq k ,i_{1}<\cdots<i_{p}},,$ $\{\varphi(L.X_{j_{1}}\cdots L.X_{j_{q}})\}_{1\leq q,.\leq kj_{1}<\cdot\cdot<j_{q}},)$ ,

where $1\leq p,$ $q\leq k,$ $i_{1}<\cdots<i_{p}$ and $j_{1}<\cdots<j_{q}$ . The right hand side is a
polynomial of $L$ by assumption. Therefore, the sum

$N \varphi(X_{1}\cdots X_{k+1})+\sum_{L=0}^{N-1}S_{k+1}(\{\varphi(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq ki_{p}},,$
$\{\varphi(L.X_{j_{1}}\cdots L.X_{j_{q}})\}_{1\leq q,.\leq k},)i_{1}<\cdots<j_{1}<\cdot\cdot<j_{q}$

is also a polynomial of $N$ without a constant. $\square$

Definition 4.4. We define the n-th monotone (resp. tensor, free, Boolean) cu-
mulant $K_{n}^{M}$ $(resp. K_{n}^{T}, K_{n}^{F}, K_{n}^{B})$ by the coefficient of $N$ in $\varphi(N.X_{1}\cdots N.X_{n})$ for
monotone (resp. tensor, free, Boolean) independence.

It is easy to see that multilinearity (Kl) and polynomiality (K2) holds. Exten-
sivity (K3’) comes from the associative law of the dot operation, as follows.

Proposition 4.5. The cumulants $K_{n}^{M},$ $K_{n}^{T},$ $K_{n}^{F},$ $K_{n}^{B}$ satisfy the condition $(K3^{\dot{s}})$ .

Proof. The idea is the same as in {6]. We recall that the dot operation is associative:
$\varphi(M. (N.X_{1})\cdots M.(N.X_{n}))=\varphi((MN).X_{1}\cdots (MN).X_{n})$ .

By definition, $\varphi(M.(N.X_{1})\cdots M.(N.X_{n}))$ is of such a form as

$K_{n}(N.X_{1}, \cdots, N.X_{n})+M^{2}\cdot$
( $a$ polynomial of $M$ and $\{\varphi(N.X_{i_{1}}\cdots N.X_{i_{p}})\}_{1\leq p\leq n-1},$ ).

Also by definition $\varphi((MN).X_{1}\cdots(MN).X_{n})$ is of such a form as

$MNK_{n}(X_{1}, \cdots, X_{n})+M^{2}N^{2}\cdot$
( $a$ polynomial of $MN$ and$\{\varphi(X_{i_{1}}\cdots X_{i_{p}})\}_{1\leq p\leq n-1},$ ).

The coefficients of $M$ coincide, and hence, (K3’) holds. $\square$

Remark 4.6. We know that $K^{T},$ $K^{F}$ and $K^{B}$ are no other than the usual tensor,
free and Boolean cumulants, respectively, because of Theorem 4.2. Therefore, it is
obvious that the property (K3) holds. However, we can also prove (K3) directly on
the basis of Definition 4.4. See [7].

Corollary 4.7. For any one of tensor, free and Boolean independences, cumulants
satisfying $(Kl),$ $(K2)$ and $(K3)$ uniquely exist.

5. THE MONOTONE MOMENT-CUMULANT FORMULA

We call a subset $V\subset\underline{n}$ a block of interval type if there exist $i,j,$ $1\leq i\leq n,$ $0\leq$

$j\leq n-i$ such that $V=\{i, \cdots, i+j\}$ . We denote by $IB(n)$ the set of all blocks
of interval type. The empty block is assumed not to contained in $IB(n)$ . Let $V$

be a subset of $\{$ 1, $\cdots,$ $n\}$ . We express $V$ as $V=\{k_{1}, \cdots, k_{m}\}$ with $k_{1}<\cdots<k_{m},$

$m=|V|$ . We collect all $1\leq i\leq m+1$ satisfying $k_{i-1}+1<k_{i}$ , where $k_{0}$ $:=0$

and $k_{m+1}$ $:=n+1$ . We label them $i_{1},$
$\cdots,$ $i_{p}$ . Let $V_{1},$

$\cdots,$ $V_{p}$ be blocks defined by
$V_{q}:=\{k_{i_{q}-1}+1, \cdots, k_{i_{q}}-1\}.$

In the above notation, we can prove the following.
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Proposition 5.1. If $\{X_{i}\}_{i=1}^{n}$ and $\{Y_{j}\}_{j=1}^{n}$ are monotone independent,

(5.1) $\varphi((X_{1}+Y_{1})\cdots(X_{n}+Y_{n}))=\sum_{V\subset\underline{n}}\varphi(X_{V})\prod_{j=1}^{p}\varphi(Y_{V_{j}})$ .

Proof. The subsets $V_{j}$ play roles of choosing positions of $Y_{i}’ s$ . Then the claim
follows immediately. $\square$

Since $\varphi(N.X_{1}\cdots N.X_{n})$ is a polynomial of $N$ , we can define $\varphi(t.X_{1}\cdots t.X_{n})$ for
$t\in \mathbb{R}$ . We denote this by $\varphi_{t}(X_{1}, \cdots, X_{n})$ .
Corollary 5.2. We have the following recurrent differential equations.
(1) $\frac{d}{dt}\varphi_{t}(X_{1}, \cdots, X_{n})=\sum_{V\subset\underline{n},V\neq\emptyset}K_{|V|}^{M}(X_{V})\prod_{j=1}^{p}\varphi_{t}(X_{V_{j}})$ .

(2) $\frac{d}{dt}\varphi_{t}(X_{1}, \cdots, X_{n})=\sum_{V\in IB(n)}K_{|V|}^{M}(X_{V})\varphi_{t}(X_{V^{c}})$.

Proof. We replace $X_{i}$ and $Y_{i}$ in Proposition 5.1 by $N.X_{i}$ and $(N+M).X_{i}-N.X_{i}$

respectively. We notice that $\{N.X_{i}\}_{i=1}^{n}$ and $\{(N+M).X_{i}-N.X_{i}\}_{i=1}^{n}$ are monotone
independent and that $(N+M).X_{i}-N.X_{i}$ is identically distributed to $M.X_{i}$ . We
replace $N$ by $t$ and $M$ by $s$ and then the equality

$\varphi((t+s).X_{1}\cdots(t+s).X_{n})=\sum_{V\subset\underline{n}}\varphi(t.X_{V})\prod_{j=1}^{p}\varphi(s.Y_{V_{j}})$

holds, where $t.X_{E}$ means $t.X_{e_{1}}\cdots t.X_{e_{f}}$ for a subset $E=\{e_{1}, \cdots, e_{r}\},$ $e_{1}<\cdots<$

$e_{r}$ . The equation (1) follows from the coefficient of $t$ . The coefficient of $s$ appears
only when $V^{c}\in IB(n)$ and therefore we obtain (2) by replacing $V^{c}$ by V. $\square$

Now we prove the moment-cumulant formula which generalizes the result in [6]
for the single-variable case. Let $\mathcal{L}P(n)$ be the set of ordered partitions. An element
of $\mathcal{L}\mathcal{P}(n)$ is denoted as $(\pi, \lambda)$ consisting of $\pi\in \mathcal{P}(n)$ and a linear order of the blocks
of $\pi$ . There are $|\pi|!$ ways to choose $\lambda$ for each $\pi$ . We denote by $V>\lambda W$ if $V$ is
larger than $W$ under an order $\lambda.$

We introduce a partial order $V\succ W$ for $V,$ $W\in \mathcal{N}C(n)$ if there are $i,$ $j\in W$

such that $i<k<j$ for all $k\in V$ . Visually $V\succ W$ means that $V$ hes in the inner
side of $W$ . We define a subset $\mathcal{M}(n)$ of $\mathcal{L}\mathcal{P}(n)$ by

(5.2) $\mathcal{M}(n):=\{(\pi, \lambda);\pi\in \mathcal{N}C(n)$ , if $V,$ $W\in\pi SatiS\mathfrak{h}rV\succ W$ , then $V>\lambda W\}.$

An element of $\mathcal{M}(n)$ is called a monotone partition. The set of monotone partitions
was first introduced by Muraki in [11] and later independently found by Lenczewski
and Salapata in [9].

Theorem 5.3. The moment-cumulant fomula is expressed as

$\varphi(X_{1}\cdots X_{n})=\sum_{(\pi,\lambda)\in \mathcal{M}(n)}\frac{1}{|\pi|!}K_{\pi}^{M}(X_{1}, \cdots, X_{n})$

Proof. We prove this by induction about $n$ . Assume that

$\varphi_{t}(X_{1}\cdots X_{k})=\sum_{(\pi,\lambda)\in \mathcal{M}(k)}\frac{t^{|\pi|}}{|\pi|!}K_{\pi}^{M}(X_{1}, \cdots, X_{k})$.

holds for $t\in \mathbb{R}$ and $k\leq n$ . We notice that an element in $\mathcal{M}(n)$ can be expressed
as $(\pi, \lambda)=(V_{1}, \cdots, V_{|\pi|})$ with $V_{1}<\cdots<V_{|\pi|}$ . We can use a discussion similar to
[5, 6]. (The prototype of the discussion is in [15].) Let $IB(k, m)$ be the subset of

168



TAKAHIRO HASEBE AND HAYATO SAIGO

$IB(k)$ defined by $\{V\in IB(k);|V|=m\}$ . Let $1_{k}$ be the partition $\in \mathcal{P}(k)$ consisting
of one block. There is a bijection $f: \mathcal{M}(n+1)arrow(\bigcup_{k=1}^{n}\mathcal{M}(n+1-k)\cross IB(n+$

$1,$ $k))\cup\{1_{n+1}\}$ defined by

$f:(V_{1}, \cdots, V_{|\pi|})\mapsto((V_{1}, \cdots, V_{|\pi|-1}), V_{|\pi|})$ .

Therefore, the sum $\sum_{(\pi,\lambda)\in \mathcal{M}(n)}$ can be replaced by $\sum_{V\in IB(n+1)}\sum_{(\sigma,\mu)\in \mathcal{M}(n+1-|V|)}$

and we have

$\sum_{(\pi,\lambda)\in \mathcal{M}(n+1)}\frac{t^{|\pi|}}{|\pi|!}K_{\pi}^{M}(X_{1}, \cdots, X_{n})=\sum_{V\in IB(n+1)}\sum_{(\sigma,\mu)\in \mathcal{M}(n+1-|V|)}\frac{t^{|\sigma|+1}}{(|\sigma|+1)!}K_{\sigma}^{M}(X_{V^{c}})K_{|V|}^{M}(X_{V})$

$= \sum_{V\in IB(n+1)}\int_{0}^{t}ds\sum_{(\sigma,\mu)\in \mathcal{M}(n+1-|V|)}\frac{s^{|\sigma}}{|\sigma|}!K_{\sigma}^{M}(X_{V^{c}})K_{|V|}^{M}(X_{V})$

$= \sum_{V\in IB(n+1)}\int_{0}^{t}ds\varphi_{s}(X_{V^{c}})K_{|V|}^{M}(X_{V})$

$= \int_{0}^{t}\frac{d}{ds}\varphi_{s}(X_{1}\cdots X_{n+1})ds$

$=\varphi_{t}(X_{1}\cdots X_{n+1})$ .

We used assumption of induction in the third hne and Corollary 5.2 (2) in the
fourth line. The claim follows from the case $t=1.$ $\square$

Example 5.4. We show the monotone cumulants until the forth order.

$K_{1}^{M}(X_{1})=\varphi(X_{1}),$ $K_{2}^{M}(X_{1}, X_{2})=\varphi(X_{1}X_{2})-\varphi(X_{1})\varphi(X_{2})$ ,

$K_{3}^{M}(X_{1}, X_{2}, X_{3})= \varphi(X_{1}X_{2}X_{3})-\varphi(X_{1}X_{2})\varphi(X_{3})-\varphi(X_{1})\varphi(X_{2}X_{3})-\frac{1}{2}\varphi(X_{1}X_{3})\varphi(X_{2})$

$+ \frac{3}{2}\varphi(X_{1})\varphi(X_{2})\varphi(X_{3})$ ,

$K_{4}^{M}(X_{1}, X_{2}, X_{3}, X_{4})= \varphi(X_{1}X_{2}X_{3}X_{4})-\varphi(X_{1}X_{2}X_{3})\varphi(X_{4})-\frac{1}{2}\varphi(X_{1}X_{3}X_{4})\varphi(X_{2})$

$- \frac{1}{2}\varphi(X_{1}X_{2}X_{4})\varphi(X_{3})-\varphi(X_{1})\varphi(X_{2}X_{3}X_{4})-\varphi(X_{1}X_{2})\varphi(X_{3}X_{4})$

$- \frac{1}{2}\varphi(X_{1}X_{4})\varphi(X_{2}X_{3})+\frac{3}{2}\varphi(X_{1}X_{2})\varphi(X_{3})\varphi(X_{4})+\frac{2}{3}\varphi(X_{1}X_{4})\varphi(X_{2})\varphi(X_{3})$

$+ \frac{3}{2}\varphi(X_{1})\varphi(X_{2})\varphi(X_{3}X_{4})+\frac{1}{2}\varphi(X_{1})\varphi(X_{2}X_{4})\varphi(X_{3})+\frac{3}{2}\varphi(X_{1})\varphi(X_{2}X_{3})\varphi(X_{4})$

$+ \frac{1}{2}\varphi(X_{1}X_{3})\varphi(X_{2})\varphi(X_{4})-\frac{8}{3}\varphi(X_{1})\varphi(X_{2})\varphi(X_{3})\varphi(X_{4})$.
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