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1. Introduction

The Schr\"odinger algebra plays an important role in mathematical physics and its
applications. It has been introduced and studied as the algebra of symmetries of the
$Schr6$dinger equation (see, for instance, [1], [2]). Although, in general, the Schr\"odinger
algebra can be considered in $(n+1)$ -dimensional (space-time), in this paper, we treat
the centrally extended Schr\"odinger algebra of $n=1.$

It was noticed that the $(1+1)$ Schr\"odinger algebra with central extension $\mathcal{S}_{1}$ can
be embedded into the two-photon algebra [3] (a low-dimensional Wick algebra), which
gives a sort of boson Fock realization of $S_{1}$ (the two-photon realization) and also helps us
to understand the structure of $S_{1}$ such as semidirect product of the Heisenberg algebra
and $sl(2)$ .

In the paper [4], the structure of Schr\"odinger algebra $S_{1}$ was investigated related to
the representation theory. Especially, they constructed the canonical Appell system and
found a family of the probability distributions associated to the Lie algebraic structure
of the Schr\"odinger algebra $S_{1}$ . Concretely, they construct the Hilbert space on which
certain two commuting operators act as self-adjoint operators with an adjustment of the
inner product. Such a self-adjointization is important because it yields a probabilistic
interpretation of these operators as random variables in non-commutative probability
space.

2. The Schr\"odinger algebra $S_{1}$ and its boson realization

The centrally extended $(1+1)$ Schr\"odinger algebra $S_{1}$ is a six-dimensional Lie algebra
generated by the operators, $K,$ $G,$ $P_{x},$ $D,$ $P_{t},$ $M$ with the following non-trivial
commutation relations (see [5]):

$[P_{t}, G]=P_{x}, [P_{x}, K]=G, [D, G]=G, [P_{x}, D]=P_{x},$
(2.1)

$[P_{t}, D]=2P_{t}, [D, K]=2K, [P_{t}, K]=D, [P_{x}, G]=M,$

where the last commutation relation corresponds to the property of the central extension.
For simplicity, if we say Schr\"odinger algebra in this paper, then it means to be centrally
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extended.
It is also known that the Schr\"odinger algebra $S_{1}$ has the following vector fields

realization with the multiplication and the partial differentiation by $x$ and $t$ :

$K=t^{2} \partial_{t}+tx\partial_{x}+\frac{m}{2}x^{2}-dt$ conformal transformation,

$G=t\partial_{x}+mx$ Galilei boost,

$P_{x}=\partial_{x}$ spatial translation, (2.2)
$D=2t\partial_{t}+x\partial_{x}-d$ dilation,
$P_{t}=\partial_{t}$ time translation,

$M=m1$ mass,

where $m$ and $d$ are given parameters, and 1 is the identity operator.
The operators $\{M, G, P_{x}\}$ span a Heisenberg-Weyl subalgebra, and $\{K, D, P_{t}\}$

span an $sl(2)$ subalgebra. Indeed the Schr\"odinger algebra can be decomposed into the
semidirect product as $S_{1}\cong \mathcal{H}\oplus_{s}sl(2)$ .

Let $a^{\uparrow}$ and $a$ be the boson creation and the boson annihilation operators on the
symmetric (boson) Fock space, respectively, that is, these two operators satisfy the
canonical commutation relation $[a, a^{\uparrow}]=1$ . The two-photon algebra $h_{6}$ (see, for instance,
[3] $)$ is generated by

$N=aa\dagger, A_{+}=a^{\uparrow}, A_{-}=a,$
(2.3)

$M=1, B_{+}=(a\dagger)^{2}, B_{-}=a^{2}.$

Namely, $B_{+},$ $B_{-}$ , and $N$ are the double creation, the double annihilation, and the
number operators, respectively. The non-trivial commutation relations among these
generators are

$[A_{-}, A_{+}]=M, [B_{-}, B_{+}]=4N+2M,$

$[N, A_{+}]=A_{+}, [N, A_{-}]=-A_{-},$
(2.4)

$[N, B_{+}]=2B_{+}, [N, B_{-}]=-2B_{-},$

$[A_{+}, B_{-}]=-2A_{-}, [A_{-}, B_{+}]=2A_{+},$

from which we can have an embedding of the Schr\"odinger algebra $S_{1}$ into the two photon
algebra $h_{6}$ explicitly as follows:

$K= \frac{1}{2}B_{+}, G=A_{+}, P_{x}=A_{-},$
(2.5)

$D=N+ \frac{1}{2}M, P_{t}=\frac{1}{2}B_{-}, M=M.$

Combining with (2.3), this embedding gives the two-photon realization of the
Schr\"odinger algebra $S_{1}.$
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Here we shall remind the commuting operators of our interest. In [4] they
investigated the following two commuting operators $x_{1}$ and $x_{2}$ obtained by the adjoint
action of the exponentiating $P_{t}$ : For $\beta>0$

$x_{1}=e^{\beta P}tKe^{-\beta P_{t}}=K+\beta D+\beta^{2}P_{t},$

(2.6)
$x_{2}=e^{\beta P}tGe^{-\beta P_{t}}=G+\beta P_{x}.$

They made adjustment an inner product so that $K^{*}=\beta^{2}P_{t}$ and $G^{*}=\beta P_{x}$ , that is,
$x_{1}$ and $x_{2}$ are self-adjoint, and gave the probabilistic observations. Especially, the joint
distribution of $x_{1}$ and $x_{2}$ was determined explicitly based on the Appell system.

The inner product that they assumed was enough for their manipulation but a
little implicit for making an extension to a deformed case. In the next section, we shall
introduce an inner product which makes $x_{i}$ be self-adjoint more explicitly, by using a
deformation of the symmetric Fock space. Then we shall find the probability distribution
of $x_{i}$ , in which the boson Fock realization of the Schr\"odinger algebra $S_{1}$ will be crucial.

3. The $\beta$-symmetric Fock space

We shall slightly change the inner product on the symmetric Fock space, and construct
the $\beta$-symmetric Fock space, on which $x_{1}$ and $x_{2}$ can be regarded to be self-adjoint.

Let $\mathscr{H}$ be a real Hilbert space equipped with the inner product $\langle\cdot|\cdot\rangle$ , and $\Omega$ be
a distinguished unit vector, called vacuum. We denote by $\mathcal{F}^{fin}(\mathscr{H})$ the set of all the
finite linear combinations of the elementary vectors $\xi_{1}\otimes\cdots\otimes\xi_{n}\in \mathscr{H}^{\otimes n}(n=1,2, \ldots)$

We introduce the inner product $(|)_{\beta}$ on $\mathcal{F}^{fin}(\mathscr{H})$ by

$( \xi_{1}\otimes\cdots\otimes\xi_{n}|\eta_{1}\otimes\cdots\otimes\eta_{m})_{\beta}=\delta_{m,n}\beta^{n}\sum_{\sigma\in \mathfrak{S}_{n}}\langle\xi_{1}|\eta_{\sigma(1)}\rangle\cdots\langle\xi_{n}|\eta_{\sigma(n)}\rangle,$

where $\mathfrak{S}_{n}$ is the nth symmetric group of permutations.
The strict positivity of the inner product $(\cdot|\cdot)_{\beta}$ follows immediately from that of

the inner product on the symmetric (boson) Fock space. Thus we can have the following
definitions:

Definition 3.1. The $\beta$-symmetric Fock space $\mathcal{F}_{\beta}(\mathscr{H})$ is given by the completion of
$\mathcal{F}^{fin}(\mathscr{H})$ by the inner product $(\cdot|\cdot)_{\beta}$ . Given the vector $\xi\in \mathcal{H}$ , the $\beta$-creation operator

$a_{\beta}^{\dagger}(\xi)$ is defined by the canonical left creation that

$a_{\beta}^{\dagger}(\xi)\Omega=\xi,$

$a_{\beta}^{\dagger}(\xi)\xi_{1}\otimes\cdots\otimes\xi_{n}=\xi\otimes\xi_{1}\otimes\cdots\otimes\xi_{n} n\geq 1,$

and the $\beta$-annihilation operator $a_{\beta}(\xi)$ is defined to be the adjoint operator of $a_{\beta}^{\dagger}(\xi)$ with
respect to the inner product $(|)_{\beta}$ , that is, $a_{\beta}(\xi)=(a_{\beta}^{\dagger}(\xi))^{*}$
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The followings are direct consequences of the definition:

Proposition 3.2.

(1) The $\beta$ -annihilation operator $a_{\beta}(\xi)$ acts on the elementary vectors as follows:

$a_{\beta}(\xi)\Omega=0, a_{\beta}(\xi)\xi_{1}=\beta\langle\xi|\xi_{1}\rangle\Omega,$

$a_{\beta}( \xi)\xi_{1}\otimes\cdots\otimes\xi_{n}=\beta\sum_{k=1}^{n}\langle\xi|\xi_{k}\rangle\xi_{1}\otimes\cdots\otimes\xi_{k}\otimes\cdots\otimes\xi_{n}\vee n\geq 2,$

where $\xi_{i}\vee$ means that $\xi_{i}$ should be deleted from tensor product.

(2) The $\beta$ -creation and the $\beta$ -annihilation operators satisfy the $\beta$ -scaled canonical
commutation relation

$a_{\beta}(\xi)a_{\beta}^{\dagger}(\eta)-a_{\beta}^{\dagger}(\eta)a_{\beta}(\xi)=\beta\langle\xi|\eta\rangle 1$

We shall work on the $\beta$-symmetric Fock space of one-mode, and employ the $\beta-$

creation and the $\beta$-annihilation to construct the operators $A\pm,$ $B_{\pm}$ , and $N$ in (2.3)
instead of the boson creation and the boson annihilation operators. Under the same
embedding in (2.5), we can obtain the self-adjointization of $x_{i}$ on the $\beta$-symmetric Fock
space, namely,

$x_{1}^{(\beta)}=\frac{1}{2}(a_{\beta}^{\dagger})^{2}+\frac{1}{2}(a_{\beta})^{2}+a_{\beta}^{\dagger}a_{\beta}+\frac{1}{2}1,$

$x_{2}^{(\beta)}=a_{\beta}^{\dagger}+a_{\beta},$

where, for the unit base vector $\xi$ of the one-mode $\beta$-symmetric Fock space, we shall
simply denote $a_{\beta}^{\dagger}(\xi)$ and $a_{\beta}(\xi)$ by $a_{\beta}^{\dagger}$ and $a_{\beta}$ , respectively.

Now we shall find the probability distributions of the self-adjoint operators $x_{i}^{(\beta)}$

with respect to the vacuum expectation on the $\beta$-symmetric Fock space. We will apply
the theory of orthogonal polynomials to finding the probability distributions.

Proposition 3.3. For $\beta>0$ , we define the sequence of polynomials $\{P_{n}^{(\beta)}(X)\}_{n\geq 0}$ by
the recurrence formula

$P_{0}^{(\beta)}(X)=1,$ $P_{1}^{(\beta)}(X)=X- \frac{1}{2},$

(3.1)
$P_{n+1}^{(\beta)}(X)=(X-( \frac{1}{2}+2\beta n))P_{n}^{(\beta)}(X)-\frac{\beta^{2}2n(2n-1)}{4}P_{n-1}^{(\beta)}(X)$ $n\geq 1,$

and $\xi$ stands for the unit base vector for the one-mode $\beta$ -symmetric Fock space.
Then we obtain

$P_{n}^{(\beta)}( x_{1}^{(\beta)})\Omega=\frac{1}{2^{n}}\xi^{\otimes 2n} n\geq 0,$

where $\Omega$ is the vacuum vector, and we use the convention that $\xi^{\otimes 0}=\Omega.$

This proposition can be proved by induction without much difficulties.
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In order to determine the measure $\mu$ , we shall reformulate the three-steps recurrence
relation in (3.1) as follows: Divide by $\beta^{n+1}$ , then we have

$\frac{P_{n+1}^{(\beta)}(X)}{\beta^{n+1}}=(\frac{1}{\beta}(X-\frac{1}{2}+\frac{\beta}{2})-(\frac{1}{2}+2n))\frac{P_{n}^{(\beta)}(X)}{\beta^{n}}-n(n-\frac{1}{2})\frac{P_{n-1}^{(\beta)}(X)}{\beta^{n-1}},$

and change the variable $X$ by $Y$ as

$Q_{n}(Y)= \frac{P_{n}(\beta Y+(\frac{1}{2}-\frac{\beta}{2}))}{\beta^{n}}.$

Consequently, we obtain the sequence of the monic polynomials $\{Q_{n}(Y)\}$ which satisfies
the recurrence relation

$Q_{0}(Y)=1, Q_{1}(Y)=Y- \frac{1}{2},$

$Q_{n+1}(Y)=(Y-( \frac{1}{2}+2n))Q_{n}(Y)-n(n-\frac{1}{2})Q_{n-1}(Y) n\geq 1.$

This recurrence relation is known as one for the Laguerre polynomials of the parameter
$\alpha=-\frac{1}{2}$ (see, for instance, [7, Sec. 2.11]), and the corresponding orthogonalizing
probability measure can be given by the density function

$g(t)= \frac{1}{\Gamma(\frac{1}{2})}\frac{e^{-t}}{\sqrt{t}}I_{t\geq 0},$

where $I_{t\geq 0}$ is the indicate function on $\{t|t\geq 0\}.$

Remark 3.4. By the form of the density function $g(t)$ , we can find that it is in the
type of gamma distributions. More precisely, it is given as $\frac{1}{2}\chi^{2}(1)$ , that is, the $\frac{1}{2}$

dilation of the chi-square distribution with 1 degree of freedom, because the density of
the distribution $\chi^{2}(1)$ is given by

$f(t)= \frac{1}{\Gamma(\frac{1}{2})}\frac{e^{-t/2}}{\sqrt{2t}}I_{t\geq 0}.$

Since the variable $X$ in the sequence of polynomials $\{P_{n}^{(\beta)}(X)\}$ is related to $Y$ in
$\{Q_{n}(Y)\}$ by $X= \beta Y+(\frac{1}{2}-\frac{\beta}{2})$ , the orthogonalizing probability measure for $\{P_{n}^{(\beta)}(X)\}$

is given by the $\beta$-dilation and the $( \frac{1}{2}-\frac{\beta}{2})$-right translation of one for $\{Q_{n}(Y)\}.$

Theorem 3.5. The probability distribution of the operator $x_{1}^{(\beta)}$ with respect to the
vacuum expectation, namely, the orthogonalizing probability measure $\mu$ for the sequence
of polynomials $\{P_{n}^{(\beta)}(X)\}$ defined in (3.1), is given by

$d\mu=\frac{2}{\beta}f(\frac{2}{\beta}(x-(\frac{1}{2}-\frac{\beta}{2})))I_{t\geq\frac{1}{2}-g}dt$
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where $f$ is the density function of $\chi^{2}(1)$ , and $dt$ is the Lebesgue measure on $\mathbb{R}$ . Namely,

the distribution $\mu$ can be written symbolically by

$\frac{\beta}{2}\chi^{2}(1)+(\frac{1}{2}-\frac{\beta}{2})$ .

Remark 3.6. In [4], they investigated the joint distribution of $x_{1}^{(\beta)}$ and $x_{2}^{(\beta)}$ with respect

to the vacuum expectation. We shall, here, pay our attention upon the algebraic relation

between the operators $x_{1}^{(\beta)}$ and $x_{2}^{(\beta)}$ , namely,

$\frac{1}{2}(x_{2}^{(\beta)})^{2}=\frac{1}{2}(a_{\beta}^{\dagger}+a_{\beta})^{2}$

$= \frac{1}{2}(a_{\beta}^{\dagger})^{2}+\frac{1}{2}(a_{\beta})^{2}+\frac{1}{2}(a_{\beta}^{\dagger}a_{\beta}+a_{\beta}a_{\beta}^{\dagger})$ (3.2)

$= \frac{1}{2}(a_{\beta}^{\dagger})^{2}+\frac{1}{2}(a_{\beta})^{2}+a_{\beta}^{\dagger}a_{\beta}+\frac{\beta}{2}1,$

where, in the last equality, we have used the commutation relation $[a_{\beta}, a_{\beta}^{\dagger}]=\beta 1$ . Hence,

we have the algebraic relation

$x_{1}^{(\beta)}=\frac{1}{2}(x_{2}^{(\beta)})^{2}+(\frac{1}{2}-\frac{\beta}{2})1.$

Although we have derived the distribution of the operator $x_{1}^{(\beta)}$ via orthogonal
polynomials, we can obtain it directly by using the above algebraic relation. Because
it is known that the distribution of the field operator $x_{2}^{\beta}=a_{\beta}^{\dagger}+a_{\beta}$ with respect to the
vacuum expectation on the $\beta$-symmetric Fock space is given by $\mathcal{N}(0, \beta)$ , the centered
Gaussian of variance $((x_{2}^{(\beta)})^{2}\Omega|\Omega)_{\beta}=\beta$ , the operator $\frac{1}{\beta}(x_{2}^{(\beta)})^{2}$ is distributed according

to $\chi^{2}(1)$ . Therefore we can find that $x_{2}^{(\beta)}$ has the distribution $\frac{\beta}{2}\chi^{2}(1)+(\frac{1}{2}-\frac{\beta}{2})$ by the
algebraic relation (3.2).

4. The case of the $q$-deformed Fock space

The $\beta$-symmetric Fock space $\mathcal{F}_{\beta}(\mathscr{H})$ that we have considered in the previous section, is
more of a scaling than a deformation. Here we shall use the $q$-deformation of symmetric
Fock space $\mathcal{F}_{q}(\mathscr{H})$ instead of $\mathcal{F}_{\beta}(\mathscr{H})$ . The $q$-deformed symmetric Fock space was
introduced in [8], which gives an interpolation between the symmetric (boson) and the
anti-symmetric (fermion) Fock spaces and, especially, the case $q=0$ of which yields the
canonical model in the free probability theory (see, for instance, [9]).

We shall assume $q$ to be non-negative, that is, we restrict to $0\leq q<1$ . We
consider the one-mode case and simply denote the $q$-creation operator $a_{q}^{\uparrow}(\xi)$ and the
$q$-annihilation operator $a_{q}(\xi)$ for the unit base vector $\xi$ of one-mode by $a_{q}\dagger$ and $a_{q},$

respectively.
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Then we shall give the $q$-deformation of $A_{\pm},$ $B\pm$ and $N$ in (2.3) by using $a_{q}\dagger$ and $a_{q}$

as follows:

$A_{+}^{(q)}=a_{q}^{\dagger}, A_{-}^{(q)}=a_{q}, B_{+}^{(q)}=(a_{q}^{\uparrow})^{2}, B_{-}^{(q)}=(a_{q})^{2},$

$N^{(q)}=a_{q}^{\}}a_{q}, M=1,$

where $M$ remains undeformed as the scalar operator. The above operators satisfy the
following non-trivial commutation relations, cf. (2.4):

Lemma 4.1.

$A_{-}^{(q)}A_{+}^{(q)}- qA_{+}^{(q)}A_{-}^{(q)}=M,$

$N^{(q)}A_{+}^{(q)}- qA_{+}^{(q)}N^{(q)}=A_{+}^{(q)},$

$N^{(q)}A_{-}^{(q)}-q^{-1}A_{-}^{(q)}N^{(q)}=-q^{-1}A_{-}^{(q)},$

$B_{-}^{(q)}B_{+}^{(q)}- q^{4}B_{+}^{(q)}B_{-}^{(q)}=q(1+q)^{2}N^{(q)}+(1+q)M,$

$N^{(q)}B_{+}^{(q)}- q^{2}B_{+}^{(q)}N^{(q)}=(1+q)B_{+}^{(q)},$

$N^{(q)}B_{-}^{(q)}-q^{-2}B_{-}^{(q)}N^{(q)}=-q^{-2}(1+q)B_{-}^{(q)},$

$A_{+}^{(q)}B_{-}^{(q)}-q^{-2}B_{-}^{(q)}A_{+}^{(q)}=-q^{-2}(1+q)A_{-}^{(q)},$

$A_{-}^{(q)}B_{+}^{(q)}- q^{2}B_{+}^{(q)}A_{-}^{(q)}=(1+q)A_{+}^{(q)}.$

We can see Lemma 4.1 by,direct calculation, similar manipulations concerning with
the above commutation relations can be also found in [10], [11], [12], in which square or
higher powers of $q$-white noise analysis are investigated.

As we mentioned in Section 1, the classical Schr\"odinger algebra is generated by the
operators, $K,$ $G,$ $P_{x},$ $D,$ $P_{t},$ $M$ , which have the boson Fock realization as in (2.5). Taking
in account the commutation relations in Lemma 4.1, we shall give the $q$-deformation of
$K,$ $G,$ $P_{x},$ $D,$ $P_{t}$ by using the $q$-Fock space instead of the symmetric one. Namely, we
put

$G^{(q)}=A_{+}^{(q)}, P_{x}^{(q)}=A_{-}^{(q)}, K^{(q)}= \frac{1}{1+q}B_{+}^{(q)}, P_{t}^{(q)}=\frac{1}{1+q}B_{-}^{(q)}$

$D^{(q)}=qN^{(q)}+ \frac{1}{1+q}M.$

Now we shall consider the $q$-deformation of the operators $x_{1}$ and $x_{2}$ and find their
probability distributions. We give the $q$-deformation by replacing $K,$ $D,$ $P_{t},$ $G,$ $P_{x}$ in
(2.6) to the $q$-deformed ones, where no scaling parameter is imposed, that is, $\beta=1.$

Hence we have
$x_{1}^{(q)}=K^{(q)}+D^{(q)}+P_{t}^{(q)},$

$x_{2}^{(q)}=G^{(q)}+P_{x}^{(q)}.$

189



The operator $x_{2}^{(q)}$ is the field operator $a_{q}^{\dagger}+a_{q}$ on the $q$-Fock space and its probability
distribution with respect to the vacuum expectation is rather well-known as the q-

Gaussian and investigated by many authors, for instance, [8], [14], [15].

Therefore we shall pay our attention upon the operator

$x_{1}^{(q)}=\frac{1}{1+q}B_{+}^{(q)}+\frac{1}{1+q}B_{-}^{(q)}+qN^{(q)}+\frac{1}{1+q}M,$

and determine its probability distribution with respect to the vacuum expectation on
the $q$-Fock space.

Similar to the $\beta$-symmetric case, we will seek the sequence of polynomials which
are orthogonal with respect to the distribution of $x_{1}^{(q)}.$

Proposition 4.2. We define the sequence of polynomials $\{P_{n}^{(q)}(X)\}_{n\geq 0}$ by the
recurrence formula

$P_{0}^{(q)}(X)=1,$ $P_{1}^{(q)}(X)=X-\perp$
$1+q$

’

$P_{n+1}^{(q)}(X)=(X-( \frac{1}{1+q}+q[2n]_{q}))P_{n}^{(q)}(X)-\frac{[2n]_{q}[2n-1]_{q}}{(1+q)^{2}}P_{n-1}^{(q)}(X)$ $n\geq 1.$

and let $\xi$ be the unit base vector for the one-mode $q$ -Fock space. Then we obtain

$P_{n}^{(q)}( x_{1}^{(q)})\Omega=\frac{1}{(1+q)^{n}}\xi^{\otimes 2n} n\geq 0,$

where $\Omega$ is the vacuum vector, and we use the convention that $\xi^{\otimes 0}=\Omega.$

In order to describe the probability distribution of the operator $x_{1}^{(q)}$ , we will
recall the $q$-deformed Meixner polynomials and fix the notations of the corresponding
probability measures.

The classical infinitely divisible distributions of the Meixner family, that is,
Gaussian, Poisson, gamma, Pascal, and (pure) Meixner types, can be determined as
the orthogonalizing probability measures for the sequence of polynomials given by the
following recurrence relations with 4 parameters, $\kappa_{1},$ $\kappa_{2},$ $\gamma$ , and $\delta(\kappa_{2}>0, \delta\geq 0)$ :

$P_{0}(X)=1,$ $P_{1}(X)=X-\kappa_{1},$
(4.1)

$P_{n+1}(X)=(X-(\kappa_{1}+\gamma n))P_{n}(X)-(\kappa_{2}+\delta(n-1))nP_{n-1}(X)$ $n\geq 1.$

The parameters $\kappa_{1}$ and $\kappa_{2}$ correspond to the mean and the variance of the distribution,
respectively. The sequence of polynomials $\{P_{n}(X)\}$ given by (4.1) is called the (classical)
Meixner polynomials.

One of $q$-deformations of the Meixner polynomials is given as replacing the integers
in the Szeg\"o-Jacobi parameters in the recurrence relation (4.1) to the $q$-integers, and
we will refer the corresponding orthogonalizing probability measures as the $q$-deformed
Meixner distributions.
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Definition 4.3. Let $q,$ $\kappa_{1},$ $\kappa_{2},$ $\gamma,$

$\delta$ be given constants with $0\leq q<1,$ $\kappa_{2}>0,$ $\delta\geq 0.$

Then the $q$-deformed Meixner distribution on $\mathbb{R}$ of parameters $\kappa_{1},$ $\kappa_{2},$ $\gamma,$
$\delta$ is defined

to be the unique probability measure $\mu(q;\kappa_{1}, \kappa_{2}, \gamma, \delta)$ on $\mathbb{R}$ for which the sequence of
polynomials $\{P_{n}\}$ given by the following recurrence relation are orthogonal:

$P_{0}(X)=1,$ $P_{1}^{(q)}(X)=X-\kappa_{1},$

(4.2)
$P_{n+1}(X)=(X-(\kappa_{1}+\gamma[n]_{q}))P_{n}(X)-(\kappa_{2}+\delta[n-1]_{q})[n]{}_{q}P_{n-1}(X)$, $n\geq 1.$

Remark 4.4. Although the polynomials defined in (4.2) are affine transformation of
Al-Salam-Chihara polynomials [16], we shall adopt the above parameterization for
emphasizing the relation to the five types of infinitely divisible distributions.

By comparing the Szeg\"o-Jacobi parameters for the orthogonal polynomials in
Proposition 4.2 with those in (4.2), we can derive the following theorem, for more
details see [20]:

Theorem 4.5. The probability distribution of the operator $x_{1}^{(q)}$ with respect to the
vacuum expectation on the $q$ -Fock space is given as the deformed Meixner distribution

$\mu(q^{2};\frac{1}{1+q}, \frac{1}{1+q}, q(1+q), q)$ ,

where we should note that the deformation pammeter $q$ for the $q$ -deformed Meixner
distributions is replaced to $q^{2}.$
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