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A representation of unital completely positive
maps

KRAEBERY EH %92 (Marie Choda)

Abstract
Let M, (C) be the algebra of n.xn complex mairices, and let ® be a
unital completely positive map of M,(C) to My(C). With the notion
of the von Neumann entropy for a state in mind, we give a model of
r-tupple {v;}7_; so that ®(z) = vizvy + - + vfzv,, (x € My(C)).
The 7 is uniquely determined for ® and the r-tupple is also unique up
to a 7 X 7 unitary matrix.

1 Introduction

In the framework of the theory of operator algebras, the notion of entropy for
automorphisms was introduced by Connes-Stgmer in [8], Connes-Narnhofer-
Thirring in [9] and Voiculescu in [14] (which is extended by Brown [4]). The
Connes-Stgmer entropy H (6) is defined for a *-automorphism 6 of finite von
Neumann algebra M with 7 = 7 0 8, where 7 is a fixed given finite trace
of M. After then, the Connes-Narnhofer-Thirring entropy hy(6) is given as
an extended version of H(6) for a *-automorphism 6 of a C*-algebra A by
replacing the trace T to a state ¢ of A, and if A is a finite von Neumann
algebra then h.(f) = H(6). Voiculescu’s topological entropy ht(6) is defined
as an independent version of any state of A.

We studied these entropies in [6] and [7] for not only *-automorphisms but
also *-endomorphisms like so called canonical shifts. As one of interesting
such *-endomorphisms, we picked up the Cuntz canonical endomorphism &,
on the Cuntz algebra O,, which has a strong connection to Longo’s canonical
shift (cf. [6]). The O, is the C*-algebra generated by isometries {S,--- , S, }
such that S;.57 +--- + 5,5, =1, and the &, is defined as

®,(z) = 51287 + - -+ SpzSs, (z € Op). (1.1)
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Such maps given by the form as the right hand side of (1.1) are unital
completely positive maps, and the above notions H(-), hs(-) and ht(-) are
available for unital completely positive maps too.

Conditional expectations are the most typical examples of unital com-
pletely positive maps, ans states of the matrix algebras M, (C) are consid-
ered as the most elementary example of conditional expectations. However,
for a conditional expectation E, by their definitions it holds always that
H(E) = hy(E) = ht(E) = 0. On the other hand, in the case of the von
Neumann entropy S(¢) for a state ¢ of M, (C), it is possible that S(¢) # 0.

In order to define "entropy”, we need the notion of ”finite partition of
unity” (see for example, [11]). The most generalized one of "finite parti-
tion of unity” was introduced by Lindblad ([10]), and it is called the *finite

operational partition of unity”.

With these facts in mind, here we give a method to induce the finite
operational partition of unity for a given unital completely positive map.
That is, let A and B be unital C*-algebras and let ® be a unital completely
positive map of A to B. We give a method to get a model of r-tupple
v(®) = {v1,vs,- -+ , v} such that

&(z) = vizv, +--- +vizv,, (z € A). (1.2)

When A and B are matrix algebras, such a representation is called Kraus
representation (cf. Appendix in [13]), or obtained as a straightforward appli-
cation of Stinespring’s theorem (see for example, [1, 3]). We note that this
representation is not unique

Our main purpose in this note is to show, for a given completely positive
map ®, a unique r-tupple v(®) = {v1,--- ,v.} which is suitable to extend
the notion of von Neumann entropy S(¢) for a state ¢ of matrix algebras to
the entropy S(®) for a unital completely positive map &.

First, for a given completely positive map ® from B(H) to B(K) of finite
dimensional Hilbert spaces H, K, we construct the Hilbert spaces H ®¢ K.
Let r = dim(H®¢ K). Next, we give a r-tupple v(®) = {vq,v2,- -+ , v} which
satisfy that ®(z) = vizv, + -+ + v;zv,. The r-tupple is unique up to uni-
taties and induces S(®). After then, we apply these to the non-commutative
Bernoulli shift 3 and we define the entropy S,(®) with respect to a state ¢
with ¢ = ¢ - 3. These results in this note are in [5].



2 Preliminaries

Here, we denote some notaions and terminologies which we use later.

We denote by M, (C) the algebra of n x n complex matrices, and by
Tr, the standard trace, that is, the sum of all diagonal components. A
matrix D € M, (C) is called a density matriz if D is a positive operator with
Tr, (D) = 1(cf. [11] [12]).

The notation 7 is called the entropy function in usual, and it is the func-
tion defined by

—tlogt, 0<t<1
o ={ gHoet 0SS

2.1 Finite partitions

The notion of ”a finite partition of unity” is the starting point of our study.

2.1.1 Finite partitions of 1
The first one is discuused in the real numbers R. Let
)\-_-—{)\1,... ,)\n}
be the set of real numbers ); > 0 with >, \; = 1. We say that the n-tupple
A C R is a finite partition of 1.
2.1.2 Finite operational partition of unity

The terminology, a finite operational partition of unity, was first given by
Lindblad ([10]) and after then it is used by Alicki-Fannes([2]).

Let A be a unital C*-algebra. Let z = {1, ..., 2z} C A. Then z is said to
be a finite operational partition of unity of size k if

k

213:% =14. ' (2.1)

Such a finite operational partition of unity z = {zy,...,z+} in A induces an
A-coefficient in My (A), whose (i, j) coefficient z(j, 1) is given by the following:
2(j,6) = zjz;, (1 <i,j <k). (2.2)

We denote this matrix by [z]. Then [z] is an A-coefficient density matrix in
My (A), that is, [z] is a positive operator with Tr([z]) = % | z(4,) = 1,4.

13
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2.2 Entropy for finite partitions of unity
2.2.1 Entropy for finite partitions of 1
Let a n-tupple A C R be a a finite partition of 1. Let

H()) =n(M) + - +n(A). (2.3)

Then H()) is called the entropy for the finite partiton A of 1.

2.2.2 Entropy for Finite operational partition of unity

Let £ = {xi,...,zx} be an operational partition of unity in a unital C*-
algebra A, and let ¢ be a state of A. The p, [z] is the k x k matrix whose
{1, j}-component is defined by

pso[x](i)j) = QD(JL‘;.’II,'), (,j=1,---,k). (24)

Then p,[z] is a density matrix. We call p,[z] the density matriz associate
with = and ¢. If ¢ is a unique tracial state, we denote p,[z] by p[z] simply.
Let A(py|z]) = {A1, A2, , A} be the eigenvalues of the matrix p,|z].
Then A(p,|z]) is a finite partition of 1 because p,[z] is a density matrix.
Hence we have the entropy H(A(p,[z])).
Let S(p,[z]) be the von Neumann entropy (cf. [11, 12]) for the density
matrix p,[z]. Then S(p,[z]) is nothing else but H(A(p,[z])), that is,

S(pelz]) = Trr(n(plz])) = H(A(py[z])) = Zn(/\i)- (2.5)

3 Representation of completely posive maps

Let ® be a completely posive map of M,,(C) to My (C). Put A = M,(C). We
give a method to get a ”finite” family v(®) = {vi,vq, -, v} for ® which
satisfies that ®(z) = vizv; + - - - + vyzv, for all z € A. We remark that if ®
is unital, then v(®) is a finite operational partition:

> vjv; = ®(1a) = L) (3.1)

j=1



3.1 Hilbert space H Q¢ K

Let H be an n-dimensional Hilbert space, and let & : A — B(K) be a,
completely positive linear map. Let {ej,---,en} be the set of mutually
orthogonal minimal projections in B(H) with ®(e;) # 0 for all i. Let & €
e;(H) be a vector with ||§]| =1fori=1,--- ,m and we extend {51, < ém}
to an orthonormal basis of H as {&;, - - ,§n} Let {e;;;1,5 = ,n} be a
matrix units of A with e;;§; = §; so thate;; =e; fori=1,--- ,m. Then each
¢ € H ® K (the algebraic tensor product H ® K of H and K ) is written by

¢= Z & ® p;, for some u; € K. (3.2)
i=1
Definition 3.1.1. We define a sesquilinear form < -,- > on the space

H © K by
< E & ® i, E £ ®v; >p= E < ®(eji)pi, vj >k, (3.3)
i=1 j=1 i :

where < -,- > means the inner product of the Hilbert space K.

Since @ is completely posive, this form < -,- > turns out positive
semidefinite. The value < -,- >4 depends on the choise of the orthonor-
mal basis of H. However the kernel of this sesquilinear form < -, >4 is
unique up to unitaries on H ® K as follows:

Proposition 3.1.2. Let {&,---,&.} (resp., {€},---,&.} ) be an orthonor-
mal basis of H, and let u be a unitary on H ® K with £ = u& for all
it =1,---,n. Let Ker(®) (resp., Ker'(®)) be the kernel of this form via
{&}i (resp., {€}:) Then

Ker'(®) = (uu* ® 1)Ker(®)

where U is the unitary matriz on H whose (4, j)-entry is the conjugate complez
number of u(i,j) for alli,j =1,---  n.

Definition 3.1.3. Now taking the quotient by the space Ker(®), we have
a preHilbert space and complete to get the Hilbert space H @4 K.

We denote by (37 ; & ® p;)s the element in H ®g K corresponding to
E:-L.__l LOu; e HOK.

15
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If K is finite dimensional, of course the H ®¢ K is finite dimensional. We
can extend this method to get the Hilbert space H ®3 K to (for an example)
non-commutative Bernoulli shifts, and it induces finite dimensional H ® K
even if H and K are infinite dimensional. By Proposition 3.1.2, we have the
following:

Proposition 3.1.4. The dimension of H®e K does not depend on the choice
of orthonormal basis of H.

Example 3.1.5.
1. If ¢ is a state of M,(C), then

dim(C™ ®, C) = rank of ¢, (i.e., the rank of the density matrx of ¢).

2. If E is the conditional expectation of M,(C) to a maximal abelian
subalgebra A of M,,(C), then

dim(C" ®¢ C") = n.
Here, we ramark that A is isomorphic to the diagonal subalgebra D, (C).

3. Let B be a subfactor of M,(C). If E is the conditional expectation
M, (C) to B, then
dim(C* ®5 C™) = —
m

Here, we ramark that B is isomorphic to M,,(C) for some m by which
n can be divided.

4. If a is an automorphism of M, (C), then

dim(C" ®, C*) = 1.

The following shows that dim(H ®s K) can be finite, even if H and K
are infinite dimensional.
Example 3.1.6. Let 3 be the non-commutative Bernoulli shift of A =
®%2,M,(C). That is, let A; = M,(C) for all i = 1,2,---, and for each
m € N, let
Am)=A1®- - QA,01® - C A, (3.4)

where 1 is the unit of M,(C).



The S is given as the shift as the followings:
Blz)=192zQ1®---, forall m, z€ A(m). (3.5)

Let H;=C"for alli=1,2,---, and for each m € N. Fix an vector € C
with ||©2]| = 1, and let

The (3 is a unital completely positive map from A C B(H) to B(H), and
the restriction |s(m) of 8 to A(m) is a unital completely positive map from
A(m) C B(H(m)) to B(H(m +1)). Apply the above method to 8| 4(m), We
‘have always that

dim(H(m) Q) H(m+1))=mn, foral m
Bla(m)

As a result, we have that

dim(H Q) H) =n=dim(H ) H),

B _ E
where E : A — ((A) is the conditional expectation.
Now, we call the dimension of H ®4 K the rank of ®.

A phenomenon As an example, we show a phenomenon of the above
discussion in the case of a state of M,(C) which indicates how the dimension
of H ®4 K coincides with the rank of a state ¢ of the usual sense.

Example 3.1.7. Let {£1, &2} be an orthonormal basis of C? and let {e;;;i,j =
1,2} be a matrix units of C? with e;;&; = &. We give a vector representation
for each ¢ € C? relative to this {&;7 = 1,2} and a matrix representation for
each z € M,(C) relative to this {e;;;¢,j = 1,2}:

17

() e=() e

and

10 01 10 0 00
ellz[o 0})612:’:0 0]76212[1 0]7622:[0 1] (38)
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Assume that ¢ is a state given by

o =o[ 22 22 )= 13, 59

T21 T22 by}

Then ¢(e;) = 1/2 for i = 1,2 and the discussion with respect to {£1, &} and
{ei;;i,5 = 1,2} is as follows:
Let Q be a fixed unit vector in C and let

G=v2600eC?®,C. (3.10)
Then
< G, Cj >o= 2¢(6,J) =1, forall i,5j=1,2. (311)

This implies that ¢; € C*> ®4 C has norm 1 for s = 1,2 and
G=v2600=V2680=C_. (3.12)

Next we choose another family of minimal projections with ¢(p) # 0 and
orthonormal basis of C2. Let

1111
6’11=§|:1 1]7 (3'13)

then ¢(e};) = 1 so that the set containing e}; of minimal projections with
#(-) # 0 is the one point set {€};}. The corresponding orthonormal basis of
C? and the corresponding matrix units are as follows:

a->(1) 8-5(4) (3.14)
and

o, 171 =1 171 171 , 11 -1
€115 elzzi[l _ljl=e,21=§[_1 _1]a622=§[_1 1 ] (3'15)

Let
1
' ¢R0eCi®,C, (i=1,2). 3.16
G \/561 ¢ © ) (3.16)
Then | ]
<G >e=50len) = 1, (3.17)
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and ]
< (3G >4 50(eha) = 0 (318)

This means that
c? ®¢C=CC£ =¢ ®C.

We remark that {&;, &} and {£],£,} are combined as ug; = &, (i = 1,2) by

the unitary u: ,
1 11 1

Some relation to the Choi matrix. For a completely posive map ® of
M, (C), it is given the so called the Choi matrix Cs.

In the case of ® is a state ¢ of M,(C), we have the following relation
between the sesquilinear form < -,- >4 and the coefficient of Cj :

<&®Q, gj ® 0 >¢= Cd’(j: Z) (320)

where {&1,---&,} is a orthonormal basis of C* and 2 is 1 considered as the
vector in C. ‘

3.2 Operators {v;;j=1,---,r}

As the above section, let ® : B(H) — B(K) be a completely positive linear
map. Here, we assume that H and K be finite dimensional, and let r =
dim(H ®s K).

Definition 3.2.1. Let {§;i=1,---,n} be an orthonormal basis of H, and
let {(j;5 =1, ,r} be an orthonormal basis of H®s K. Define v; : K — H
by

vi(u) = Z <&®u,(>e &, (1€ K) (3.21)

i=1

Proposition 3.2.2. Let {vi,vs,--- ,v} be the tupple obtained by (3.17).
Then
(i) They satisfies the desired following property:

®(z) =vizvi+ - +vizv,, (z € B(H)) (3.22)

i) ||lu]| <1, foralli=1,---,7r;
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(iii) {vy,ve,- -+ ,v,} are linearly independent.

Proposition 3.2.3. The tupple {vi,va, - ,v.} for unital completely pos-
itive map ® satisfy the following convenient properties to compute the von

Neumann type entropy S(®).
1. If E is a conditional expectation of M,(C) onto D,(C) then {v; : 1 <
j < r} are mutually orthogonal minimal projections.

2. If ® is a *-homomorphism, then {v; :1 < j <r} are isometries with
U,’U; = 61'_7'1- (323)

We remark that the following results are well known (see for example
[1, 13]) so that our tupple {vs, v, - - ,v,} for unital completely positive map
® is unique up to a unitary matrix:
Proposition 3.2.4. Let H and K be finite dimensional Hilbert spaces. As-
sume that v = {vy,vq,-- ,v,} and w = {ws, -+ ,w,} are two families of
operators in B(K,H). Then

vizvy + -+ +UzU, = wizwy + - - + wizw,, forall z € B(H)

if and only if there is a unitary matriz [u(i,j)] € M, (C) such that

r
U,'=Z’U:(i,j)wj‘, i=1--,r
j=1

Example 3.2.5. Let 8 be the non-commutative Bernoulli shift on A =
®2, M, (C). The n-tupple {v;}; of 3 are as follows. We use the same notation
as Example 3.1.6. Let

W ={a= (01,00, ,am), oa;€{1,2,---,n}}. (3.24)
and let
bo =801 ®, ® - ®&,,O0®--- € H(m) (3.25)
Then {{,;a € W,,} is an orthonormal basis of H(m), and

is an orthonormal basis of H(m)®gH(m+1). Then our tupple for 3 is given
by '
v;(& ® &) = &i; &, for allm, B € Wy, (3.27)

We remark that {v}}; are isometries satisfying the Cuntz relation.
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3.3 Relation to Stinespring’s theorem

Let ® : A ¢ B(H) — B(K) be a copletely positive map, where H and K
are finite dimensional. Let {v; : K — H}j_; be the tupple by (3.17). We
denote by L the Hilbert space of r-direct sum of H,i.e., H®---® H. Let

V() =& ,unfeLl, E€K (3.28)
and let
z 0 0
=% " Y, zea (3.29)
00 - z

Then we have the followings: ,
1. The 7 is a representation of the C*-algebra A on the Hilbert space L.

2. The property that Y ;_, v;v; = 1x means that the operator V defined
by (3.20) is an isometry from K to L.

3. The property ®(z) = >’_, vizv; is written as

j=1"%j
z 0 --- 0 (N

)= (o}, | 0T 70 = V*r(z)V  (3.30)
00 - z|\uv

4. These imply that (7, V) can be considerefd as the palr obtained by the
Stinespring’s representation.

5. The property that {v;}; are linearly independent satisfies that (7, V)
is the minimal pair in the sense of Arveson [1].

4 Entropy for unital completely positive maps

In this section, we denote an application to the notion of entropy. Let ® be a
unital completely positive map of a C*-algebra A C B(H) to B C B(K) and
let v(®) = {v1,v3, -+ , v} be the tupple for ® obtained by (3.21). Then the
tupple v(®) is a finite operational partition of unity in B(K). Hence we can
apply the discussion in the section 2.2.2 to unital completely positive map.



22

4.1 Case of a state ¢ of M,(C)

First, we consider the cae of a state ¢ of M, (C). Let ¢ be a state of M,(C),
and let v(¢) = {v; : 1 < j < r} be the tuple associated with ¢ defined by
(3.20).

Let 7 be the unique tracial state of M,(C), that is 7(z) = Tr(z)/n for
all z € M,,(C). The density matrix 7[v(¢)] is given by (2.4). Let {e;}, be
the mutually orthogonal minimal projections in M, (C) such that ¢(e;) # 0.
Then we see that

Tlv(9)](5, 5) = dij/ dlei)ple;)- (4.1)

It is clear that 7[v(¢)] is a diagonal matrix, and the entropy S(7[v(¢)]) in
the section 2.2.2 is nothing else but the von neumann entropy S(¢) of ¢:

S(rlv(¢) Zn ¢(e;)) = Z¢ (e;) log ¢(e;) = S(¢). (4.2)

4.2 Entropy for unital completely positive maps

On the basis of the fact in the above section 4.1, we denote the S(p[v(®)])
for a unital completely positive map ® : A — B by S(p(®)), and in the case
of the tracial state p we use the same notation S(®) simply.

Here, we show the case of A which has a unique taracial state 7 and we
number the values of typical examples of von Neumann type entropy S(®)
for unital completely positive maps ®.

1. If ¢ is a state of M,(C), then
=3 0 (13)
j=1

where {);} are eigenvalues of ¢.

2. If E is the conditional expectation of M,(C) to a maximal abelian
subalgebra B then
S(E) = logn. (4.4)

Compare this fact to that H(F) = ht(E) = 0.



3. If E is the conditional expectation of M,(C) to a subfactor B then
n
S(E) =log z (4.5)

Here we remark that a subfactor B of M,,(C) is isomorphic to M (C)
some k, and that n is divisible by k. Compare this fact to that H(E) =
ht(E) = 0.

4. If o is an automorphism of M,(C)), then
S(a) =0 (4.6)
and this coinsides with the fact that H(a) = ht(a) = 0.

5. If B is the non-commutative Bernoulli shift on ®$°; M, (C), then
S(B) =logn (4.7)
and this coinsides with the fact that H(83) = ht(8) = logn.
6. If @, is the Cuntz’s canonical shift on O, then
S¢(®,) = logn | (4.8)

and this coinsides with the fact that hy(®,) = At(®,) = logn. Here ¥
is the state of O,, which is given by the left inverse of ®.
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