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1 Introduction

1.1 Algebraic probability space
The mathematical description of quantum theory can be seen as a probability theory on an
non-commutative algebra. This viewpoint has led to the development of non-commutative
probability theory (or quantum probability theory). Many probabilistic concepts can be
extended to non-commutative algebras: for example, independence of random variables,
moments of random variables and probability distributions of random variables. In partic-
ular, it tums out that independence of random variables, the basic concept of probabihty
theory, is not uniquely determined. The most famous independence, which differs from the
usual independence, is free independence [8]. On the other hand, monotone independence
was introduced by Muraki [5] as another possible independence of random variables in a
non-commutative algebra.

The main purpose of this article is to explain a key idea to unify free and monotone
independencesl, with a new look at free independence. Let us start from basic concepts
on non-commutative probability theory.

Let $\mathcal{A}$ be a unital $*$-algebra over $\mathbb{C}$ , that is, a unital algebra with an involution $*$ :
$\mathcal{A}arrow \mathcal{A}$ which is anti-linear. $A$ state $\varphi$ on $\mathcal{A}$ is a linear functional from $\mathcal{A}$ to $\mathbb{C}_{\}}$ which is
unital and positive: $\varphi(1_{A})=1$ and $\varphi(a^{*}a)\geq 0$ for any $a\in \mathcal{A}.$ $A$ typical example of $\mathcal{A}$ is
the set of all bounded linear operators $\mathbb{B}(H)$ on a Hilbert space $H$ . If we denote by $\langle\cdot,$ $\cdot\rangle$

the inner product of $H^{2}$ , an involution $*$ is the usual adjoint operation: $\langle x,$ $ay\rangle=\langle a^{*}x,$ $y\rangle$

$(a\in \mathbb{B}(H), x, y\in H)$ . $A$ typical state is a vector state defined by $\varphi(a)$ $:=\langle v,$ $av\rangle$ , where $v$

is a unit vector of $H.$

An algebraic probabihty space is a pair $(\mathcal{A}, \varphi)$ of $a*$-algebra and a state on it. An
element $X\in \mathcal{A}$ is called a random variable.

$*$ The author is supported by Grant-in-Aid for JSPS Fellows. Email: hsb@kunms.kyoto-u.ac.jp
lThis article is based on a preprint [4].
2The inner product here is linear with respect to the right component.
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From now on we assume that $\mathcal{A}$ is a von Neumann algebra, i.e., $\mathcal{A}$ is $a*$-subalgebra
of $\mathbb{B}(H)$ , the set of bounded linear operators on a Hilbert space $H$ , and $\mathcal{A}$ is closed under
the strong topology.

The probability distribution of a self-adjoint random variable $X\in \mathcal{A}$ is defined by

$\mu_{X}(B):=\varphi(E_{X}(B))$ ,

where $E_{X}(B)$ is the spectral projection associated to $X$ and $B$ is a Borel set of $\mathbb{R}.$

We can also consider some unbounded operators on $H.$ $A$ self-adjoint operator $X$ is
said to be affiliated to $\mathcal{A}$ if its spectral projections $E_{X}(B),$ $B$ Borel sets, all belong to $\mathcal{A}.$

Then we can define $\mu_{X}$ in the same way.

Example 1.1. The usual probability theory is recovered if we take a probability space
$(\Omega, \mathcal{F}, P)$ and let $\mathcal{A}:=L^{\infty}(\Omega, \mathcal{F}, P)$ , acting on the Hilbert space $L^{2}(\Omega, \mathcal{F}, P)$ . For a real-
valued random variable $X\in \mathcal{A}$ , the probabihty measure $\mu_{X}$ coincides with the distribution
of $X:\mu_{X}(B)=P(X\in B)$ for Borel sets $B$ of $\mathbb{R}$ . The set of self-adjoint random variables
affiliated to $\mathcal{A}$ is now equal to the set of real-valued random variables.

1.2 Free and monotone independences

Independence can be understood as a rule for calculating mixed moments. We now define
two kinds of independences. In probability theory, independence can be defined for $\sigma-fields$

which correspond to $*$-subalgebras in non-commutative probability. Hence we formulate
independence in terms $of*$-subalgebras.

Definition 1.2. Let $\{\mathcal{A}_{\dot{\eta}}\}_{i\in I}$ be $*$-subalgebras of $\mathcal{A}$ containing the unit $1_{A}$ , where the
index set $I$ is arbitrary. They are said to be free (or free independent) if the following
property holds:

(F) $\varphi(a_{1}\cdots a_{n})=0$ if $i_{1}\neq i_{2},$ $i_{2}\neq i_{3},$ $\cdots,$ $i_{n-1}\neq i_{n},$ $a_{k}\in A_{k}$ and $\varphi(a_{k})=0$ for any $k.$

Using this definition, we can calculate mixed moments of random variables which
belong to different free subalgebras.

Example 1.3. Let $\mathcal{B},$ $\mathcal{C},$
$\mathcal{D}$ be free $*$-subalgebras of $\mathcal{A}$ . For random variables $b,$ $b’\in \mathcal{B},$

$c,$ $c’\in C$ and $d\in \mathcal{D}$ , we have

$\varphi(bc)=\varphi(b)\varphi(c) , \varphi(bcb’)=\varphi(bb’)\varphi(c)$ ,
$\varphi(bcb’c’)=\varphi(bb’)\varphi(c)\varphi(c’)+\varphi(b)\varphi(b’)\varphi(cc’)-\varphi(b)\varphi(b’)\varphi(c)\varphi(c’)$, (1.1)
$\varphi(bcd)=\varphi(b)\varphi(c)\varphi(d) , \varphi(bcdc^{l}b’)=\varphi(bb’)\varphi(cd)\varphi(d)$ .

Now we define monotone independence, another famous independence in non-commutative
probability theory.

Definition 1.4. Let $I$ be a totally ordered set. $A$ sequence $of*$-subalgebras $(\mathcal{A}_{\eta})_{i\in I}$ of $\mathcal{A}$

is said to be monotonically independent if the following property holds:
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(M) $\varphi(a_{1}\cdots a_{n})=\varphi(a_{j})\varphi(a_{1}\cdots a_{j-1}a_{j+1}\cdots a_{n})$ if $a_{k}\in\lambda_{k},$ $1\leq k\leq n$ and $i_{j-1}<i_{j}>$

$i_{j+1}$ $(if j=1 or j=n, one of the$ inequalities $are$ eliminated) .

$\mathbb{R}om$ now on we only consider $I=\mathbb{N}$ $:=\{1,2,3, \cdots\}.$

The definition of monotone independence shows asymmetry of independent subalge-
bras: the monotone independence of $(\mathcal{A}_{1}, \mathcal{A}_{2})$ does not imply the monotone independence
of $(\mathcal{A}_{2}, \mathcal{A}_{1})$ . Hence we need to consider a sequence of subalgebras, not a set of subalgebras.

Example 1.5. Let $(\mathcal{B}, C, \mathcal{D})$ be monotonically independent $*$-subalgebras of $\mathcal{A}$ . For ran-
dom variables $b,$ $b’\in \mathcal{B},$ $c,$ $c’\in C$ and $d\in \mathcal{D}$ , we have

$\varphi(bc)=\varphi(b)\varphi(c) , \varphi(bcb’)=\varphi(bb’)\varphi(c)$ ,
$\varphi(cbc’)=\varphi(c)\varphi(b)\varphi(c’) , \varphi(bcb’c’)=\varphi(bb’)\varphi(c)\varphi(c’)$ , (1.2)
$\varphi(bcd)=\varphi(b)\varphi(c)\varphi(d) , \varphi(bcdc’b’)=\varphi(bb’)\varphi(cc’)\varphi(d)$ .

A difference can be observed in the calculations of $\varphi(bcb’)$ and $\varphi(cbc’)$ . This reflects the
asymmetry of monotone independence.

2 Generalization of free independence
The original definition of free independence requires every element to have a zero expecta-
tion in order that the product of elements has a zero expectation. However, Example 1.3
indicates that the assumption of the zero expectation of every element is too much. For
example, if $\varphi(c)=0$ , then $\varphi(bcb’)=0$ ; the assumptions $\varphi(b)=\varphi(b’)=0$ are not needed;
if $\varphi(b)=0,$ $\varphi(c)=0$ or $\varphi(d)=0$ , then $\varphi(bcd)=0$ . Thus, we can weaken the assumptions
on the conditions of zero expectations.

If $\{\mathcal{A}_{\eta}\}_{i\in \mathbb{N}}$ are free and $a_{k}\in \mathcal{A}_{i_{k}}(i_{1}\neq i_{2}, \cdots, i_{n-1}\neq i_{n})$ , a crucial structure in this
article is the graph of $(i_{k})_{k=1}^{n}$ as in Fig. 1. If we regard $i_{k}$ as a function of $k$ , then it attains
local extrema at some points. For example in Fig. 1, the function $i_{k}$ attains local extrema
at $k=1,3,6,7,8,9,10,11,12,13$. Let $E(i_{1}, \cdots, i_{n})$ denote the points at which the function
$i_{k}$ attains local extrema.3 Then we have an equivalent definition of free independence.

Proposition 2.1. Let $\mathcal{A}_{\eta}be*$ -subalgebras of $\mathcal{A}$ containing the unit $1_{\mathcal{A}}$ . Then they are free
if and only if the following holds:

(F’) $\varphi(a_{1}\cdots a_{n})=0$ if $i_{1}\neq i_{2},$ $i_{2}\neq i_{3},$
$\cdots,$ $i_{n-1}\neq i_{n},$ $a_{k}\in \mathcal{A}_{i_{k}}$ for $1\leq k\leq n$ and

$\varphi(a_{k})=0$ for $k\in E(i_{1}, \cdots , i_{n})$ .

Proof. The implication $(F’)\Rightarrow(F)$ is immediate, and hence we will prove $(F)\Rightarrow(F’)$ . Let
us assume that.4 are free and $a_{k}\in \mathcal{A}_{\tau_{k}},$ $i_{1}\neq i_{2},$ $i_{2}\neq i_{3},$

$\cdots,$ $i_{n-1}\neq i_{n}$ and $\varphi(a_{k})=0$

for $k\in E(i_{1}, \cdots, i_{n})$ . We have to prove that $\varphi(a_{1}\cdots a_{n})=0$ . If $k\not\in E(i_{1}, \cdots , i_{n})$ ,
then $i_{k-1}<i_{k}<i_{k+1}$ or $i_{k-1}>i_{k}>i_{k+1}$ . In both cases, let us decompose $a_{k-1}a_{k}a_{k+1}$ as
$\varphi(a_{k})a_{k-1}a_{k+1}+a_{k-1}(a_{k}-\varphi(a_{k})1_{\mathcal{A}})a_{k+1}$. By iterating this procedure, we can write $a_{1}\cdots a_{n}$

3We include the edge points 1, $n$ in $E(i_{1}, \cdots, i_{n})$ .
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Figure 1: $i_{1}=i_{6}=i_{12}=1,$ $i_{2}=i_{5}=i_{10}=2,$ $i_{4}=i_{8}=i_{11}=i_{13}=3,$ $i_{3}=i_{7}=i_{9}=4.$

as a sum $\sum_{j=1}^{p}a_{1}^{(j)}\cdots a_{n_{j}}^{(j)}$ , where $a_{k}^{(j)}\in \mathcal{A}_{\tau_{k}(j)}(1\leq k\leq n_{j}),$ $i_{1}(j)\neq i_{2}(j),$ $\cdots,$ $i_{n_{j}-1}(j)\neq$

$i_{n_{j}}(j)$ and $\varphi(a_{k}^{(j)})=0$ for any $j,$ $k$ . Then the ffee independence imphes $\varphi(a_{1}\cdots a_{n})=0.$ $\square$

Take $i_{k}\in \mathbb{N},$ $k=1,$ $\cdots,$ $n$ so that $i_{1}\neq i_{2},$ $\cdots,$
$i_{n-1}\neq i_{n}$ . Now we know that the points

where the function $k\mapsto i_{k}$ takes local extrema are important to define free independence.
Moreover, such points can be classified into two subsets: the points at which $i_{k}$ takes
local maxima and the points at which $i_{k}$ takes local minima.4 Let us denote the former
points by ${\rm Max}(i_{1}, \cdots, i_{n})$ and the latter by ${\rm Min}(i_{1}, \cdots, i_{n})$ . In Fig. 1, ${\rm Max}(i_{1}, \cdots, i_{13})=$

$\{3,7,9,11,13\}$ and ${\rm Min}(i_{1}, \cdots, i_{13})=\{1,6,8,10,12\}.$

To distinguish these two classes, we introduce another state $\psi$ on $\mathcal{A}$ and arrive at a
new definition of independence.

Definition 2.2. Let $(\mathcal{A}, \varphi)$ be an algebraic probability space. Let $(\mathcal{A}_{i})_{i\in N}$ be a sequence
$of*$-subalgebras of $\mathcal{A}$ containing the unit $1_{\mathcal{A}}$ . Assume that there is another state $\psi$ on
$\mathcal{A}$ . The sequence $(\mathcal{A}_{\eta}\cdot)$ is said to be ordered free independent if the following condition
holds:

( $OF$ ) $\varphi(a_{1}\cdots 0_{n})=0,$ $\psi(a_{1}\cdots a_{n})=0$ if $i_{1}\neq i_{2},$ $i_{2}\neq i_{3},$ $\cdots,$ $i_{n-1}\neq i_{n},$ $a_{k}\in \mathcal{A}_{\eta_{k}}$. for
$1\leq k\leq n,$ $\varphi(a_{k})=0$ for $k\in{\rm Max}(i_{1}, \cdots, i_{n})$ and $\psi(a_{k})=0$ for $k\in{\rm Min}(i_{1}, \cdots, i_{n})$ .

This definition enables us to calculate mixed moments by using both $\varphi$ and $\psi$ . Some
examples are shown below.

$\mathcal{D}Ex$

ample 2.3. Let $(\mathcal{B}, C, \mathcal{D})$ be ordered free independent. Then, for $b,$ $b’\in \mathcal{B},$ $c,$ $d\in C,$ $d\in$

$\varphi(bc)=\varphi(b)\varphi(c) , \psi(bc)=\psi(b)\psi(c) , \varphi(bcd)=\varphi(b)\varphi(c)\varphi(d)$,
$\varphi(bcb’)=\varphi(c)\varphi(bb’) , \varphi(cbc’)=\psi(b)\varphi(cc’)+\varphi(c)(\varphi(b)-\psi(b))\varphi(c’)$ ,

$\psi(bcb’)=\varphi(c)\psi(bb’)+\psi(b)(\psi(c)-\varphi(c))\psi(b’) , \psi(cbc’)=\psi(b)\psi(cc’)$ ,
$\varphi(bcb’c’)=\varphi(bb’)\varphi(c)\varphi(c’)+\varphi(b)\psi(b’)\varphi(cc’)-\varphi(b)\varphi(c)\psi(b’)\varphi(c’)$ , (2.1)
$\varphi(cbc’b’)=\varphi(cc’)\psi(b)\varphi(b’)+\varphi(c)\varphi(c’)\varphi(bb’)-\varphi(c)\psi(b)\varphi(c’)\varphi(b’)$ ,
$\psi(bcb’c’)=\psi(bb’)\varphi(c)\psi(c’)+\psi(b)\psi(b’)\psi(bb’)-\psi(b)\varphi(c)\psi(b’)\psi(c’)$ ,
$\psi(cbc’b’)=\psi(cc’)\psi(b)\psi(b’)+\psi(c)\varphi(c’)\psi(bb’)-\psi(c)\psi(b)\varphi(c’)\psi(b’)$ .

$\overline{4We}$include edge points also. For example, if $i_{1}>i_{2}$ , then $1\in{\rm Max}(i_{1}, \cdots, i_{n})$ .
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This new independence extends free independence and also monotone independence.
A connection to free independence can be observed as follows: if we set $\varphi=\psi$ , the above
condition ($OF$) is equivalent to the free independence. For monotone independence, we
have to assume an additional structure on the algebra $\mathcal{A}.$

Proposition 2.4. Let $(\mathcal{A}, \varphi)$ be an algebraic probability space. If $\mathcal{A}$ has a decomposition
$\mathcal{A}=\mathbb{C}1_{A}\oplus \mathcal{A}^{0}$ as von Neumann algebras, we can define a canonical state $\delta(\lambda 1_{\mathcal{A}}+a^{0})$ $:=\lambda,$

where $\lambda\in \mathbb{C}$ and $a^{0}\in \mathcal{A}^{0}$ . Let $\mathcal{A}_{i}^{0}be*$ -subalgebms of $\mathcal{A}^{0}$ . Then the sequence $(\mathcal{A}_{i}^{0})_{i\in N}$

with respect to $\varphi$ is monotonically independent if and only if the sequence $(\mathbb{C}1_{A}\oplus \mathcal{A}_{i}^{0})_{i\in N}$

is ordered free independent with respect to the states $(\varphi, \delta)$ .

Proof. We prove only one implication. Assume that the sequence $(\mathbb{C}1_{\mathcal{A}}\oplus \mathcal{A}_{i}^{0})_{i\in N}$ is ordered
free independent with respect to the states $(\varphi, \delta)$ . Take natural numbers $i_{1},$

$\cdots,$
$i_{n}$ such

that $i_{1}\neq i_{2},$
$\cdots,$ $i_{n-1}\neq i_{n}$ and $a_{k}\in \mathcal{A}_{i_{k}}^{0}$ . If we use the associative law of ordered free

independence [4], it is sufficient to consider only two subalgebras: $i_{k}\in\{1,2\},$ $1\leq k\leq n.$

If $i_{k}=2$ , let us define $a_{k}’;=a_{k}-\varphi(a_{k})1_{A}$ and if $i_{k}=1,$ $a_{k}’;=a_{k}$ . Then we have
$\varphi(a_{1}’\cdots a_{n}’)=0$ . This implies that

$\varphi(a_{1}\cdots a_{n})=\varphi(\prod_{k.\cdot i_{k}=1}a_{k})\prod_{k.i_{k}=2}\varphi(a_{k})$ ,

where the product symbol $\prod_{i}$ preserves the order of the index $i$ . This means the monotone
independence of $(\mathcal{A}_{1}^{0}, \mathcal{A}_{2}^{0})$ . $\square$

Therefore, if one set $\psi(b)=\psi(c)=\psi(d)=\psi(b’)=\psi(c’)=0$ in Example 2.3, results
of Example 1.5 can be obtained. We mention below further information on ordered free
independence. See [4] for detalis.

Remark 2.5. (1) The independence ( $OF$ ) can be generalized more to include Boolean
independence [1, 7]. In that case, we need three states.

(2) Ordered free independence of two subalgebras $(\mathcal{A}_{1}, \mathcal{A}_{2})$ is related to $c$-free indepen-
dence [2, 3].

(3) We can formulate central limit theorem as follows. Let $(X_{n})_{i\in \mathbb{N}}$ be a sequence of i.i. $d.$

self-adjoint random variables with $\varphi(X_{n})=\psi(X_{n})=0$ and $\varphi(X_{n}^{2})=\alpha^{2},$ $\psi(X_{n}^{2})=\beta^{2}$

(independence is in the sense of ($OF$)). Then the distribution of $X_{1}+\cdots+X_{N}$

$\overline{\sqrt{N}}$ converges
to a hmit distribution $(\mu, \nu)$ with respect to the states $(\varphi, \psi)$ . In fact the limit distri-
butions $\mu,$ $v$ are Kesten distributions.

(4) Anti-monotone independence [6] is also included: it is realized by the ordered free
independence with respect to the states $(\delta, \varphi)$ .
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