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1 Introduction

1.1 Algebraic probability space

The mathematical description of quantum theory can be seen as a probability theory on an
non-commutative algebra. This viewpoint has led to the development of non-commutative
probability theory (or quantum probability theory). Many probabilistic concepts can be
extended to non-commutative algebras: for example, independence of random variables,
moments of random variables and probability distributions of random variables. In partic-
ular, it turns out that independence of random variables, the basic concept of probability
theory, is not uniquely determined. The most famous independence, which differs from the
usual independence, is free independence [8]. On the other hand, monotone independence
was introduced by Muraki [5] as another possible independence of random variables in a
non-commutative algebra.

The main purpose of this article is to explain a key idea to unify free and monotone
independences’, with a new look at free independence. Let us start from basic concepts
on non-commutative probability theory.

Let A be a unital x-algebra over C, that is, a unital algebra with an involution * :
A — A which is anti-linear. A state ¢ on A is a linear functional from A to C, which is
unital and positive: ¢(14) =1 and ¢(a*a) > 0 for any a € A. A typical example of A is
the set of all bounded linear operators B(H) on a Hilbert space H. If we denote by (-, -)
the inner product of H?, an involution * is the usual adjoint operation: (z,ay) = {a*z,y)
(a € B(H),z,y € H). A typical state is a vector state defined by ©(a) := (v, av), where v
is a unit vector of H.

An algebraic probability space is a pair (A4, ) of a x-algebra and a state on it. An
element X € A is called a random variable.

*The author is supported by Grant-in-Aid for JSPS Fellows. Email: hsb@kurims.kyoto-u.ac.jp
1This article is based on a preprint [4].
2The inner product here is linear with respect to the right component.
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From now on we assume that A is a von Neumann algebra, i.e., A is a *-subalgebra
of B(H), the set of bounded linear operators on a Hilbert space H, and A is closed under

the strong topology.
The probability distribution of a self-adjoint random variable X € A is defined by

px(B) = ¢(Ex(B)),

where Ex(B) is the spectral projection associated to X and B is a Borel set of R.

- We can also consider some unbounded operators on H. A self-adjoint operator X is
said to be affiliated to A if its spectral projections Ex(B), B Borel sets, all belong to A.
Then we can define px in the same way. '

Example 1.1. The usual probability theory is recovered if we take a probability space
(Q, F, P) and let A := L®(Q, F, P), acting on the Hilbert space L*(Q2, F, P). For a real-
valued random variable X € A, the probability measure px coincides with the distribution
of X: ux(B) = P(X € B) for Borel sets B of R. The set of self-adjoint random variables
affiliated to A is now equal to the set of real-valued random variables.

1.2 Free and monotone independences

Independence can be understood as a rule for calculating mixed moments. We now define
two kinds of independences. In probability theory, independence can be defined for o-fields
which correspond to *-subalgebras in non-commutative probability. Hence we formulate
independence in terms of *-subalgebras.

Definition 1.2. Let {A;}ic1 be *-subalgebras of A containing the unit 14, where the
index set I is arbitrary. They are said to be free (or free independent) if the following
property holds:

(F) @(ay---an) = 0if i # iz,52 # i3, ,in-1 # in, ax € A;, and @(ax) = 0 for any k.

Using this definition, we can calculate mixed moments of random variables which
belong to different free subalgebras.

Example 1.3. Let B,C, D be free *-subalgebras of \A. For random variables b,%’ € B,
¢, € C and d € D, we have

¢(be) = p(b)p(c), @(beb’) = p(bb')p(c),
w(beb'') = (b )p(c)p(c) + ()b )e(cc) — p(b)p (b)) (c) (<), (1.1)
p(bed) = ¢(b)p(c)p(d), (bedct) = p(bb)p(cc)p(d).

Now we define monotone independence, another famous independence in non-commutative
probability theory.

Definition 1.4. Let I be a totally ordered set. A sequence of x-subalgebras (A;)ies of A
is said to be monotonically independent if the following property holds:
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(M) go(al . '(Ln) = (p(aj)go(al crQ5-1Q541 -an) if a, € .A,L‘k, 1 < k <n and ij—l < ij >
ij+1 (if 7 =1 or j = n, one of the inequalities are eliminated).

From now on we only consider / = N:= {1,2,3,---}.

The definition of monotone independence shows asymmetry of independent subalge-
bras: the monotone independence of (A4;,.4;) does not imply the monotone independence
of (A3, A;). Hence we need to consider a sequence of subalgebras, not a set of subalgebras.

Example 1.5. Let (B,C, D) be monotonically independent *-subalgebras of .A. For ran-
dom variables b,b' € B, ¢,d € C and d € D, we have

p(be) = p(b)p(c), @(beb’) = p(bb)¢(c),
p(cbd) = p(c)p(d)p(c), w(beb'd) = (b8 )p(c)p(c), (1.2)
p(bed) = p(b)p(c)p(d), p(beddb') = (b )p(cc)p(d).

A difference can be observed in the calculations of ¢(bch’) and ¢(cbc’). This reflects the
asymmetry of monotone independence.

2 Generalization of free independence

The original definition of free independence requires every element to have a zero expecta-
tion in order that the product of elements has a zero expectation. However, Example 1.3
indicates that the assumption of the zero expectation of every element is too much. For
example, if ¢(c) = 0, then ¢(bcb’) = 0; the assumptions ¢(b) = (b') = 0 are not needed;
if p(b) =0, ¢(c) = 0 or ¢(d) = 0, then p(bcd) = 0. Thus, we can weaken the assumptions
on the conditions of zero expectations.

If {Ai}ien are free and ax € A, (i1 # 42, ,in_1 7 in), & crucial structure in this
article is the graph of (ix)7_, as in Fig. 1. If we regard i;, as a function of k, then it attains
local extrema at some points. For example in Fig. 1, the function i) attains local extrema,
atk=1,3,6,7,8,9,10,11,12,13. Let E(i1,- - - ,i,) denote the points at which the function
i attains local extrema.® Then we have an equivalent definition of free independence.

Proposition 2.1. Let A; be x-subalgebras of A containing the unit 14. Then they are free
if and only if the following holds:

(F’) o(ar---an) = 0 if 41 # dg iy # i3, -+ ,in-1 F# in, Qg € A, for1 <k < n and
go(ak) =0 fork € E(iy,- - ,in).

Proof. The implication (F’) = (F) is immediate, and hence we will prove (F) = (F’). Let
us assume that A; are free and ax € A;,, i1 # 12,92 # 43, ,in-1 # in and p(az) = 0
for k € E(i1,--- ,in). We have to prove that ¢(ai---a,) = 0. If k ¢ E(ig,--- i),
then ix_; < iy < ig41 OF g1 > ik > ik41. In both cases, let us decompose aj_ 1akak+1 as
w(ak)ar—10k+1+ak—1(ar— o(ar)l 4)axs+1. By iterating thls procedure, we can write a; -

3We include the edge points 1,7 in E(iy,--- ,ip).
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Figurel: 1:1=i6=’i12=1,i2=i5=i10=2,i4=i8=i11=i13=3,i3=i7=i9=4.

as asum Y2 ol o), where o) € Ay (1< k < my), ia(5) # ia(d), -+ sy (4) #
in;(j) and ¢(a (’)) =0 for any j, k. Then the free independence implies ¢(a; ---a,) =0. O

Takeix €N, k=1,--. ,nsothati; #ip- - ,in_1 # in. Now we know that the points
where the function k — i takes local extrema are important to define free independence.
Moreover, such points can be classified into two subsets: the points at which i; takes
local maxima and the points at which i, takes local minima.* Let us denote the former
points by Max(iy, - - ,4n) and the latter by Min(sy, - - - ,i,). In Fig. 1, Max(iy,--- ,413) =
{3,7,9,11,13} and Min(sy,--- ,i13) = {1,6,8,10,12}.

To distinguish these two classes, we introduce another state 1) on A and arrive at a
new definition of independence.

Definition 2.2. Let (A, ¢) be an algebraic probability space. Let (A;)ien be a sequence
of %-subalgebras of A containing the unit-14. Assume that there is another state i) on
A. The sequence (A;) is said to be ordered free independent if the following condition
holds:

(OF) cp(al---an) = 0,'¢'(a1---an) = 0 if ‘il ?6 ’1:2,?:2 ?é i3,"- )in—l 75 in, ar € Aik for
1<k <n, ¢(ax) =0 for k € Max(iy, - - ,in) and ¥(ax) = 0 for k € Min(iy, - - - ,4n).

This definition enables us to calculate mixed moments by using both ¢ and 3. Some
examples are shown below.

Example 2.3. Let (B,C, D) be ordered free independent. Then, for b,' € B,c,d € C,d €
D,

p(be) = p(b)g(c), P(be) = $(B)¥(c), (bed) = p(b)p(c)p(d),

(b)) = p(c)p(Bt), (che') = h(b)p(cd) + () ((b) — h(b))e(<),

p(bch) = p()p(BY) + P(b)(3(c) — p()P(¥), (cbc) = p(b)y(cc),

p(beb'd) = (bb)p(c)p(c) + p(B)Y(¥)p(cc) — p(B)p(c)p(¥)e(c), (2.1)
p(cbdt) = p(cd Jp(b)p(t) + () (c)p(B8) — p(c)P(B)p(c)p(¥),

(b ') = (B8 ) (e)p(c) + p(b)p(B)(bb) — P(B) () (b)(C),

p(cbdt) = (e Jp(b)y(b) + P(c)p() () — P(c)p(b)p(c)(b)-

4We include edge points also. For example, if iy > iz, then 1 € Max(i1, - ,in).
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This new independence extends free independence and also monotone independence.
A connection to free independence can be observed as follows: if we set ¢ = 1), the above
condition (OF) is equivalent to the free independence. For monotone independence, we
have to assume an additional structure on the algebra A.

Proposition 2.4. Let (A, ¢) be an algebraic probability space. If A has a decomposition
A= C148A° as von Neumann algebras, we can define a canonical state (A1 4+a°) := ),
where A € C and a® € A°. Let A) be x-subalgebras of A°. Then the sequence (A?)ien
with respect to ¢ is monotonically independent if and only if the sequence (Cl4 @ A%)ien
is ordered free independent with respect to the states (i, 6).

Proof. We prove only one implication. Assume that the sequence (C14& .A?9);en is ordered
free independent with respect to the states (y, ). Take natural numbers 4y, --- ,4, such .
that i1 # 42, ,in-1 # i and ax € A?k. If we use the associative law of ordered free
independence [4], it is sufficient to consider only two subalgebras: i € {1,2}, 1 <k < n.

If 4 = 2, let us define a} := ax — p(ax)14 and if i = 1, a} := ax. Then we have
¢(a) ---a;,) = 0. This implies that

play---an) = ¢ ( H ak) H o(ax),

kiig=1 kiip=2

where the product symbol [, preserves the order of the index i. This means the monotone
independence of (A9, .49). ' O

Therefore, if one set 1(b) = ¥(c) = ¥(d) = ¢¥(¥') = ¥(¢') = 0 in Example 2.3, results
of Example 1.5 can be obtained. We mention below further information on ordered free
independence. See [4] for detalis.

Remark 2.5. (1) The independence (OF) can be generalized more to include Boolean
independence [1, 7]. In that case, we need three states.

(2) Ordered free independence of two subalgebras (A;, A) is related to c-free indepen-
dence [2, 3].

(3) We can formulate central limit theorem as follows. Let (Xp,)ien be a sequence of i.i.d.
self-adjoint random variables with ¢(X,) = ¥(X,) = 0 and p(X?) = o? ¥(X2) = 52
(independence is in the sense of (OF)). Then the distribution of X1—+\/§—X"’ converges
to a limit distribution (p, ) with respect to the states (, ). In fact the limit distri-
butions u, v are Kesten distributions.

(4) Anti-monotone independence [6] is also included: it is realized by the ordered free
independence with respect to the states (4, ¢). ‘
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