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Abstract

Integral representation of monotone functions has been studied by Cho-
quet [1], Murofushi and Sugeno [4], Norberg [5], and many others, but not
necessarily been their primal interest due to the lack of uniqueness in their
representations. Here we present a brief overview of different approaches
and generalizations, and show our own version of integral representation
from the ongoing investigation.

1 Choquet theory of integral representation

In his treatise on theory of capacity, Choquet outlined a series of applications
for integral representation on the set £ of extreme points of a compact convex
Hausdorff space C (Chapter VII of [1]). Let L be a partially ordered set (poset)
with a maximum element e, and let C be the convex set of nonnegative monotone
functions ¢ on L with ¢(e) < 1. Assuming the topology of simple (i.e., pointwise)
convergence on functions over L, we can show that C is compact, and the set £ of
extreme points of C consists of indicator functions of the form

1) X(m)z{l ifxeU;

0 otherwise.

The monotonicity of x implies that y € U whenever z € U and z < y, and such
subset U is called an upper set. The set £ is compact, and any element ¢ of C is
represented in the integral form

@) o(z) = / (@) dulx), zeL,

with a Radon measure 4 on £ (Section 40 of [1]).

Let S be a compact Hausdorff space, and K be the class of compact subsets
of S. Then a nonnegative monotone function ¢ on K is called a capacity if it
is upper semicontinuous (i.e., p(F) | ¢(F) whenever FE | F) in the exponential
(i.e., Vietoris) topology. Here the convex set C of capacities ¢ with ¢(S) < 1 is
considered similarly; however, the topology of simple convergence is not suitable
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for the space C. Over the convex cone Q of nonnegative continuous functions on
S, a capacity ¢ uniquely corresponds to the functional

max§
3) o) = /0 o({z€E:E@) >r))dr, €.

Then we can introduce the topology of vague convergence on capacities in which
a net {p,} converges to ¢ if and only if ¢, () converges to ¢(£) for any £ € Q.
Under this topology the convex set C is compact Hausdorff, and the indicator
function x in (1) corresponds to a closed upper set U in the exponential topology
(Section 48 of [1]).

When S is a locally compact Hausdorff space, it is not necessary for K to
contain S. Here we can introduce a partial ordering on K by the dual (i.e., the
reverse order) of inclusion, and denote the poset by L with the maximum element
@. Then we can set the convex set C* of lower semicontinuous and nonnegative
monotone functions ¢ on L with ¢(@&) < 1. Observe that a lower semicontinuous
and nonnegative monotone functions ¢ on L uniquely corresponds to a bounded
capacity ¥ on K via

p(E) = f}égw(l’) - %(E)+¢(2), Eek.

The topology of vague convergence is introduced by (3) over the convex cone Q
of nonnegative continuous functions with compact support, in which the convex
set C* becomes compact Hausdorff.

2 A framework of continuous semilattice

In the application of integral representation for capacities on a locally compact
Hausdorff S, the Hausdorff assumption seems indispensable in order for C* to
be compact Hausdorff. Then the set £* of extreme points of C* is compact and
homeomorphic to the family of open upper subsets U, and the integral represen-
tation (2) of ¢ € C* is equivalently formulated as

(4) p(z) = ple), z€l,

where U, := {U € £* : £ € U} is an open set in £*.

In the framework of continuous posets (cf. Giertz et al. [3]), the compact
Hausdorff set £* is homeomorphic to the family of Scott open subsets of L. Here
the topology of vague convergence corresponds to the Lawson topology, which
comes solely from the fact that L is a continuous semilattice. Norberg [5] showed
that it is entirely possible to construct a Borel measure p on the family £* of
Scott open subsets satisfying (4) if L is a continuous semilattice and £* is second
countable. Thus, we can choose S to be a locally compact sober and second
countable space, which is not necessarily Hausdorff. Note that the Borel measure
p is a Radon measure when £* is second countable; see [2].

We claim that £* is not necessarily second countable, and demonstrate it by
a rather straightforward construction of a Radon measure p satisfying (4) due to



Murofushi and Sugeno [4]. Let ¢ € C* be fixed, and let e denote the top element
of the continuous semilattice L. Observe that

(5) F(ry={z € L:p(z)>r}

maps from r € [0, p(e)) to £*, and F is Borel-measurable. For a Borel measurable
subset V of £* we can define p(V) := m(F~1(V)) with the Lebesgue measure m
on [0, ¢(e)). Then we can show that u is a Radon measure, and it satisfies

plUs) = m([0, o(z))) = ¢(z).

It should be noted that Norberg [5] has investigated a Borel measure p on
the family £* of Scott open filters in L, and proved a bijection between Borel
measures on £* and lower semicontinuous and completely monotone nonnegative
functions on L. The above construction immediately fails for this purpose since
(5) does not map into £* in general even if ¢ is completely monotone.

Finally we present our own version of construction without assuming the sec-
ond countable £*. Let C(€*) be the space of continuous functions on £*, and let
d; be a point mass probability measure (i.e., Dirac delta) at z € L. Here we will
use the following proposition, but leave the proof for the future publication.

Proposition 1. There exists a subspace R of C(E*) such that (i) each g € R is
uniquely extended to a signed Radon measure R on L so that g(U) = R(U) for any
U € &*, and (ii) for each x € L there is an increasing net {g,} of R satisfying
sup, 9o(U) = 84(U) for any U € &E*.

For a fixed ¢ € C*, we can introduce a nonnegative homogeneous and super-
additive functional on C(€*) by

M(g)=sup{/godR:RSg,RE’R}, ge C(&).

By applying the Hahn-Banach theorem we obtain a linear functional ® on C(E*)
satisfying (a) M < ® on C(€*), and (b) M = ® on R. The condition (a) implies
that & is positive, and that ¢ uniquely corresponds to a Radon measure p on £*
via the Riesz representation ®(g) = [ gdu. By applying Proposition 1 together
with the condition (b), we can show that if an increasing net {R,} of R satisfies
sup,, Ro(U) = 6,(U) for U € £* then

p(Uz) = sup ®(R,) = sup M(R,) = sup / pdR, = p(z),

as desired. A variation of this construction can be used to show the existence
of a Radon measure p whose support lies on £* when ¢ is completely monotone
(which is a part of the ongoing investigation).
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