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Abstract

Integral representation of monotone functions has been studied by Chcト

quet [1], Murofushi and Sugeno [4], Norberg [5], and many others, but not
necessarily been their primal interest due to the lack of uniqueness in their
representations. Here we present a brief overview of different approaches
and generalizations, and show our own version of integral representation
from the ongoing investigation.

1 Choquet theory of integral representation
In his treatise on theory of capacity, Choquet outlined a series of applications
for integral representation on the set $\mathcal{E}$ of extreme points of a compact convex
Hausdorff space $C$ (Chapter VII of [1]). Let $L$ be a partially ordered set (poset)
with a maximum element $e$ , and let $C$ be the convex set of nonnegative monotone
functions $\varphi$ on $L$ with $\varphi(e)\leq 1$ . Assuming the topology of simple (i.e., pointwise)
convergence on functions over $L$ , we can show that $C$ is compact, and the set $\mathcal{E}$ of
extreme points of $C$ consists of indicator functions of the form

(1) $\chi(x)=\{\begin{array}{ll}1 if x\in U;0 otherwise.\end{array}$

The monotonicity of $\chi$ implies that $y\in U$ whenever $x\in U$ and $x\leq y$ , and such
subset $U$ is called an upper set. The set $\mathcal{E}$ is compact, and any element $\varphi$ of $C$ is
represented in the integral form

(2) $\varphi(x)=\int\chi(x)d\mu(\chi) , x\in L,$

with a Radon measure $\mu$ on $\mathcal{E}$ (Section 40 of [1]).
Let $S$ be a compact Hausdorff space, and $\mathcal{K}$ be the class of compact subsets

of $S$ . Then a nonnegative monotone function $\varphi$ on $\mathcal{K}$ is called a capacity if it
is upper semicontinuous $(i.e., \varphi(E)\downarrow\varphi(F)$ whenever $E\downarrow F$ ) in the exponential
(i.e., Vietoris) topology. Here the convex set $C$ of capacities $\varphi$ with $\varphi(S)\leq 1$ is
considered similarly; however, the topology of simple convergence is not suitable
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for the space $C$ . Over the convex cone $\mathcal{Q}$ of nonnegative continuous functions on
$S$ , a capacity $\varphi$ uniquely corresponds.to the functional

(3) $\varphi(\xi)=\int_{0}^{\max\xi}\varphi(\{x\in E$ : $\xi(x)\geq r\})dr,$ $\xi\in \mathcal{Q}.$

Then we can introduce the topology of vague convergence on capacities in which
a net $\{\varphi_{\alpha}\}$ converges to $\varphi$ if and only if $\varphi_{\alpha}(\xi)$ converges to $\varphi(\xi)$ for any $\xi\in \mathcal{Q}.$

Under this topology the convex set $C$ is compact Hausdorff, and the indicator
function $\chi$ in (1) corresponds to a closed upper set $U$ in the exponential topology
(Section 48 of [1]).

When $S$ is a locally compact Hausdorff space, it is not necessary for $\mathcal{K}$ to
contain $S$ . Here we can introduce a partial ordering on $\mathcal{K}$ by the dual (i.e., the
reverse order) of inclusion, and denote the poset by $L$ with the maximum element
$\emptyset$ . Then we can set the convex set $C^{*}$ of lower semicontinuous and nonnegative
monotone functions $\varphi$ on $L$ with $\varphi(\emptyset)\leq 1$ . Observe that a lower semicontinuous
and nonnegative monotone functions $\varphi$ on $L$ uniquely corresponds to a bounded
capacity $\psi$ on $\mathcal{K}$ via

$\varphi(E)=\sup_{F\in \mathcal{K}}\psi(F)-\psi(E)+\psi(\emptyset) , E\in \mathcal{K}.$

The topology of vague convergence is introduced by (3) over the convex cone $\mathcal{Q}$

of nonnegative continuous functions with compact support, in which the convex
set $C^{*}$ becomes compact Hausdorff.

2 $A$ framework of continuous semilattice
In the application of integral representation for capacities on a locally compact
Hausdorff $S$ , the Hausdorff assumption seems indispensable in order for $C^{*}$ to
be compact Hausdorff. Then the set $\mathcal{E}^{*}$ of extreme points of $C^{*}$ is compact and
homeomorphic to the family of open upper subsets $U$ , and the integral represen-
tation (2) of $\varphi\in C^{*}$ is equivalently formulated as

(4) $\varphi(x)=\mu(\mathcal{U}_{x}) , x\in L,$

where $\mathcal{U}_{x};=\{U\in \mathcal{E}^{*}:x\in U\}$ is an open set in $\mathcal{E}^{*}.$

In the framework of continuous posets (cf. Giertz et al. [3]), the compact
Hausdorff set $\mathcal{E}^{*}$ is homeomorphic to the family of Scott open subsets of $L$ . Here
the topology of vague convergence corresponds to the Lawson topology, which
comes solely from the fact that $L$ is a continuous semilattice. Norberg [5] showed
that it is entirely possible to construct a Borel measure $\mu$ on the family $\mathcal{E}^{*}$ of
Scott open subsets satisfying (4) if $L$ is a continuous semilattice and $\mathcal{E}^{*}$ is second
countable. Thus, we can choose $S$ to be a locally compact sober and second
countable space, which is not necessarily Hausdorff. Note that the Borel measure
$\mu$ is a Radon measure when $\mathcal{E}^{*}$ is second countable; see [2].

We claim that $\mathcal{E}^{*}$ is not necessarily second countable, and demonstrate it by
a rather straightforward construction of a Radon measure $\mu$ satisfying (4) due to
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Murofushi and Sugeno [4]. Let $\varphi\in C^{*}$ be fixed, and let $e$ denote the top element
of the continuous semilattice $L$ . Observe that

(5) $F(r)=\{x\in L : \varphi(x)>r\}$

maps from $r\in[0, \varphi(e))$ to $\mathcal{E}^{*}$ , and $F$ is Borel-measurable. For a Borel measurable
subset $\mathcal{V}$ of $\mathcal{E}^{*}$ we can define $\mu(\mathcal{V})$ $:=m(F^{-1}(\mathcal{V}))$ with the Lebesgue measure $m$

on $[0, \varphi(e))$ . Then we can show that $\mu$ is a Radon measure, and it satisfies

$\mu(\mathcal{U}_{x})=m([0, \varphi(x)))=\varphi(x)$ .

It should be noted that Norberg [5] has investigated a Borel measure $\mu$ on
the family $\mathcal{L}^{*}$ of Scott open filters in $L$ , and proved a bijection between Borel
measures on $\mathcal{L}^{*}$ and lower semicontinuous and completely monotone nonnegative
functions on $L$ . The above construction immediately fails for this purpose since
(5) does not map into $\mathcal{L}^{*}$ in general even if $\varphi$ is completely monotone.

Finally we present our own version of construction without assuming the sec-
ond countable $\mathcal{E}^{*}$ . Let $C(\mathcal{E}^{*})$ be the space of continuous functions on $\mathcal{E}^{*}$ , and let
$\delta_{x}$ be a point mass probability measure (i.e., Dirac delta) at $x\in L$ . Here we will
use the following proposition, but leave the proof for the future publication.

Proposition 1. There exists a subspace $\mathcal{R}$ of $C(\mathcal{E}^{*})$ such that (i) each $g\in \mathcal{R}$ is
uniquely extended to a signed Radon measure $R$ on $L$ so that $g(U)=R(U)$ for any
$U\in \mathcal{E}^{*}$ , and (ii) for each $x\in L$ there is an increasing net $\{g_{\alpha}\}$ of $\mathcal{R}$ satisfying
$\sup_{\alpha}g_{\alpha}(U)=\delta_{x}(U)$ for any $U\in \mathcal{E}^{*}.$

For a fixed $\varphi\in C^{*}$ , we can introduce a nonnegative homogeneous and super-
additive functional on $C(\mathcal{E}^{*})$ by

$M(g)= \sup\{\int\varphi dR:R\leq g, R\in \mathcal{R}\}, g\in C(\mathcal{E}^{*})$ .

By applying the Hahn-Banach theorem we obtain a linear functional $\Phi$ on $C(\mathcal{E}^{*})$

satisfying (a) $M\leq\Phi$ on $C(\mathcal{E}^{*})$ , and (b) $M=\Phi$ on $\mathcal{R}$ . The condition (a) implies
that $\Phi$ is positive, and that $\Phi$ uniquely corresponds to a Radon measure $\mu$ on $\mathcal{E}^{*}$

via the Riesz representation $\Phi(g)=\int gd\mu$ . By applying Proposition 1 together
with the condition (b), we can show that if an increasing net $\{R_{\alpha}\}$ of $\mathcal{R}$ satisfies
$\sup_{\alpha}R_{\alpha}(U)=\delta_{x}(U)$ for $U\in \mathcal{E}^{*}$ then

$\mu(\mathcal{U}_{x})=\sup_{\alpha}\Phi(R_{\alpha})=\sup_{\alpha}M(R_{\alpha})=\sup_{\alpha}\int\varphi dR_{\alpha}=\varphi(x)$ ,

as desired. $A$ variation of this construction can be used to show the existence
of a Radon measure $\mu$ whose support lies on $\mathcal{L}^{*}$ when $\varphi$ is completely monotone
(which is a part of the ongoing investigation).
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