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1 Introduction
We will discuss an aspect of a famous classical probability distribution known
as the Arcsine law from the view point of “quantum-classical correspon-
dence”

The (normalized) Arcsine law $\mu_{As}$ is the probability distribution on $\mathbb{R}$

with support $[-\sqrt{2}, \sqrt{2}]$ defined as

$\mu_{As}(dx)=\frac{1}{\pi}\frac{dx}{\sqrt{2-x^{2}}},$

whose n-th moment $M_{n}$ $:= \int_{\mathbb{R}}x^{n}\mu_{As}(dx)$ is given by

$M_{2m+1}=0, M_{2m}= \frac{1}{2^{m}}(\begin{array}{l}2mm\end{array}).$

In this case, the moment sequence $\{M_{n}\}$ characterize $\mu_{As}$ (the moment
problem is deterministic”).

2 Noncommutative Probability

To describe the relation between the Arcsine law and “quantum-classical cor-
respondence”, we need some basic notions in “Noncommutative probability”

Noncommmutative probability is a generalization of probability theory,
partly motivated to include quantum thoery in itself. The basic notion is “a
state defined on $a*$ -algebra”
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Let $\mathcal{A}$ be a $*$-algebra (“observable algebra”). We call a linear map $\varphi$ :
$\mathcal{A}arrow \mathbb{C}$ a state on $\mathcal{A}$ if it satisfies

$\varphi(1)=1, \varphi(a^{*}a)\geq 0.$

A pair $(\mathcal{A}, \varphi)$ of $a*$-algebra and a state on it is called an algebraic probability
space. When the algebra $\mathcal{A}$ is commutative, the theory can be reduced
to classical probability theory. On the other hand, noncommutativity of
the algebra leads to “Unceretainty principle” or “Bell’s inequality”, which
characterize the limitation of classical theory, under the positivity condition
in the defimition of state.

Here we adopt a notation for a state $\varphi$ : $\mathcal{A}arrow \mathbb{C}$ , an element $X\in \mathcal{A}$ and
a probability distribution $\mu$ on $\mathbb{R}.$

Notation 2.1. $X\sim_{\varphi}\mu\Leftrightarrow$ $\varphi(X^{m})=\int_{\mathbb{R}}x^{m}\mu(dx)$ for all $m\in \mathbb{N}.$

Remark 2.2. Existence of $\mu$ for $X$ which satisfies $X\sim_{\varphi}\mu$ always holds.
The uniqueness of such $\mu$ holds if the moment problem is deterministic.

3 Quantum Harmonic Oscillator
A classical Harmonic oscillator is a movement which occurs under “Hooke’s
law” (Force is proportional to displacement). As long as force is sufficiently
small, Hooke’s law holds universally. So a harmonic oscillator is one of the
most important model case of mechanics. However, in the quantum region,
we need more subtle treatment of harmomic oscillators using a kind of alge-
braic probability space defined as follows.

Definition 3.1 (Quantum Harmonic Oscillator). $A$ quantum harmonic os-
cillator is a quadruple $(\Gamma(\mathbb{C}), \{\Phi_{n}\}_{n=0}^{\infty}, a, a^{*})$ where $\Gamma(\mathbb{C})$ is a Hilbert space
$\Gamma(\mathbb{C})$ $:=\oplus_{n=0}^{\infty}\mathbb{C}\Phi_{n}$ with inner product given by $<\Phi_{n},$ $\Phi_{m}>=\delta_{n,m}$ , and $a,$ $a^{*}$

are operators defined as follows:

$a\Phi_{0}=0, a\Phi_{n}=\sqrt{n}\Phi_{n-1}(n\geq 1)$

$a^{*}\Phi_{n}=\sqrt{n+1}\Phi_{n+1}$

Let $\mathcal{A}$ be $the*$-algebra generated by $a,$ $a^{*}$ and $\varphi_{n}(\cdot)$ be the state defined
as $\varphi(\cdot)$ $:=<\Phi_{n},$ $(\cdot)\Phi_{n}>$ . Then $(\mathcal{A}, \varphi_{n}(\cdot))$ becomes an algebraic probability
space. It is well known that $\frac{1}{\sqrt{2}}(a+a^{*})$ represents the “position” observable
and that

$\frac{1}{\sqrt{2}}(a+a^{*})\sim_{\varphi 0}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx.$
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That is, in $n=0$ case, the distribution of position operator is Gaussian
(zero point motion”).

On the other hand, the asymptotic behavior of the distribution of position
operator as $n$ tends to infinity is quite nontrivial.

4 Emergence of the Arcsine Law

Theorem 4.1. Let $\mu_{N}$ be a probability distribution on $\mathbb{R}$ such that

$\frac{a+a^{*}}{\sqrt{2(N+1)}}\sim_{\varphi_{n}}\mu_{N}.$

Then $\mu_{N}$ weakly converge to $\mu_{As}.$

Proof. We only have to prove moment convergece.
First we can easily prove that

$\varphi_{N}((\frac{a+a^{*}}{\sqrt{2(N+1)}})^{2m+1})=<\Phi_{N}, (\frac{a+a^{*}}{\sqrt{2(N+1)}})^{2m+1}\Phi_{N}>=0$

since $<\Phi_{N},$ $\Phi_{M}>=0$ when $N\neq M$ . To consider the moments of even
degrees, we introduce the following notations:

$\bullet$
$\Lambda^{2m}$ $:=$ {maps from {1, 2, $\ldots,$

$2m\}$ to $\{1,$ $*\}$ },

$\bullet\Lambda_{m}^{2m}:=\{\lambda\in\Lambda^{2m};|\lambda^{-1}(1)|=|\lambda^{-1}(*)|=m\}.$

Then

$\varphi_{N}((\frac{a+a^{*}}{\sqrt{2(N+1)}})^{2m})=$ $\frac{1}{2^{m}}\sum_{\lambda\in\Lambda^{2m}}\frac{1}{(N+1)^{m}}<\Phi_{N},$
$a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}>$

$= \frac{1}{2^{m}}\sum_{\lambda\in\Lambda_{m}^{2m}}\frac{1}{(N+1)^{m}}<\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}>$

$arrow$ $\frac{1}{2^{m}}|\Lambda_{m}^{2m}|=\frac{1}{2^{m}}(\begin{array}{l}2mm\end{array}) (Narrow\infty)$

because

$N(N-1)\cdots(N-m+1)\leq<\Phi_{N},$ $a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}>\leq(N+1)(N+2)\cdots(N+m)$

for sufficiently large $N$ and then

$\frac{1}{(N+1)^{m}}<\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}>arrow 1 (Narrow\infty)$ .

This completes the proof. $\square$
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5The Physical Meaning of the Result
Here we discuss a physical implication of the result above: Let us see the
relationship between the Arcsine law and the Classical harmonic oscillator.

Let $x(t)=A\sin(t)$ be a harmonic oscillator with amplitude $A$ . Then it
is easy to see that “the probability distribution $\mu ofx$ at random time $t$

” has
a form

$\mu(dx)=C\frac{dx}{\sqrt{A^{2}-x^{2}}}$

where $C$ denotes the normalizing constant. In $A=\sqrt{2}$ case, $\mu=\mu_{As}.$

Therefore, the meaning of the result above is, roughly, “the (time av-
eraged) behavior of quantum harmonic oscillator tends to that of classical
harmonic oscillator when the quantum number (energy level) tends to infin-
ity”, which is nothing but a typical example of quantum-classical correspon-
dence” It is related to very fundamental aspects of Quantum theory and
asymptotic analysis [1]. We have analyzed it from the viewpoint of noncom-
mutative algebraic probability with quite a simple combinatorial argument.
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