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Abstract

In this paper, we apply the proximal point algorithm to study zero point

problems in a reflexive, strictly convex and smooth Banach space and in its

dual space. We obtain some existence theorems for zero point problems and

some results on the boundedness and asymptotic behavior of the sequences

generated by the proximal point algorithm without summability assumptions

on the error sequences. Further we characterize the existence of the solutions

of zero point problems of maximal monotone operators in a reflexive, strictly

convex and smooth Banach space and in its dual space.

lIntroduction

Let $E$ be a Banach space and $E^{*}$ be its dual space. We consider the problems of

finding points $u\in E$ and $v\in E^{*}$ such that

(1.1) $0\in A(u)$

and

(1.2) $0\in B(v)$ ,
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where $A$ and $B$ are maximal monotone operator from $E$ to $2^{E^{*}}$ and from $E^{*}$

to $2^{E}$ , respectively. The problem of finding a solution of problem (1.1) has in-

teresting interpretations in various fields. For example, saddle point problems,

variational inequalities, and complementary problems can be written in (1.1) (see

[1],[2],[14],[15],[18] $)$ . $A$ variety of methods for solving problem (1.1) has been pro-

posed and investigated (see [3],[4],[6],[7],[8],[9],[10],[13],[14],[16]). One of the most

popular algorithms for solving problem (1.1) of a maximal monotone operator is

the proximal point algorithm, which was first proposed by Martinet [11] in 1970.

In a Hilbert space setting, Rockafellar [14] used the proximal point algorithm to

show that problem (1.1) has at least one solution under some suitable assumptions.

Let $H$ be a real Hilbert space, $\{t_{n}\}$ and $\{c_{n}\}$ be two sequences of positive num-

bers. Recently Khatibzadeh [5] proved a sufficient condition for the boundedness of

the sequence generated by the following proximal point algorithm: for any starting

point $x_{0}\in H,$

$x_{n}=(I+c_{n}A)^{-1}(x_{n-1}+e_{n}) , \forall n\geq 1$ , (1)

where $A$ is a maximal monotone operator on $H,$ $I$ is the identity mapping and

$\{e_{n}\}$ is a sequence in $H$ . Khatibzadeh [5] also consider the existence of solutions of

problem (1.1) in the case that $E$ is a real Hilbert space. On the other hand, Tian

and Song [17] proposed a regularization method of proximal point algorithm: for

any starting point $x_{0}\in H$ and $u\in H,$

$x_{n}=(I+c_{n}A)^{-1}(t_{n}u+(1-t_{n})x_{n-1}+e_{n}) , \forall n\geq 1$, (2)

where $I,$ $A$ and $\{e_{n}\}$ are the same as in (1). When $E$ is a real Hilbert space, Tian

and Song [17] obtain that the sequence $\{x_{n}\}$ generated by (2) converges strongly

to a solution of problem (1.1) under some suitable assumptions. Motivated by

[5] and [17], we proposed a regularization method of proximal point algorithm in

a reflexive, strictly convex and smooth Banach space $E$ . Let $G$ : $Earrow E^{*}$ and
$H$ : $Earrow E$ be two mappings, we consider the following regularization method of

proximal point algorithms: for any starting point $x_{0}\in E,$

$x_{n}=(J+c_{n}A)^{-1}(t_{n}G(x_{n-1})+(1-t_{n})Jx_{n-1}+f_{n}) \forall n\geq 1$ , (3)
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and

$x_{n}=(I+c_{n}BJ)^{-1}(t_{n}H(x_{n-1})+(1-t_{n})x_{n-1}+e_{n}) \forall n\geq 1$ , (4)

where $\{e_{n}\}\subseteq E,$ $\{f_{n}\}\subseteq E^{*},$ $A$ and $B$ are maximal monotone mappings defined on
$E$ and $E^{*}$ , respectively. The regularization methods of proximal point algorithm

(3) and (4) are generalizations of (1) and (2). And the space $E$ (a reflexive, strictly

convex and smooth Banach space) is more general than the space $H$ (a real Hilbert

space) considered in [5] and [17]. In order to generalize the main results in [5] to

Banach spaces, the assumption on $\{c_{\eta}\}(\lim_{narrow\infty}c_{n}=+\infty)$ in this paper is stronger

than the one $( \sum_{n=1}^{\infty}c_{n}=+\infty)$ in [5]. But the sequence $\{x_{n}\}$ generated by (2) with

$\lim_{narrow\infty}c_{n}=+\infty$ has faster rate of convergence than the one with $\sum_{n=1}^{\infty}c_{n}=+\infty$ . As a

main result of this paper, we propose existence theorems of solutions of problems

(1.1) and (1.2). Moreover we show that the set of all solutions of problem (1.1)

(and (1.2)) is nonempty if and only if there exists a bounded sequence generated by

our regularization method of proximal point algorithm with $\lim_{narrow\infty}c_{n}=+\infty$ . The

assumptions on $\{t_{n}\}$ and $\{c_{n}\}$ of (3) and (4) in this paper are different from the

ones of (2) in [17], although the algorithm (2) is a special case of (3) and (4).

2 Preliminaries

Throughout this paper, let $\mathbb{N}$ be the set of positive integers. Let $X,$ $Y$ be two

topological spaces and let $T$ : $Xarrow Y$ be a multivalued mapping, we denote
$D(T)$ $:=\{x\in X : Tx\neq\emptyset\}$ the domain of $T$ and $R(T)$ $:= \bigcup_{x\in D(T)}Tx$ the range

of $T$ . Let $E$ be a reflexive, strictly convex and smooth Banach space and let $E^{*}$

be its dual space. $A$ mapping $T:D(T)\subseteq Earrow E^{*}$ is called a monotone operator

if $\langle y_{1}-y_{2},$ $x_{1}-x_{2}\rangle\geq 0$ , for all $y_{i}\in Tx_{i},$ $i=1,2$ . The monotone operator $\dot{T}$ is

said to be maximal if its graph $G(T)=\{(x, y) : y\in Tx\}$ is not properly contained

in the graph of any other monotone operator. The monotone operator $T$ is called

coercive if $\lim_{\Vert x\Vertarrow 0}\frac{\langle y,x\rangle}{\Vert x\Vert}=+\infty$ , for all $(x, y)\in G(T)$ . Let $A$ : $D(A)\subseteq Earrow E^{*}$

and $B:D(B)\subseteq E^{*}arrow E$ be maximal monotone operators. Let $G:Earrow E^{*}$ and
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$H$ : $Earrow E$ be two mappings. Let $\{c_{n}\}$ and $\{t_{n}\}$ be sequences of nonnegative real

numbers with $\{t_{n}\}\subseteq[0,1]$ and $c_{n}>0,$ $\{e_{n}\}$ and $\{f_{n}\}$ be sequences in $E$ and $E^{*},$

respectively,

3 Bounded sequences

Theorem 3.1. Let $A$ be a coercive maximal monotone operator. If the sequences

$\{\frac{t_{n}}{c_{n}}\}$ and $\{\frac{\Vert f_{n}\Vert}{c_{n}}\}$ are bounded. Suppose at least one of the following conditions is

satisfied:

(i) $R(G)$ is bounded;

(ii) $\Vert Gx\Vert\leq\Vert x\Vert$ for all $x\in E.$

Then for each $x_{0}\in E$ , the sequence $\{x_{n}\}$ generated by (3) is bounded.

Theorem 3.2. Let $E$ be a real Hilbert space. Suppose that $\{x_{n}\}$ be the sequence

generated by (1) with $f_{n}\equiv 0$ and $A=\partial\varphi$ , where $\varphi$ is a proper, convex and lower

semicontinuous function. If $\sum_{n=1}^{+\infty}c_{n}=+\infty$ , then $\varphi(x_{n})-\varphi(p)=o((\sum_{i=1}^{n}c_{i})^{-1})$ , where

$p$ is a minimum point of $\varphi.$

Theorem 3.3. Let $A$ be a coercive maximal monotone operator. If the sequences
$\{\frac{t_{n}}{c_{n}}\}$ and $\{\frac{\Vert f_{n}\Vert}{c_{n}}\}$ are bounded, then for each $x_{0}\in E$ and $v\in E^{*}$ , the sequence $\{x_{n}\}$

generated by

$x_{n}=J_{c_{n}}(t_{n}v+(1-t_{n})Jx_{n-1}+f_{n})$ (5)

is bounded.

Theorem 3.4. Let $A$ be a coercive maximal monotone operator. If $\lim_{narrow\infty}c_{n}=\infty$

and the sequence $\{\frac{\Vert f_{n}\Vert}{c_{\eta}}\}$ is bounded. Suppose at least one of the following conditions

is satisfied:

(i) $R(G)$ is bounded;

(ii) $\Vert Gx\Vert\leq\Vert x\Vert$ for all $x\in E.$
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Then for each $x_{0}\in E$ and $v\in E^{*}$ , the sequence $\{x_{n}\}$ generated by

$x_{n}=J_{c_{n}}(Gx_{n-1}+f_{n})$ (6)

is bounded.

Theorem 3.5. Let $B$ be a coercive maximal monotone operator. If the sequences
$\{\frac{t_{n}}{c_{n}}\}$ and $\{\frac{\Vert e_{n}\Vert}{c_{n}}\}$ are bounded. Suppose at least one of the following conditions is

satisfied:

(i) $R(H)$ is bounded;

(ii) $\Vert H(x)\Vert\leq\Vert x\Vert$ for all $x\in E.$

Then for each $x_{0}\in E$ , the sequence $\{x_{n}\}$ generated by (4) is bounded.

Theorem 3.6. Let $B$ be a coercive maximal monotone operator. If the sequences
$\{\frac{t_{n}}{c_{n}}\}$ and $\{\frac{\Vert e_{n}\Vert}{c_{n}}\}$ are bounded, then for each $x_{0}\in E$ and $u\in E$ , the sequence $\{x_{n}\}$

generated by

$x_{n}=Q_{c_{n}}(t_{n}u+(1-t_{n})x_{n-1}+e_{n})$ (7)

is bounded.

Theorem 3.7. Let $B$ be a coercive maximal monotone operator. If $\lim_{narrow\infty}c_{n}=\infty$

and the sequence $\{\frac{\Vert e_{n}||}{c_{n}}\}$ is bounded. Suppose at least one of the following conditions

is satisfied:

(i) $R(H)$ is bounded;

(ii) $\Vert Hx\Vert\leq\Vert x\Vert$ for all $x\in E.$

Then for each $x_{0}\in E$ , the sequence $\{x_{n}\}$ generated by

$x_{n}=Q_{c_{n}}(H(x_{n-1})+e_{n})$ (8)

is bounded.
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4 Main results

In this section, we study the existence of solutions of problems (1.1) and (1.2). The

following theorem is one of the main results in this paper and it is an existence

result of solutions of problem (1.1).

Theorem 4.1. Let $\{x_{n}\}$ be a bounded sequence generated by (3). If $\lim_{narrow\infty}c_{n}=\infty$

and $\lim_{narrow\infty}\frac{\Vert f_{n}\Vert}{c_{n}}=0$ . Suppose at least one of the following conditions is satisfied:

(i) $R(G)$ is bounded;

(ii) $\Vert Gx\Vert\leq\Vert x\Vert$ for all $x\in E.$

Then $A^{-1}(0)\neq\emptyset$ . Moreover, every weak cluster point of the sequence $\{w_{n}\}$ belongs
$\sum c_{n}x_{n}k$

to $A^{-1}(0)$ , where $w_{k}= \frac{n=1}{k}$ .

$\sum_{n=1}c_{n}$

Theorem 4.2. Let $\{x_{n}\}$ be a bounded sequence generated by (3). If $\sum_{k=1}^{n-1}c_{k}=o(c_{n})$

(the small $0$ of $|c_{n}$ ) and $\lim_{narrow\infty}\frac{\Vert f_{n}\Vert}{c_{n}}=0$ . Suppose at least one of the following

conditions is satisfied:

(i) $R(G)$ is bounded;

(ii) $\Vert Gx\Vert\leq\Vert x\Vert$ for all $x\in E.$

Then $A^{-i}(0)\neq\emptyset$ . Moreover, every weak cluster point of the sequence $\{x_{n}\}$ belongs

to $A^{-1}(0)$ .

Theorem 4.3. Let $A$ be a coercive maximal monotone operator. Then $A^{-1}(0)\neq\emptyset.$

Moreover, Suppose at least one of the following conditions is satisfied:

(i) $R(G)$ is bounded;

(ii) $\Vert Gx\Vert\leq\Vert x\Vert$ for all $x\in E.$
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Let $\{x_{n}\}$ be a sequence generated by (3) and sequence $\{w_{k}\}$ be the same as in

Theorem 4.1. Then we have the following conclusions:

(i) If $\lim_{narrow\infty}c_{n}=\infty$ and $\lim_{narrow\infty}\frac{\Vert f_{n}\Vert}{c_{n}}=0$, then every weak cluster point of the

sequence $\{w_{k}\}$ belongs to $A^{-1}(0)$ .

(ii) If $\sum_{k=1}^{n-1}c_{k}=o(c_{n})$ and $\lim_{narrow\infty}\frac{\Vert f_{n}\Vert}{c_{\eta}}=0$, then every weak cluster point of the

sequence $\{x_{n}\}$ belongs to $A^{-1}(0)$ .

Theorem 4.4. Let $A$ be a maximal monotone operator. Then the following are

equivalent:

(i) $A^{-1}(0)\neq\emptyset.$

(ii) There exists a bounded sequence $\{x_{n}\}$ generated by (17) with $\lim_{narrow\infty}c_{n}=\infty$

and $\lim_{narrow\infty}\frac{\Vert f_{n}\Vert}{c_{\eta\iota}}=0.$

In this case, every weak cluster point of $\{w_{k}\}$ belongs to $A^{-1}(0)$ , where $w_{k}=$

$\sum c_{n}x_{n}k$

$n-1$

$\frac{n=1}{k}$ . Moreover if $\sum c_{k}=o(c_{n})$ , then every weak cluster point of the sequence

$\sum_{n=1}c_{n}$

$k=1$

$\{x_{n}\}$ also belongs to $A^{-1}(0)$ .

Theorem 4.5. Let $\{x_{n}\}$ be a bounded sequence generated by (4). If $\lim_{narrow\infty}c_{n}=\infty$

and $\lim_{narrow\infty}\frac{\Vert e_{n}\Vert}{c_{n}}=0$. Suppose at least one of the following conditions is satisfied:

(i) $R(H)$ is bounded;

(ii) $\Vert Hx\Vert\leq\Vert x\Vert$ for all $x\in E.$

Then $B^{-1}(0)\neq\emptyset$ . Moreover, every weak cluster point of the sequence $\{w_{k}\}$ belongs

to $B^{-1}(0)$ , where $w_{k}= \frac{\Sigma_{n--1}^{k}c_{n}Jx_{n}}{\Sigma_{n=1}^{k}c_{n}}.$

Theorem 4.6. Let $\{x_{n}\}$ be a bounded sequence generated by (4). If $\sum_{k=1}^{n-1}c_{k}=o(c_{n})$

and $\lim_{narrow\infty}\frac{\Vert e_{n}\Vert}{c_{n}}=0$. Suppose at least one of the following conditions is satisfied:
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(i) $R(H)$ is bounded;

(ii) $\Vert Hx\Vert\leq\Vert x\Vert$ for all $x\in E.$

Then $B^{-1}(0)\neq\emptyset$ . Moreover, every weak cluster point of the sequence $\{x_{n}\}$ belongs

to $B^{-1}(0)$ .

Theorem 4.7. Let $B$ be a coercive maximal monotone operator. Then $B^{-1}(0)\neq\emptyset.$

Moreover, suppose at least one of the following conditions is satisfied:

(i) $R(H)$ is bounded;

(ii) $\Vert Hx\Vert\leq\Vert x\Vert$ for all $x\in E.$

Let $\{x_{n}\}$ be a sequence generated by (4) and sequence $\{w_{k}\}$ be the same as in

Theorem 4.5. Then we have the following conclusions:

(i)

sequence { $w_{k}\}be1$ongsto (
$0) If\lim_{narrow\infty}c_{n}=\infty and\lim_{narrow\infty}\frac{\Vert e_{n}||}{B^{-1}c_{n}}=0$

, then every weak cluster point of the

(ii) If $\sum_{k=1}^{n-1}c_{k}=o(c_{n})$ and $\lim_{narrow\infty}\frac{\Vert e_{n}\Vert}{c_{n}}=0$ , then every weak cluster point of the

sequence $\{x_{n}\}$ belongs to $B^{-1}(0)$ .

Theorem 4.8. Let $B$ be a maximal monotone operator. Then $B^{-1}(0)\neq\emptyset$ if and

only if there exists a bounded sequence $\{x_{n}\}$ generated by (31) with $\lim_{narrow\infty}c_{n}=\infty$

and $\lim_{narrow\infty}\frac{\Vert e_{n}\Vert}{c_{n}}=0$ . In this case, every weak cluster point of the sequence $\{w_{k}\}$

$\sum c_{n}Jx_{n}k n-1$

belongs to $B^{-1}(0)$ , where
$w_{k}= \frac{n=1}{\sum_{n=1}^{k}c_{n}}$

. Moreover if $\sum_{k=1}c_{k}=o(c_{n})$ , then every

weak cluster point of the sequence $\{x_{n}\}$ also belongs to $B^{-1}(0)$ .
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