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Abstract

In this paper we consider the existence of positive solution for the Cauchy problem
of the second order differential equation $u”(t)=f(t, u(t))$ .

1 Introduction
The following ordinary differential equations arise in many different areas of applied

mathematics and physics; see [2, 4]. In [3] Kne\v{z}evi\v{c}-Miljanovi\v{c} considered the Cauchy
problem

$[Matrix]$ (1)

where $a,$ $\sigma,$
$\lambda\in R$ with $\sigma<0$ and $\lambda>0$ , and $P$ is a continuous mapping of $[0,1]$ such that

$\int_{0}^{1}|P(t)|t^{a+\sigma}dt<\infty$ . On the other hand in [1] Erbe and Wang considered the equation

$u”(t)=f(t, u(t)), t\in(O, 1].$ (2)

In this paper we consider the second order Cauchy problem

$[Matrix]$ (3)

where $f$ is a mapping from $[0,1]\cross(0, \infty)$ into $R$ satisfying the Carath\’eodory condition and
$\lambda\in R$ with $\lambda>0.$
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2 Main results
Theorem 2.1. Suppose that a mapping $f$ from $[0,1]\cross(0, \infty)$ into $R$ satisfies the following.

(a) The mapping $f$ satisfies the Caratheodory condition, that is, the mapping $t\mapsto$

$f(t, u)$ is measumble for any $u\in(O, \infty)$ and the mapping $u\mapsto f(t, u)$ is continuous
for almost every $t\in[O, 1].$

(b) $|f(t, u_{1})|\geq|f(t, u_{2})|$ for almost every $t\in[0,1]$ and for any $u_{1},$ $u_{2}\in(0, \infty)$ with
$u_{1}\leq u_{2}.$

(c) There exists $\alpha\in R$ with $0<\alpha<\lambda$ such that

$\int_{0}^{1}|f(t, \alpha t)|dt<\infty.$

(d) There exists $\beta\in R$ with $\beta>0$ such that

$| \frac{\partial f}{\partial u}(t, u)|\leq\frac{\beta|f(t,u)|}{u}$

for almost every $t\in[0,1]$ and for any $u\in(O, \infty)$ .

Then there exist $h\in R$ with $0<h\leq 1$ such that the Cauchy problem (3) has a unique
solution in $X$ , where $X$ is a subset

$X=\{u|u\in C[0, h],u(0)=0,u’(0)=\lambda and\alpha t\leq u(t)$
foranyt

$\in[0,h]\}$

of $C[O, h]$ , which is the class of continuous mappings from $[0, h]$ into $R.$

Proof. It is noted that $C[O, h]$ is a Banach space by the maximum norm

$\Vert u\Vert=\max\{|u(t)||t\in[0, h]\}.$

Instead of the Cauchy problem (3) we consider the integral equation

$u(t)= \lambda t+\int_{0}^{t}(t-s)f(s, u(s))ds.$

By the condition (c) there exists $h\in R$ with $0<h\leq 1$ such that

$\int_{0}^{h}|f(t, \alpha t)|dt<\min\{\lambda-\alpha, \frac{\alpha}{\beta}\}.$

Let $A$ be an operator from $X$ into $C[O, h]$ defined by

$Au$ $(t)= \lambda t+\int_{0}^{t}(t-s)f(s, u(s))ds.$

27



Since a mapping $t\mapsto\lambda t$ belongs to $X,$ $X\neq\emptyset$ . Moreover $A(X)\subset X$ . Indeed by the
condition (a) $Au\in C[O, h],$ $Au(O)=0,$

$(Au)’(0)=[ \lambda+\int_{0}^{t}f(s, u(s))ds]_{t=0}=\lambda$

and by the condition (b)

$Au$ $(t)$ $=$ $\lambda t+\int_{0}^{t}(t-\mathcal{S})f(s, u(s))ds$

$\geq \lambda t-t\int_{0}^{h}|f(s, u(s))|ds$

$\geq \lambda t-t\int_{0}^{h}|f(s, \alpha s)|ds$

$\geq \alpha t$

for any $t\in[O, h]$ . We will find a fixed point of $A$ . Let $\varphi$ be an operator from $X$ into $C[O, h]$

defined by

$\varphi[u](t)=\{$ $\frac{u(t)}{\lambda^{t}}$

, if $t\in(0, h],$

if $t=0,$

and .

$\varphi[X] = \{\varphi[u]|u\in X\}$

$=$ $\{v|v\in C[O,$ $h],$ $v(O)=\lambda$ and $\alpha\leq v(t)$ for any $t\in[O,$ $h]\}.$

Then $\varphi[X]$ is a closed subset of $C[O, h]$ and hence it is a complete metric space. Let $\Phi$ be
an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$\Phi\varphi[u]=\varphi[Au].$

By the mean value theorem for any $u_{1},$ $u_{2}\in X$ there exists a mapping $\xi$ such that

$\frac{f(t,u_{1}(t))-f(t,u_{2}(t))}{u_{1}(t)-u_{2}(t)}=\frac{\partial f}{\partial u}(t, \xi(t))$

and

$\min\{u_{1}(t), u_{2}(t)\}\leq\xi(t)\leq\max\{u_{1}(t), u_{2}(t)\}$

for any $t\in[0, h]$ . By the conditions (b) and (d)

$|f(t, u_{1}(t))-f(t, u_{2}(t))| = | \frac{\partial f}{\partial u}(t,\xi(t))(u_{1}(t)-u_{2}(t))|$

$\leq |\frac{\beta f(t,\xi(t))}{\xi(t)}||u_{1}(t)-u_{2}(t)|$

$\leq |\frac{\beta f(t,\alpha t)}{\alpha t}||u_{1}(t)-u_{2}(t)|$
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for almost every $t\in[0, h]$ . Therefore

$| \Phi\varphi[u_{1}](t)-\Phi\varphi[u_{2}](t)| = |\frac{1}{t}\int_{0}^{t}(t-s)(f(s, u_{1}(s))-f(s, u_{2}(s)))ds|$

$\leq \int_{0}^{h}|\frac{\beta f(s,\alpha s)}{\alpha s}||u_{1}(s)-u_{2}(s)|ds$

$\leq \frac{\beta}{\alpha}\int_{0}^{h}|f(s, \alpha s)|ds\Vert\varphi[u_{1}]-\varphi[u_{2}]\Vert$

for any $t\in[0, h]$ . Therefore

$\Vert\Phi\varphi[u_{1}]-\Phi\varphi[u_{2}]\Vert\leq\frac{\beta}{\alpha}\int_{0}^{h}|f(s, \alpha s)|ds\Vert\varphi[u_{1}]-\varphi[u_{2}]\Vert.$

By the Banach fixed point theorem there exists a unique mapping $\varphi[u]\in\varphi[X]$ such that
$\Phi\varphi[u]=\varphi[u]$ . Then $Au=u.$ $\square$

Theorem 2.2. Suppose that a mapping $f$ from $[0,1]\cross(0, \infty)$ into $R$ satisfies the following.

(a) The mapping $f$ satisfies the Camth\’eodory condition, that is, the mapping $t\mapsto$

$f(t, u)$ is measumble for any $u\in(O, \infty)$ and the mapping $u\mapsto f(t, u)$ is continuous
for almost every $t\in[O, 1].$

(e) $|f(t, u_{1})|\leq|f(t, u_{2})|$ for almost every $t\in[0,1]$ and for any $u_{1},$ $u_{2}\in(0, \infty)$ with
$u_{1}\leq u_{2}.$

(f) There exists $\alpha\in R$ with $0<\alpha<\lambda$ such that

$\int_{0}^{1}|f(t, (2\lambda-\alpha)t)|dt<\infty.$

(d) There exists $\beta\in R$ with $\beta>0$ such that

$| \frac{\partial f}{\partial u}(t, u)|\leq\frac{\beta|f(t,u)|}{u}$

for almost every $t\in[0,1]$ and for any $u\in(0, \infty)$ .

Then there exist $h\in R$ with $0<h\leq 1$ such that the Cauchy problem (3) has a unique
solution in $X$ , where $X$ is a subset

$X=\{u|u\in C[0, h],u(0)=0,u’(0)=\lambda and\alpha t\leq u(t)\leq(2\lambda-\alpha)tfor$

any $t\in[0, h]\}$

of $C[0, h].$
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Pmof. By the condition (f) there exists $h\in R$ with $0<h\leq 1$ such that

$\int_{0}^{h}|f(t, (2\lambda-\alpha)t)|dt<\min\{\lambda-\alpha, \frac{\alpha}{\beta}\}$

and let $A$ be an operator from $X$ into $C[O, h]$ defined by

$Au$ $(t)= \lambda t+\int_{0}^{t}(t-s)f(s, u(s))ds.$

Since a mapping $t\mapsto\lambda t$ belongs to $X,$ $X\neq\emptyset$ . Moreover $A(X)\subset X$ . Indeed by the
condition (a) $Au\in C[O, h],$ $Au(O)=0,$

$(Au)’(0)=[ \lambda+\int_{0}^{t}f(s, u(s))ds]_{t=0}=\lambda$

and by the condition (e)

$Au$ $(t)$ $=$ $\lambda t+\int_{0}^{t}(t-s)f(s, u(s))ds$

$\geq \lambda t-t\int_{0}^{h}|f(s, u(s))|ds$

$\geq \lambda t-t\int_{0}^{h}|f(s, (2\lambda-\alpha)s)|ds$

$\geq \alpha t$

and

$Au$ $(t)$ $=$ $\lambda t+\int_{0}^{t}(t-s)f(s, u(s))ds$

$\leq \lambda t+t\int_{0}^{h}|f(s, u(s))|ds$

$\leq \lambda t+t\int_{0}^{h}|f(s, (2\lambda-\alpha)s)|ds$

$\leq (2\lambda-\alpha)t$

for any $t\in[0, h]$ . We will find a fixed point of $A$ . Let $\varphi$ be an operator from $X$ into $C[O, h]$

defined by

$\varphi[u](t)=\{\begin{array}{ll}\frac{u(t)}{t}, t\in(0, h],\lambda, t=0,\end{array}$

and

$\varphi[X]$ $=$ $\{\varphi[u]|u\in X\}$

$=$ $\{v|v\in C[0,$ $h],$ $v(O)=\lambda$ and $\alpha\leq v(t)\leq(2\lambda-\alpha)$ for any $t\in[O,$ $h]\}.$
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Then $\varphi[X]$ is a closed subset of $C[O, h]$ and hence it is a complete metric space. Let $\Phi$ be
an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$\Phi\varphi[u]=\varphi[Au].$

Then we can show just like Theorem 2.1 that by the Banach fixed point theorem there
exists a unique mapping $\varphi[u]\in\varphi[X]$ such that $\Phi\varphi[u]=\varphi[u]$ and hence $Au=u$ . 口

3 Examples

In this section we give some examples to illustrrate the results above.
Example 3.1. In [3] the Cauchy problem (1) is considered. Since $f(t, u)=P(t)t^{a}u^{\sigma},$ $a,$ $\sigma,$

$\lambda\in$

$R$ with $\sigma<0$ and $\lambda>0$ and $P$ is a continuous mapping such that $\int_{0}^{1}|P(t)|t^{a+\sigma}dt<\infty,$

the conditions (a), (b), (c) and (d) are satisfied. Indeed (a), (b) and (c) are clear and since

$| \frac{\partial f}{\partial u}(t, u)| = |P(t)t^{a}\sigma u^{\sigma-1}|$

$= \underline{|\sigma||f(t,u)|},$

$u$

(d) holds. By Theorem 2.1 the Cauchy problem (1) has a unique solution in

$X=\{u|and\alpha t\leq u(t)foranyt\in[0, h]u\in C[0, h],u(0)=0,u’(0)=\lambda\}\cdot$

Example 3.2. We consider the Cauchy problem

$\{\begin{array}{l}u"(t)=a(t)+u(t)^{\sigma}, t\in[O, 1],u(0)=0, u’(0)=\lambda,\end{array}$ (4)

where $a$ is positive and integrable, $\sigma\in R$ with $\sigma>0$ and $\lambda\in R$ with $\lambda>0$ . Since
$f(t, u)=a(t)+u^{\sigma}$ , the conditions (a), (e), (f) and (d) are satisfied. Indeed (a), (e) and (f)
are clear and since

$| \frac{\partial f}{\partial u}(t, u)|=\sigma u^{\sigma-1}\leq\frac{\max\{\sigma,1\}(a(t)+u^{\sigma})}{u}=\frac{\max\{\sigma,1\}|f(t,u)|}{u},$

(d) holds. By Theorem 2.2 the Cauchy problem (4) has a unique solution in

$X=\{u|u\in C[0, h],u(0)=0,u’(0)=\lambda and\alpha t\leq u(t)\leq(2\lambda-\alpha)tforanyt\in[0, h]\}\cdot$

Example 3.3. We consider the Cauchy problem

$\{\begin{array}{l}u"(t)=a(t)u(t)^{\sigma}, t\in[O, 1],u(0)=0, u’(0)=\lambda,\end{array}$ (5)
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where $\int_{0}^{1}|a(t)|t^{\sigma}dt<\infty$ and $\sigma,$
$\lambda\in R$ with $\lambda>0$ . Since $f(t, u)=a(t)u^{\sigma}$ , the conditions

(a), (b), (c) and (d) are satisfied if $\sigma<0$ and the conditions (a), (e), (f) and (d) are satisfied
if $\sigma\geq 0$ . Indeed (a) is clear, (b) and (c) are clear if $\sigma<0,$ $(e)$ and (f) are clear if $\sigma\geq 0,$

and since

$| \frac{\partial f}{\partial u}(t,u)| = \{\begin{array}{ll}|a(t)\sigma u^{\sigma-1}|, if\sigma\neq 0,0, if \sigma=0,\end{array}$

$= \frac{|\sigma||f(t,u)|}{u},$

(d) holds. By Theorem 2.1 if $\sigma<0$ and by Theorem 2.2 if $\sigma>0$ the Cauchy problem (5)
has a unique solution in

$X=\{u and\alpha t\leq u(t)foranyt\in[0, h]u\in C[0, h],u(0)=0, u’(0)=\lambda\}$

and

$X=\{u|and\alpha t\leq u(t)\leq(2\lambda-\alpha)tforanyt\in u\in C[0, h],u(0)=0,u’(0)=\lambda[0, h]\},$

respectively.
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