Existence of positive solution for the Cauchy problem for an ordinary differential equation

新潟大学自然科学研究科 川崎敏治 (toshiharu.kawasaki@nifty.ne.jp)
 (Toshiharu Kawasaki, Graduate School of Science and Technology, Niigata University)
 玉川大学工学部 豊田昌史 (mss-toyoda@eng.tamagawa.ac.jp)
 (Masashi Toyoda, Faculty of Engineering, Tamagawa University)

Abstract

In this paper we consider the existence of positive solution for the Cauchy problem of the second order differential equation u''(t) = f(t, u(t)).

1 Introduction

The following ordinary differential equations arise in many different areas of applied mathematics and physics; see [2, 4]. In [3] Knežević-Miljanović considered the Cauchy problem

$$\begin{cases} u''(t) = P(t)t^{a}u(t)^{\sigma}, \ t \in (0,1], \\ u(0) = 0, \ u'(0) = \lambda, \end{cases}$$
(1)

where $a, \sigma, \lambda \in \mathbf{R}$ with $\sigma < 0$ and $\lambda > 0$, and P is a continuous mapping of [0, 1] such that $\int_0^1 |P(t)| t^{a+\sigma} dt < \infty$. On the other hand in [1] Erbe and Wang considered the equation

$$u''(t) = f(t, u(t)), \ t \in (0, 1].$$
⁽²⁾

In this paper we consider the second order Cauchy problem

$$\begin{cases} u''(t) = f(t, u(t)), \text{ for almost every } t \in [0, 1], \\ u(0) = 0, u'(0) = \lambda, \end{cases}$$
(3)

where f is a mapping from $[0, 1] \times (0, \infty)$ into **R** satisfying the Carathéodory condition and $\lambda \in \mathbf{R}$ with $\lambda > 0$.

2 Main results

Theorem 2.1. Suppose that a mapping f from $[0,1] \times (0,\infty)$ into \mathbf{R} satisfies the following.

- (a) The mapping f satisfies the Carathéodory condition, that is, the mapping $t \mapsto f(t, u)$ is measurable for any $u \in (0, \infty)$ and the mapping $u \mapsto f(t, u)$ is continuous for almost every $t \in [0, 1]$.
- (b) $|f(t,u_1)| \ge |f(t,u_2)|$ for almost every $t \in [0,1]$ and for any $u_1, u_2 \in (0,\infty)$ with $u_1 \le u_2$.
- (c) There exists $\alpha \in \mathbf{R}$ with $0 < \alpha < \lambda$ such that

$$\int_0^1 |f(t,\alpha t)| dt < \infty.$$

(d) There exists $\beta \in \mathbf{R}$ with $\beta > 0$ such that

$$\left|rac{\partial f}{\partial u}(t,u)
ight|\leq rac{eta|f(t,u)|}{u}$$

for almost every $t \in [0, 1]$ and for any $u \in (0, \infty)$.

Then there exist $h \in \mathbf{R}$ with $0 < h \leq 1$ such that the Cauchy problem (3) has a unique solution in X, where X is a subset

$$X = \left\{ u \left| egin{array}{c} u \in C[0,h], u(0) = 0, u'(0) = \lambda \ and \ lpha t \leq u(t) \ for \ any \ t \in [0,h] \end{array}
ight.
ight\}$$

of C[0,h], which is the class of continuous mappings from [0,h] into **R**.

Proof. It is noted that C[0, h] is a Banach space by the maximum norm

$$||u|| = \max\{|u(t)| \mid t \in [0, h]\}$$

Instead of the Cauchy problem (3) we consider the integral equation

$$u(t) = \lambda t + \int_0^t (t-s)f(s,u(s))ds.$$

By the condition (c) there exists $h \in \mathbf{R}$ with $0 < h \le 1$ such that

$$\int_0^h |f(t,\alpha t)| dt < \min\left\{\lambda - \alpha, \frac{\alpha}{\beta}\right\}.$$

Let A be an operator from X into C[0, h] defined by

$$Au(t) = \lambda t + \int_0^t (t-s)f(s,u(s))ds$$

Since a mapping $t \mapsto \lambda t$ belongs to $X, X \neq \emptyset$. Moreover $A(X) \subset X$. Indeed by the condition (a) $Au \in C[0, h], Au(0) = 0$,

$$(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s))ds\right]_{t=0} = \lambda$$

and by the condition (b)

$$egin{array}{rll} Au(t)&=&\lambda t+\int_{0}^{t}(t-s)f(s,u(s))ds\ &\geq&\lambda t-t\int_{0}^{h}|f(s,u(s))|ds\ &\geq&\lambda t-t\int_{0}^{h}|f(s,lpha s)|ds\ &\geq&lpha t \end{array}$$

for any $t \in [0, h]$. We will find a fixed point of A. Let φ be an operator from X into C[0, h] defined by

$$arphi[u](t) = \left\{ egin{array}{cc} rac{u(t)}{t}, & ext{if } t \in (0,h], \ \lambda, & ext{if } t = 0, \end{array}
ight.$$

and \cdot

$$\begin{array}{lll} \varphi[X] &=& \{\varphi[u] \mid u \in X\} \\ &=& \{v \mid v \in C[0,h], v(0) = \lambda \text{ and } \alpha \leq v(t) \text{ for any } t \in [0,h]\} \end{array}$$

Then $\varphi[X]$ is a closed subset of C[0, h] and hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$$\Phi arphi[u] = arphi[Au].$$

By the mean value theorem for any $u_1, u_2 \in X$ there exists a mapping ξ such that

$$rac{f(t,u_1(t))-f(t,u_2(t))}{u_1(t)-u_2(t)}=rac{\partial f}{\partial u}(t,\xi(t))$$

 and

$$\min\{u_1(t), u_2(t)\} \le \xi(t) \le \max\{u_1(t), u_2(t)\}$$

for any $t \in [0, h]$. By the conditions (b) and (d)

$$egin{aligned} ert f(t,u_1(t)) &- f(t,u_2(t)) ert &= ert rac{\partial f}{\partial u}(t,\xi(t))(u_1(t)-u_2(t)) ert \ &\leq ert rac{eta f(t,\xi(t))}{\xi(t)} ert ert u_1(t)-u_2(t) ert \ &\leq ert rac{eta f(t,lpha t)}{lpha t} ert ert u_1(t)-u_2(t) ert ert \end{aligned}$$

for almost every $t \in [0, h]$. Therefore

$$egin{aligned} |\Phiarphi[u_1](t) - \Phiarphi[u_2](t)| &= \left|rac{1}{t}\int_0^t (t-s)(f(s,u_1(s))-f(s,u_2(s)))ds
ight| \ &\leq \left|\int_0^h \left|rac{eta f(s,lpha s)}{lpha s}
ight| |u_1(s)-u_2(s)|ds \ &\leq \left|rac{eta}{lpha}\int_0^h |f(s,lpha s)|ds||arphi[u_1]-arphi[u_2]|| \end{aligned}$$

for any $t \in [0, h]$. Therefore

$$\|\Phi \varphi[u_1] - \Phi \varphi[u_2]\| \leq rac{eta}{lpha} \int_0^h |f(s, lpha s)| ds \| arphi[u_1] - arphi[u_2]\|.$$

By the Banach fixed point theorem there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$. Then Au = u.

Theorem 2.2. Suppose that a mapping f from $[0,1] \times (0,\infty)$ into **R** satisfies the following.

- (a) The mapping f satisfies the Carathéodory condition, that is, the mapping $t \mapsto f(t, u)$ is measurable for any $u \in (0, \infty)$ and the mapping $u \mapsto f(t, u)$ is continuous for almost every $t \in [0, 1]$.
- (e) $|f(t,u_1)| \leq |f(t,u_2)|$ for almost every $t \in [0,1]$ and for any $u_1, u_2 \in (0,\infty)$ with $u_1 \leq u_2$.
- (f) There exists $\alpha \in \mathbf{R}$ with $0 < \alpha < \lambda$ such that

$$\int_0^1 |f(t,(2\lambda-\alpha)t)| dt < \infty.$$

(d) There exists $\beta \in \mathbf{R}$ with $\beta > 0$ such that

$$\left| rac{\partial f}{\partial u}(t,u)
ight| \leq rac{eta |f(t,u)|}{u}$$

for almost every $t \in [0, 1]$ and for any $u \in (0, \infty)$.

Then there exist $h \in \mathbf{R}$ with $0 < h \leq 1$ such that the Cauchy problem (3) has a unique solution in X, where X is a subset

$$X = \left\{ u ig| egin{array}{c} u \in C[0,h], u(0) = 0, u'(0) = \lambda \ and \ lpha t \leq u(t) \leq (2\lambda - lpha)t \ for \ any \ t \in [0,h] \end{array}
ight\}$$

of C[0, h].

$$\int_0^h |f(t,(2\lambda-\alpha)t)| dt < \min\left\{\lambda-\alpha,\frac{\alpha}{\beta}\right\}$$

and let A be an operator from X into C[0, h] defined by

$$Au(t) = \lambda t + \int_0^t (t-s)f(s,u(s))ds.$$

Since a mapping $t \mapsto \lambda t$ belongs to $X, X \neq \emptyset$. Moreover $A(X) \subset X$. Indeed by the condition (a) $Au \in C[0, h], Au(0) = 0$,

$$(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s))ds\right]_{t=0} = \lambda$$

and by the condition (e)

$$\begin{array}{lll} Au(t) &=& \lambda t + \int_0^t (t-s)f(s,u(s))ds \\ &\geq& \lambda t - t \int_0^h |f(s,u(s))|ds \\ &\geq& \lambda t - t \int_0^h |f(s,(2\lambda-\alpha)s)|ds \\ &\geq& \alpha t \end{array}$$

and

$$\begin{aligned} Au(t) &= \lambda t + \int_0^t (t-s)f(s,u(s))ds \\ &\leq \lambda t + t \int_0^h |f(s,u(s))|ds \\ &\leq \lambda t + t \int_0^h |f(s,(2\lambda-\alpha)s)|ds \\ &\leq (2\lambda-\alpha)t \end{aligned}$$

for any $t \in [0, h]$. We will find a fixed point of A. Let φ be an operator from X into C[0, h] defined by

$$arphi[u](t) = \left\{egin{array}{cc} rac{u(t)}{t}, & t\in(0,h],\ \lambda, & t=0, \end{array}
ight.$$

 and

$$\begin{split} \varphi[X] &= \{\varphi[u] \mid u \in X\} \\ &= \{v \mid v \in C[0,h], v(0) = \lambda \text{ and } \alpha \leq v(t) \leq (2\lambda - \alpha) \text{ for any } t \in [0,h]\}. \end{split}$$

Then $\varphi[X]$ is a closed subset of C[0, h] and hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$$\Phi\varphi[u] = \varphi[Au].$$

Then we can show just like Theorem 2.1 that by the Banach fixed point theorem there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$ and hence Au = u. \Box

3 Examples

In this section we give some examples to illustrate the results above.

Example 3.1. In [3] the Cauchy problem (1) is considered. Since $f(t, u) = P(t)t^a u^{\sigma}$, $a, \sigma, \lambda \in \mathbf{R}$ with $\sigma < 0$ and $\lambda > 0$ and P is a continuous mapping such that $\int_0^1 |P(t)| t^{a+\sigma} dt < \infty$, the conditions (a), (b), (c) and (d) are satisfied. Indeed (a), (b) and (c) are clear and since

$$egin{array}{ll} \left| rac{\partial f}{\partial u}(t,u)
ight| &=& |P(t)t^a \sigma u^{\sigma-1}| \ &=& rac{|\sigma||f(t,u)|}{u}, \end{array}$$

(d) holds. By Theorem 2.1 the Cauchy problem (1) has a unique solution in

$$X = \left\{ u \left| egin{array}{c} u \in C[0,h], u(0) = 0, u'(0) = \lambda \ ext{ and } lpha t \leq u(t) ext{ for any } t \in [0,h] \end{array}
ight\}.$$

Example 3.2. We consider the Cauchy problem

$$\begin{cases} u''(t) = a(t) + u(t)^{\sigma}, \ t \in [0, 1], \\ u(0) = 0, \ u'(0) = \lambda, \end{cases}$$
(4)

where a is positive and integrable, $\sigma \in \mathbf{R}$ with $\sigma > 0$ and $\lambda \in \mathbf{R}$ with $\lambda > 0$. Since $f(t, u) = a(t) + u^{\sigma}$, the conditions (a), (e), (f) and (d) are satisfied. Indeed (a), (e) and (f) are clear and since

$$\left|\frac{\partial f}{\partial u}(t,u)\right| = \sigma u^{\sigma-1} \leq \frac{\max\{\sigma,1\}(a(t)+u^{\sigma})}{u} = \frac{\max\{\sigma,1\}|f(t,u)|}{u},$$

(d) holds. By Theorem 2.2 the Cauchy problem (4) has a unique solution in

$$X = \left\{ u \left| \begin{array}{c} u \in C[0,h], u(0) = 0, u'(0) = \lambda \\ \text{and } \alpha t \leq u(t) \leq (2\lambda - \alpha)t \text{ for any } t \in [0,h] \end{array} \right\}.$$

Example 3.3. We consider the Cauchy problem

$$\begin{cases} u''(t) = a(t)u(t)^{\sigma}, \ t \in [0,1], \\ u(0) = 0, \ u'(0) = \lambda, \end{cases}$$
(5)

$$\begin{vmatrix} \frac{\partial f}{\partial u}(t, u) \end{vmatrix} = \begin{cases} |a(t)\sigma u^{\sigma-1}|, & \text{if } \sigma \neq 0, \\ 0, & \text{if } \sigma = 0, \end{cases}$$
$$= \frac{|\sigma||f(t, u)|}{u},$$

(d) holds. By Theorem 2.1 if $\sigma < 0$ and by Theorem 2.2 if $\sigma > 0$ the Cauchy problem (5) has a unique solution in

$$X = \left\{ u \left| \begin{array}{c} u \in C[0,h], u(0) = 0, u'(0) = \lambda \\ \text{and } \alpha t \le u(t) \text{ for any } t \in [0,h] \end{array} \right\} \right\}$$

 and

$$X = \left\{ u igg| egin{array}{c} u \in C[0,h], u(0) = 0, u'(0) = \lambda \ ext{ and } lpha t \leq u(t) \leq (2\lambda - lpha)t ext{ for any } t \in [0,h] \end{array}
ight\},$$

respectively.

Acknowledgement. The authors would like to thank Professor Naoki Shioji for their valuable suggestions and comments.

References

- [1] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proceedings of the American Mathematical Society 120 (1994), no. 3, 743-748.
- [2] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New York, 1962.
- [3] J. Knežević-Miljanović, On the Cauchy problem for an Emden-Fowler equation, Differential Equations 45 (2009), no. 2, 267-270.
- [4] J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Review 17 (1975), no. 2, 339-360.