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ABSTRACT. In this paper, for a convex space $(X, D)$ , we show that the KKM principle
implies various forms of the Ky Fan minimax inequality. As an application, we give a
direct proof of the Nash equilibrium theorem from a form of the inequahty. Finally, we
add some historical remarks.

1. Introduction

The KKM theory is originated from the Knaster-Kuratowski-Mazurkiewicz (simply,
KKM) theorem in 1928 [10]. Since then, it has been found a large number of results
which are equivalent to the KKM theorem; see [18,19]. Typical examples of the most
remarkable and useful equivalent formulations are Ky Fan’s KKM lemma in 1961 [5]
and his minimax inequality in 1972 [6]. The inequality and its various generalizations
are very useful tools in various fields of mathematical sciences.

The following is Fan’s KKM lemma:

Lemma. [5] Let $X$ be an arbitrary set in a Hausdorff topological vector space Y. To
each $x\in X$ , let a closed set $F(x)$ in $Y$ be given such that the following two conditions
are satisfied:

(i) The convex hull of a finite subset $\{x_{1}, \cdots, x_{n}\}$ of $X$ is contained in $\bigcup_{i=1}^{n}F(x_{i})$ .
(ii) $F(x)$ is compact for at least one $x\in X.$

Then $\bigcap_{x\in X}F(x)\neq\emptyset.$
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Five decades after the birth of this lemma, the above original form is still adopted
by many authors in each year. But, it was found that the Hausdorffness is redundant
quite long time ago by Lassonde [11]. Moreover, note that $Y$ can be any convex subset
of a topological vector space.

In the present paper, in order to present modern forms of Fan’s KKM lemma and
minimax inequality, we propose the use of the following term due to the author [16,17,25]
instead of convex subsets:

Definition. $A$ convex space $(X, D)$ is a pair where $X$ is a subset of a vector space with
a nonempty subset $D\subset X$ such that co $D\subset X$ and, for each nonempty finite subset $A$

of $D$ , its convex hull co $A$ is equipped with the Euclidean topology. $A$ subset $Y\subset X$ is
said to be $D$ -convex (or simply convex) if co $(Y\cap D)\subset Y$ . We denote $X=(X, X)$ if
$X=D.$

This concept generalizes the one due to Lassonde for $X=D$ ; see [11]. Every convex
subset $X$ of a topological vector space with any nonempty subset $D\subset X$ becomes a
convex space $(X, D)$ , but not conversely; see [4].

In this paper, we begin with the origin of the Fan minimax inequality (Section 2)
and, for a convex space $(X, D)$ , we introduce a new KKM type theorem for maps having
intersectionally closed values in the sense of Luc et al. [13] (Section 3). We show that this
implies various forms of the Fan minimax inequality and analytic alternatives (Section
4$)$ . As an application, we give a direct $pro$of of the Nash equilibrium theorem from
a form of the inequality (Section 5). Finally, we add some related historical remarks
(Section 6).

2. Preliminaries

Let $A$ be a subset of a topological space $X$ . We denote by $\overline{A}$ or cl $A$ the closure of $A$

in $X$ and, by Int $A$ the interior of $A$ . Let $\triangle_{n}$ be the standard $n$-dimensional simplex in
the Euclidean space $\mathbb{R}^{n+1}$ . Let $\langle D\rangle$ be the set of all nonempty finite subsets of a set $D.$

Let $(X, D)$ be a convex space.

Definition. If a multimap $G:Darrow X$ satisfies

co $A\subset G(A)$
$:= \bigcup_{z\in A}G(z)$

for all $A\in\langle D\rangle,$

then $G$ is called a $KKM$ map.

Then Fan’s KKM lemma can be stated as follows:

The (partial) KKM principle. For any $clo\mathcal{S}ed$-valued $KKM$ map $G:Darrow X$, the
family $\{G(z)\}_{z\in D}$ has the finite intersection property. Further, if at least one of $G(z)$

is compact, then $\bigcap_{z\in D}G(z)\neq\emptyset.$
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Example. (1) The original KKM theorem [10] is for the convex space $(\Delta_{n}, V)$ , where
$V$ is the set of vertices of $\Delta_{n}.$

(2) Fan’s KKM lemma [5] is for $(E, D)$ , where $D$ is a nonempty subset of a topological
vector space $E$ . His proof works for the above principle.

(3) For any $(X, D)$ , where $X$ is a subset of a topological vector space and $D$ is a
nonempty subset of $X$ such that co $D\subset X$ , the KKM principle works.

Recall that an extended real-valued function $f$ : $Xarrow\overline{\mathbb{R}}$ , where $X$ is a topological
space, is lower semicontinuous $(l.s.c.)$ if $\{x\in X|f(x)>r\}$ is open for each $r\in\overline{\mathbb{R}}.$

For a convex space $(X, D)$ , a function $f$ : $Xarrow\overline{\mathbb{R}}$ is said to be quasiconcave if
$\{x\in X|f(x)>r\}$ is $D$-convex for each $r\in\overline{\mathbb{R}}.$

Similarly, the upper semicontinuity $(u.s.c.)$ and the quasiconvexity can be defined.

The following is the original form given by Fan [6]:

The Fan minimax inequality. Let $X$ be a compact convex set in a Hausdorff topo-
logical vector space. Let $f$ be a real-valued function defined on $X\cross X$ such that:

(a) For each fixed $x\in X,$ $f(x, y)$ is a lower semicontinuous function of $y$ on $X.$

(b) For each fixed $y\in X,$ $f(x, y)$ is a quasiconcave function of $x$ on $X.$

Then the minimax inequality

$\min_{y\in X_{x}}\sup_{\in X}f(x, y)\leq\sup_{x\in}f(x, x)$

holds.

In [6], Fan applied his inequality to the following:

A variational inequality (extending Hartman-Stampacchia (1966) and Browder (1967)).
A geometric formulation of the inequality (equivalent to the Fan-Browder fixed point

theorem (1968) $)$ .
Separation properties of u.d. $c$ . multimaps, coincidence and fixed point theorems.
Properties of sets with convex sections (from which the Sion minimax theorem (1958),

the equilibrium theorem of Nash (1951), and a variant of a theorem of Debrunner and Flor
(1964) on extension of monotone sets easily follow).

A fundamental existence theorem in potential theory.

Further applications of the inequality appeared in various fields in mathematical
sciences, for example, nonlinear analysis, especially in fixed point theory, variational
inequalities, various equilibrium theory, mathematical programming, partial differential
equations, game theory, impulsive control, and mathematical economics; see [12,31] and
the references therein.

Moreover, the Fan minimax inequality has been followed by a large number of gener-
alizations and applications in the KKM theory on convex subsets of topological vector
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spaces, Lassonde type convex spaces, Horvath type $H$-spaces, generalized convex spaces
due to Park, and other types of spaces. Furthermore, many authors generalized the
lower semicontinuity and quasiconcavity in the inequality or replaced them by another
requirements. Therefore, even for convex spaces, it is necessary to establish proper
forms of the Fan minimax inequality which unify as many particular cases as possible.

3. $A$ new KKM type theorem

Recently, we obtained very general KKM type theorems. Consider the following
related four conditions for a multimap $G:Darrow X$ for a convex space $(X, D)$ :

(a) $\bigcap_{z\in D}\overline{G(z)}\neq\emptyset$ implies $\bigcap_{z\in D}G(z)\neq\emptyset.$

(b) $\bigcap_{z\in D}\overline{G(z)}=\overline{\bigcap_{z\in D}G(z)}$ ( $G$ is intersectionally closed-valued [13]).

(c) $\bigcap_{z\in D}\overline{G(z)}=\bigcap_{z\in D}G(z)$ ( $G$ is tmnsfer closed-valued).

(d) $G$ is closed-valued.

In [LS], its authors noted that $(a)\Leftarrow(b)\Leftarrow(c)\Leftarrow(d)$ , and gave examples of
multimaps satisfying (b) but not (c). Therefore it is a proper time to deal with condition
(b) instead of (c) in the KKM theory.

For a multimap $G:Darrow X$ , consider the following related four conditions:

(a) $\bigcup_{z\in D}G(z)=X$ implies $\bigcup_{z\in D}$ Int $G(z)=X.$

(b) Int $\bigcup_{z\in D}G(z)=\bigcup_{z\in D}$ Int $G(z)$ ( $G$ is unionly open-valued [13]).

(c) $\bigcup_{z\in D}G(z)=\bigcup_{z\in D}$ Int $G(z)$ ( $G$ is tmnsfer open-valued).

(d) $G$ is open-valued.

Proposition 1. [13] The multimap $G$ is intersectionally closed-valued (resp., tmnsfer
closed-valued) if and only if its complement $G^{c}$ is unionly open-valued (resp., tmnsfer
open-valued).

Definition. For a convex space $(X, D)$ , a subset $S$ of $X$ is said to be intersectionally
$clo\mathcal{S}ed$ (resp., tmnsfer closed) if there is an intersectionally (resp., transfer) closed-valued
map $G:Darrow X$ such that $S=G(z)$ for some $z\in D$ . Similarly, we can define unionly
(resp., tmnsfer) open sets.

We have the following KKM type theorem from the corresponding ones in [20-22].

Theorem 1. Let $(X, D)$ be a convex space and $G$ : $Darrow X$ a map such that
(1) $\overline{G}$ is a $KKM$ map [that is, co $A\subset\overline{G}(A)$ for all $A\in\langle D\rangle$ ]; and
(2) there exists a nonempty compact subset $K$ of $X$ such that either
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(i) $\cap\{\overline{G(z)}|z\in M\}\subset K$ for some $M\in\langle D\rangle$ ; or
(ii) for each $N\in\langle D\rangle$ , there exists a compact subset $L_{N}$ of $X$ such that $(L_{N}, D’)$ is

a convex space for some $D’\subset D\cap L_{N}$ such that $N\subset D’$ and

$\overline{L_{N}}\cap\bigcap_{z\in D’}\overline{G(z)}\subset K.$

Then we have $K \cap\bigcap_{z\in D}\overline{G(z)}\neq\emptyset.$

Furthermore,
$(\alpha)$ if $G$ is tmnsfer closed-valued, then $K\cap\cap\{G(z)|z\in D\}\neq\emptyset$ ;
$(\beta)$ if $G$ is intersectionally closed-valued, $then\cap\{G(z)|z\in D\}\neq\emptyset.$

Here (2) is called the compactness (or coercivity) condition. From now on, we deal
with only the case $(\beta)$ for simplicity. For the KKM type theorems for more general
abstract convex spaces and their applications, see [19-24].

4. Minimax inequalities and analytic alternatives

From the KKM Theorem 1, we obtain the following prototype of minimax inequali-
ties:

Theorem 2. Let ( $X,$ $D$)- be a convex space, $\gamma\in \mathbb{R}$ , and $f$ : $D\cross Xarrow\overline{\mathbb{R}}$ an extended
real-valued function. Suppose that

(1) for each $z\in D,$ $G(z);=\{y\in X|f(z, y)\leq\gamma\}$ is intersectionally closed;
(2) for each finite subset $N\subset D$ , we have

co $N \subset\overline{G}(N):=\bigcup_{z\in N}$
cl$\{y\in X|f(z, y)\leq\gamma\}$ ; and

(3) the compactness condition (2) in Theorem 1 holds.
Then

(a) there exists a point $y^{*}\in X$ such that

$f(z, y^{*})\leq\gamma$ for all $z\in D$ ;

(b) if $\gamma=\sup_{z\in D}\inf_{y\in X}f(z, y)$ , then

$\inf_{y\in X}\sup_{z\in D}f(z, y)=\sup_{z\in D}\inf_{y\in X}f(z, y)$ ;

and
(c) if $X=D$ and $\gamma=\sup_{x\in X}f(x, x)$ , then

$\inf_{y\in X}\sup_{x\in}f(x,y)\leq\sup_{x\in}f(x, x)$ .
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Proof. (a) Note that $G$ is an intersectionally closed-valued KKM map satisfying the
compactness condition. Therefore, by Theorem 1, $\{G(z)\}_{z\in D}$ has the nonempty inter-
section. Hence, there exists a $y^{*} \in\bigcap_{z\in D}G(z)\subset X$ . So, $f(z, y^{*})\leq\gamma$ for all $z\in D$ . This
shows (a).

(b) From (a) we have

$\inf_{y\in X}\sup_{z\in D}f(z, y)\leq\gamma=\sup_{z\in D}\inf_{y\in X}f(z, y)$ .

Since

$\inf_{y\in X}\sup_{z\in D}f(z, y)\geq\sup_{z\in D}\inf_{y\in X}f(z, y)$

is trivially true, we have (b).
(c) follows from (a) immediately. $\square$

Remark. In case (c), if $X=D$ is compact and $y\mapsto f(x, y)$ is l.s. $c$ . for each $x\in X,$

then so is $y \mapsto\sup_{x\in X}f(x, y)$ and hence the conclusion becomes

$\min_{y\in X_{x}}\sup_{\in X}f(x, y)\leq\sup_{x\in X}f(x, x)$ .

The following is a variant of Theorem 2:

Theorem 3. In Theorem 2, condition (2) can be replaced by the following without
affecting its conclusion:

(2)’ for each $N\in\langle D\rangle$ and $y\in$ co $N,$ $\min\{f(z, y)|z\in N\}\leq\gamma.$

Lemma 1. Under the hypothesis of Theorem 3, condition (2) holds if and only if the
map $G:Darrow X$ is a $KKM$ map.

Proof. (Necessity) Suppose, on the contrary, that there exists an $N\in\langle D\rangle$ such that
$coN\not\subset G(N)$ . Choose a $y\in$ co $N$ such that $y\not\in G(N)$ , whence $f(z, y)>\gamma$ for all
$z\in N$ . Then $\min_{z\in N}f(z, y)>\gamma$ , which contradicts (2)’. Therefore, $G$ is a KKM map.

(Sufficiency) Since $G$ is a KKM map, for any $N\in\langle D\rangle$ , we have co $N\subset G(N)$ . If
$y\in$ co $N$ , then $y\in G(z)$ or $f(z, y)\leq\gamma$ for some $z\in N$ . Therefore, $\min\{f(z, y)|z\in$

$N\}\leq\gamma.$ $\square$

Proof of Theorem 3. Note that $G$ is intersectionally closed-valued and a KKM map by
Lemma 1. Note that $G$ satisfies all of the requirements of Theorem 2 and hence the
conclusion follows. $\square$

The following is a prototype of minimax inequalities for two functions:

Theorem 4. Let $(X, D)$ be a convex space, $f$ : $D\cross Xarrow\overline{\mathbb{R}},$
$g$ : $X\cross Xarrow\overline{\mathbb{R}}$ be extended

real-valued functions and $\gamma\in\overline{\mathbb{R}}$ such that

(0) for each $(z, y)\in D\cross X,$ $f(z, y)>\gamma$ implies $g(z, y)>\gamma$ $[or f(z, y)\leq g(z, y)]$ ;
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(1) for each $z\in D,$ $G(z):=\{y\in X|f(z, y)\leq\gamma\}$ is intersectionally closed,$\cdot$

(2) for each $N\in\langle D\rangle$ and $y\in$ co $N,$ $\min\{g(z, y)|z\in N\}\leq\gamma$; and
(3) the compactness condition (2) in Theorem 1 holds.

Then (a) there exists a $\hat{y}\in X$ such that

$f(z,\hat{y})\leq\gamma$ for all $z\in D$ ; and

(b) if $\gamma=\sup_{x\in X}g(x, x)$ , then we have the minimax inequality:

$\inf_{y\in X}\sup_{z\in D}f(z, y)\leq\sup_{x\in X}g(x, x)$.

Proof. Note that (0) and (2) imply that $f$ also satisfies condition (2), that is, condition
(2)’ of Theorem 3 holds. Note that other requirements of Theorem 3 are assumed.
Therefore Theorem 4 follows from Theorem 3. $\square$

The following is a prototype of analytic altematives:

Theorem 5. Let $(X, D)$ be a convex space, $\alpha,$ $\beta\in \mathbb{R}$, and $f$ : $D\cross Xarrow\overline{\mathbb{R}},$
$g$ : $X\cross Xarrow\overline{\mathbb{R}}$

extended real-valued functions. Suppose that
(1) for each $z\in D,$ $G(z):=\{y\in X|f(z, y)\leq\alpha\}$ is intersectionally closed,$\cdot$

(2) for each $y\in X$ , we have

$co\{z\in D|f(z, y)>\alpha\}\subset\{x\in X|g(x, y)>\beta\}$ ; and

(3) the compactness condition (2) in Theorem 1 holds.
Then either

(i) there exists a $y_{0}\in X$ such that $f(z, y_{0})\leq\alpha$ for all $z\in D$ ; or
(ii) there exists an $\hat{x}\in X$ such that $g(\hat{x},\hat{x})>\beta.$

Lemma 2. Under the hypothesis of Theorem 5, assume (2) and the negation of (ii).
Then the map $G:Darrow X$ is a $KKM$ map.

Proof. The negation of (ii) is that $g(x, x)\leq\beta$ for all $x\in X$ . Suppose, on the contrary,
that there exists a finite $N\subset D$ such that co $N\not\subset G(N)$ . Then there exist a $y\in$ co $N$

such that $y\not\in G(z)$ or $f(z, y)>\alpha$ for all $z\in N$ . Hence $N\subset\{z\in D|f(z, y)>\alpha\}$ and,
by (2), we have co $N\subset\{x\in X|g(x, y)>\beta\}$ . Since $y\in$ co $N$ , we have $g(y, y)>\beta.$

This contradicts our supposition. $\square$

Proof of Theorem 5. Suppose (ii) does not hold. Then, by Lemma 2, $G$ is a KKM map.
Therefore, all the requirements of Theorem 2 with $\gamma=a$ are satisfied. Hence, there
exists a $y_{0}\in X$ such that $f(z, y_{0})\leq\alpha$ for all $z\in D$ . This is (i). $\square$
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Corollary 5.1. Under the hypothesis of Theorem 5 with $\alpha=\beta=0$ , if $g(x, x)\leq 0$ for
all $x\in X$ , then

(i)’ there exists a $y_{0}\in X$ such that $f(z, y_{0})\leq 0$ for all $z\in D.$

Definition. For a convex space $(X, D)$ , an extended real function $f$ : $D\cross Xarrow\overline{\mathbb{R}}$

is said to be genemlly lower semicontinuous (g.l.s.c.) on $D$ if for each $z\in D,$ $\{y\in$

$X|f(z, y)>r\}$ is unionly open for each $r\in\overline{\mathbb{R}}.$

This is a generalization of the transfer l.s. $c$ . due to Tian [29]. Similarly, we can define
generally u.s. $c.$

$\mathbb{R}om$ Corollary 5.1, we obtain the following:

Corollary 5.2. Let $X$ be a compact convex space and $f,$ $g:X\cross Xarrow\overline{\mathbb{R}}$ two $function\mathcal{S}$

such that
(1) $f(x, y)\leq g(x, y)$ for every $(x, y)\in X\cross X$ and $g(x, x)\leq 0$ for all $x\in X$ ;
(2) $y\mapsto f(x, y)$ is $g.l.s.c$ . on $X$ for every $x\in X$ ; and
(3) $x\mapsto g(x, y)$ is quasiconcave on $X$ for every $y\in X.$

Then there exists a $y_{0}\in X$ such that $f(x, y_{0})\leq 0$ for all $x\in X.$

Rom Theorem 5, we clearly have the following:

Theorem 6. Under the hypothesis of Theorem 5, if $\alpha=\beta=\sup_{x\in X}g(x, x)$ , then
(a) there exists a $y_{0}\in X$ such that

$f(z, y_{0}) \leq\sup_{x\in X}g(x, x)$ for all $z\in D$ ; and

(b) we have the following minimax inequality

$\inf_{y\in X}\sup_{z\in D}f(z, y)\leq\sup_{x\in X}g(x, x)$ .

Corollary 6.1. Let $X$ be a compact convex space and $f,$ $g:X\cross Xarrow\overline{\mathbb{R}}$ two functions
such that

(1) $f(x, y)\leq g(x, y)$ for every $(x, y)\in X\cross X$;
(2) $y\mapsto f(x, y)i_{\mathcal{S}}l.s.c$ . on $X$ for every $x\in X$ ;
(3) $x\mapsto g(x, y)$ is quasiconcave on $X$ for every $y\in X.$

Then

$\min_{y\in x}\sup_{\in X}f(x, y)\leq\sup_{x\in X}g(x, x)$ .

Proof. Observe that $y \mapsto\sup_{x\in X}f(x, y)$ is l.s. $c$ . by (2), and so its minimum on the
compact space $X$ exists. $\square$
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For $f=g$ , Corollary 6.1 reduces to the following:

Corollary 6.2. Let $X$ be a compact convex space and $f$ : $X\cross Xarrow\overline{\mathbb{R}}$ a function
satisfying

(1) $y\mapsto f(x, y)$ is $l.s.c.\cdot$ on $X$ for every $x\in X$ ; and
(2) $x\mapsto f(x, y)$ is quasiconcave on $X$ for every $y\in X.$

Then
$\min_{y\in X_{x}}\sup_{\in X}f(x, y)\leq\sup_{x\in X}f(x, x)$

.

This reduces to the Fan inequality when $X$ is a compact convex subset of a t.v. $s.$

Finally, in this section, note that the KKM Theorem 1 in this paper can be extended
to various types of abstract convex spaces without any linear structure and to other
compactness condition; see [19-24]. Each of such extended KKM theorem implies many

Fan type minimax inequalities as shown in this section.

5. The Fan minimax inequality and the Nash equilibrium theorem

Recall that the original Nash equilibrium theorem was proved by the Brouwer or the

Kakutani fixed point theorem; see $[14,15]$ . Later Fan [7] proved it by applying his result

on sets with convex sections. Nowadays it is known to be one of the most important

applications of the Fan minimax inequality; see [19]. Note that, in a wide sense, the

Brouwer theorem, the KKM theorem, the Kakutani theorem, the Nash theorem, Fan’s

theorem on sets with convex sections, the Fan inequality, the Fan-Browder fixed point

theorem, and many others are mutually equivalent; see [18].
In this section, we apply Theorem 5 or Corollary 5.1 to a direct proof of the Nash

theorem in [7].
Let $I=\{1,2, \ldots, n\}$ be a set of players. $A$ non-cooperative $n$-person game of normal

form is an ordered $2n$-tuple

$\Lambda:=\{X_{1}, \ldots, X_{n};u_{1}, \ldots, u_{n}\},$

where the nonempty set $X_{i}$ is the ith player’s pure strategy space and $u_{i}$ : $X=$

$\prod_{i=1}^{n}X_{i}arrow \mathbb{R}$ is the ith player’s payoff function. $A$ point of $X_{i}$ is called a strategy

of the ith player. Let $X_{-i}= \prod_{j\in I\backslash \{i\}}X_{j}$ and denote by $x$ and $x_{-i}$ an element of $X$

and $X_{-i}$ , resp. $A$ strategy $n$-tuple $(y_{1}^{*}, \ldots, y_{n}^{*})\in X$ is called a Nash equilibrium for the
game if the following inequality system holds:

$u_{i}(y_{i}^{*}, y_{-i}^{*})\geq u_{i}(x_{i}, y_{-i}^{*})$ for all $x_{i}\in X_{i}$ and $i\in I.$

The following is the Nash theorem in [7, Theorem 4]:
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Theorem 7. Let $\Lambda$ $:=\{X_{1}, \ldots, X_{n};u_{1}, \ldots, u_{n}\}$ be a game where each $X_{i}$ is a compact
convex space and each $u_{i}$ is continuous. If for each $i\in I$ and for any given point
$x_{-i}\in X_{-i},$ $x_{i}\mapsto u_{i}(x_{i}, x_{-i})$ is a quasiconcave function on $X_{i}$ , then there exists a Nash
equilibrium for $\Lambda.$

Pmof. Fix an element $a=(a_{1}, \ldots, a_{n})\in X$ . For each $i\in I$ , let $e_{i}$ : $X_{i}\hookrightarrow X$ be the
embedding such that $e_{i}$ : $x_{i}\in X_{i}\mapsto(x_{i}, a_{-i})\in X$. Let $D_{i}$ $:=e_{i}(X_{i})\subset X$ . Then $D_{i}$ is
convex since so is $X_{i}$ , and $z\in D_{i}$ implies $z=(z_{i}, a_{-i})\in X.$

For $u_{i}:Xarrow \mathbb{R}$ , define $f_{i}:D_{i}\cross Xarrow \mathbb{R}$ and $g_{i}:X\cross Xarrow \mathbb{R}$ by

$f_{i}(z, y)$ $:=u_{i}(z_{i}, y_{-i})-u_{i}(y_{i}, y_{-i})$ and $g_{i}(x, y)$ $:=u_{i}(x_{i}, y_{-i})-u_{i}(y_{i}, y_{-i})$ ,

resp. Then $f_{i}(z, y)=g_{i}(z, y)$ on $D_{i}\cross X$ and $9i(x, x)=0$ for all $x\in X$ . Moreover, note
that $f_{i}$ and $g_{i}$ do not depend on the point $a,$

Now we apply Theorem 5 for the convex space $(X, D_{i})$ with $\alpha=\beta=0.$

(1) Since each $u_{i}$ is continuous, for each $z\in D_{i}$ , the set

$\{y\in X|f_{i}(z, y)>0\}=\{y\in X|u_{i}(z_{i}, y_{-i})-u_{i}(y_{i}, y_{-i})>0\}$

is open.
(2) For each $y\in X,$ $z\mapsto u_{i}(z_{i}, y_{-i})$ is quasiconcave. Therefore $\{z\in D_{i}|u_{i}(z_{i}, y_{-i})>$

$r\}$ is convex for each $r\in \mathbb{R}$ and hence

$\{z\in D_{i}|f_{i}(z, y)=u_{i}(Z\’{i}, y_{-i})-u_{i}(y_{i}, y_{-i})>0\}$

is convex and contained in $\{x\in X|g_{i}(x, y)>0\}.$

(3) $X$ is compact.
Consequently, all requirements (1)$-(3)$ of Theorem 5 are satisfied. Moreover, the

conclusion (ii) does not hold since $g_{i}(x, x)=0$ for all $x\in X$ . Therefore, we have
(i) there exists a $y^{i}\in X$ such that $f_{i}(z, y^{i})\leq 0$ for all $z\in D$ ; that is,

$u_{i}(y_{i}^{i}, y_{-i}^{i})\geq u_{i}(z_{i}, y_{-i}^{i})$ for all $z_{i}\in X_{i}$ and $i\in I.$

Then $y^{*}:=(y_{1}^{1}, \ldots, y_{n}^{n})$ is the required Nash equilibrium. $\square$

Remark. 1. Ziad [33] indicated that the Nash theorem follows from the Fan inequality.
The above proof completes this matter.

2. Since the Nash theorem follows from the Fan inequality and the latter has a large
number of generalizations for various abstract convex spaces, our argument works for
corresponding generalizations of the Nash theorem. More refined versions of this matter,
see [19].
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6. Some historical notes

The concepts of lower semicontinuity, quasiconcavity, and compactness in the Fan
minimax inequality are extended in various stages. In this section we give just a few
steps in such development:

(I) Most of early works on KKM theory for convex subsets of t.v. $s$ . are collected in
the classical monograph of Granas [8]; see also Park [18].

(II) In 1981, Yen [30] obtained Corollary 6.1 for a compact convex subset in a t.v. $s.$

and applied it to variational inequalities.

(III) In 1983, Lassonde [11] established the KKM theory on his convex spaces.

(IV) The origin of Theorem 3 is Zhou and Chen in 1988 [32, Theorem 2.11 and
Corollary 2.13], where $X=D$ is a compact convex subset and quasiconcavity is extended
to $\gamma$-diagonal quasiconcavity ( $\gamma$-DQCV). These are applied to a variation of the Fan
inequality, a saddle point theorem, and a quasi-variational inequality.

(V) Motivated by Lassonde’s convex spaces, in 1992, Park [16] introduced his concept
of convex spaces. Early applications were given in Park 1994 [17], Park and Kim 1993
[25].

(VI) In 1992, Tian [29] obtained the following particular form of Theorem 2:

Theorem. [29] Let $Y$ be a nonempty convex subset of a Hausdorff t.v.s. $E$, let $\emptyset\neq$

$X\subset Y$ , let $\gamma\in \mathbb{R}$ , and let $\phi$ : $X\cross Yarrow\overline{\mathbb{R}}$ be a function such that
(1) it is $\gamma$-tmnsfer l.s.c. in $y$ [that is, for each $x\in X,$ $\{y\in Y|\phi(x, y)\leq\gamma\}$ is

$tran\mathcal{S}fer$ closed;
(2) for each $N\in\langle X\rangle$ , co $N \subset\bigcup_{x\in N}c1_{Y}\{y\in Y|\phi(x, y)\leq\gamma\}$ ;
(3) there exists a nonempty subset $C\subset X$ such that for each $y\in Y\backslash C$ there exists

a point $x\in C$ with $y\in Int_{Y}\{z\in Y|\phi(x, z)>\gamma\}$ and $C$ is contained in a compact
convex subset of $Y.$

Then there exists a point $y^{*}\in X$ such that $\phi(x, y^{*})\leq\gamma$ for all $x\in X.$

As Tian [29] noted that, (1) is satisfied if $\phi(x, y)$ is l.s. $c$ . in $y,$ (2) is satisfied if $\phi$ is
$\gamma$-diagonally quasiconcave in $x\in X$ , and (3) is satisfied if $X=Y$ and $Y$ is compact.
This theorem generalizes previously obtained results due to Fan, Allen, Zhou-Chen, and
Tian.

Note that $(Y, X)$ is a convex space in our sense.

(VII) In 1993, Lin and Tian [12, Theorem 3] defined $\gamma$-DQCV in slightly more general
form than [32] as follows:
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Let $Y$ be a convex subset of a Hausdorff t.v. $s.$ $E$ and let $\emptyset\neq X\subset Y.$ $A$ func-
tional $\varphi(x, y)$ : $X\cross Yarrow\overline{\mathbb{R}}$ is said to be $\gamma$-diagonally quasi-concave ( $\gamma$-DQCV) in
$x$ if, for any finite subset $\{x_{1}, \ldots, x_{m}\}\subset X$ and any $x_{\lambda}\in$ co $\{x_{1}, \ldots, x_{m}\}$ , we have
$\min_{1\leq j\leq m}\varphi(x_{j}, x_{\lambda})\leq\gamma.$

Adopting this concept, they obtain a particular form of the above theorem as in our
Theorem 3. Note that $(Y, X)$ is also a convex space in our sense.

(VIII) Let $E$ be a topological vector space, $X$ a nonempty convex subset of $E,$ $D$ a
nonempty subset of $X$ . In 2000, Song [26,27] deduced particular forms of Theorem 1
for the convex space $(X, D)$ and applied them as follows:

In [Sl], Song [26] obtained a vector and set-valued generalization of the Ky Fan
minimax inequality. This is applied to several existence theorems for generalized vector
variational inequalities involving certain set-valued operators. Moreover, he gave a
certain relationship between a kind of generalized vector variat’ional inequality and a
vector optimization problem.

In $[27]$ , Song obtained an existence result for a generalized vector equilibrium problem
was obtained. This was applied to existence results for vector equilibrium problems and
vector variational inequalities. He adopted artificial and impractical concepts like com-
pactly closed and compact closure, which can be eliminated by adopting the compactly
generated extension of the original topology.

In 2002, another form of Theorem 1 for a convex space was given by Song [28] and
applied to similar problems.

(IX) In 2005, Balaj and Muresan [1] applied a Fan-Browder type fixed point theorem
that is equivalent to a KKM type theorem to several minimax inequalities as follows:

Theorem. [1] Let $X$ be a nonempty compact convex subset of a topological vector space
and $f$ : $X\cross Xarrow \mathbb{R}$ be a function quasiconvex in $y$ and tmnsfer upper semicontinuous
in $x$. Then $\inf_{x\in X}f(x, x)\leq\sup_{x\in X}\inf_{y\in X}f(x, y)$ .

Note that this follows from Theorem 6 with $f=g.$

(X) In 2009, Cho, Kim, and Lee [3] obtained Theorem 6 for $X=D$ and $f=g.$

(XI) Moreover, a number of authors gave some generalizations or variants of the
concavity; see [9]. In 2009, Hou [9] defined $C$-quasiconcavity which unifies the diagonal
transfer quasiconcavity (weaker than quasiconcavity) and the $C$-concavity (weaker than
concavity) due to other authors.

(XII) In 2010, $S$ .-Y. Chang [2] extended the $C$-quasiconcavity [9] to the following
0-pair-concavity:

Let $X$ be a nonempty set and $Y$ be a topological space, and $D\subset X.$ $A$ function
$f$ : $X\cross Yarrow \mathbb{R}$ is said to be 0-pair-concave on $D$ , if for any $\{x^{0}, \ldots, x^{n}\}\in\langle A\rangle$ , there
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is a continuous map $\phi_{n}$ : $\Delta_{n}arrow Y$ , where $\Delta_{n}$ is the $n$-simplex, such that

$\min_{i\in I(\lambda)}f(x^{i}, \phi_{n}(\lambda))\leq 0$

for all $\lambda=\{\lambda_{0}, \ldots, \lambda_{n}\}\in\Delta_{n}$ , where $I(\lambda)=\{i|\lambda_{i}\neq 0\}.$

(XIII) In our forthcoming work [22], this concept is further generalized and we obtain
more generalized versions of the Fan minimax inequality. More general and detailed
approaches to generalizations of the inequality will appear elsewhere.
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