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CONVERGENCE THEOREMS OF A PSEUDO-NONEXPANSIVE
MAPPING AND A MAXIMAL MONOTONE OPERATOR IN A
BANACH SPACE-

BREAFET S HP #F  ( HIROKO MANAKA)
YOKOHAMA NATIONAL UNIVERSITY

1. PRELIMINARIES

Let E be a smooth Banach space with a norm ||-|| and let C' be a nonempty,
- closed and convex subset of E. We use the following bifunction V'(-,-) studied by
Alber [1], and Kamimura and Takahashi [11]. Let V(,-) : E x E — [0,00) be
defined by V(z,y) = ||z||> —2 (z, Jy) + ||y|)® for any z,y € E, where (+,-) stands for
‘the duality pair and J is the normalized duality mapping. Note that the duality
mapping is single-valued in a smooth Banach space (see [21]). From the definition
of V(.,-) the following properties are trivial:

Lemma 1.1. (a) For all z,y,z € E,
V(l‘,y) < V(l‘, y) + V(y,Z) = V(.’B, z) -2 (217 -Y ']y - JZ) :
tb) If a sequence {zn} C E satisfies lim,_,o0 V(Zn,w) < 0o for some w € E,
then {x,} is bounded. '

Let F(T) be the fixed points set of T'. Ibaraki and Takahashi defined a general-
ized nonexpansive mapping in a Banach space (see [10]).

- Definition 1. A mapping T : C — C is said to be generalized nonexpansive if
F(T) # 0 and V(Tz,p) < V(z,p) for all z € C and p € F(T).

Let D be a nonempty subset of a Banach space E. A mapping R: E — D is
said to be sunny if for all z € E and ¢t > 0, :

R(Rxz + t(x — Rz)) = Rxz.
A mapping R : E — D is called a retraction if Rz = z for all z € D (see [6]).
It is known that a generalized nonexpansive and sunny retraction of E onto D is
uniquely determined if E is a smooth and strictly convex Banach space (cf. [18]).
Ibaraki and Takahashi proved the following results in [10].

Lemma 1.2. (cf. [10]) Let E be a reflexive, strictly conver and smooth Banach
space and let T' be a generalized nonezpansive mapping from E into itself. Then
there exists a sunny and generalized nonexpansive retraction on F(T).

A generalized resolvent J, of a maximal monotone operator B C E* x E is
defined by J, = (I + rBJ)~! for any real number r > 0. It is well-known that
Jr : E — E is single-valued if E is reflexive, smooth and strictly convex (see [9]).
From Lemma 1.1 (a), the following proposition is shown.
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Proposition 1.1. (a) If a sunny retraction R is generalized nonexpansive, then R
satisfies
(1) V(z, Rz) + V(Rz,y) = V(z,y) — 2(z — Rz, JRz — Jy)
< V(z,y), foralz,yeD.
(b) For each r > 0, a generalized resolvent J;. satisfies
(2) V(z,JJyx) + V(Joz,p) < V(z,p) forallz € E andp € F(J;).

Remark 1. The property in Proposition 1.1 (b) means that J, is generalized
nonexpansive for any 7 > 0.

2. MAIN RESULTS

By using the properties of generalized nonexpansive mappings, we show strong
convergence theorems for finding fixed points of a generalized nonexpansive map-
ping and zeroes of a maximal monotone operator. ‘

Theorem 2.1. [14] Let E be a reflexive, smooth and strictly conver Banach space,
and let {T,}nen be a family of generalized nonexpansive mappings. Suppose that
NrenF(Ty) = F # 0 and that R is a sunny and generalized nonezpansive retraction
from E to F. Let a sequence {z,} be defined as follows: For any z1 =z € E,

ZTn+1 = RT,x, foranyneN.
Then, {z,} converges strongly to a point z* in F. |
Theorem 2.2. [14] Let E be a reflezive, smooth and strictly convez Banach space.
Let T : E — E be a generalized nonezpansive and let B C E* X E be a mazimal
monotone operator. Suppose that F(T) N (BJ)~1(0) # 0 and that R is a sunny

and generalized nonexpansive retraction from E to F = F(T) N (BJ)~!(0). Let an
iterative sequence {r,} be defined as follows: For any x =z, € E,

ZTny1 = RTJ, z, foralln €N,

where {r,} is a sequence of nonnegatwe real numbers. Then, the sequence {Tn}

converges strongly to a point z* in F(T)N (BJ)~(0).

Next we define a new pseudo-nonexpansive mapping which is called a V-strongly
nonexpansive mapping as follows ([14]).

Definition 2. [14] A mapping T : C — E is called V-strongly nonexpansive if
there exists a constant A > 0 such that

(3) V(Tx, Ty)v< V(z,y) - \V(({I = T)z,(I - T)y)

for all z,y € C, where I is the identity mapping on E. More explicitly, if (3) holds,
Ti s said to be V-strongly nonexpansive with A.

It is trivial that a V-strongly nonexpansive mapping is generalized nonexpansive
if F(T) # 0. In [16], Reich introduced a class of strongly nonexpansive mappings
which is defined with respect to the Bregmann distance D(:,-) corresponding to a
convex continuous function f in a reflexive Banach space E. Let S be a convex
subset of E, and T : S — S be a self-mapping of S. A point p in the closure of
S is said to be an asymptotically fixed point of T' if S contains a sequence {zn}
which converges weakly to p and the sequence {z, — Tz,} converges strongly to 0.
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F’(T) denotes the asymptotically fixed points set of T. The definition of strongly
~ nonexpansive mappings in a reflexive Banach space E is given as follows.

Definition 3. The Bregman distance correspondlng to a function f : E — R is
defined by

D(z,y) = f(z) - f(y) = f'(W)(z ~y),

where f is Gateaux differentiable and f'(z) stands for the derivative of f at the
point z. We say that the mapping T is strongly nonexpansive if F(T) # @ and

(4) D(p,Tz) < D(p,z) forallpe F(T)andz €S,

and if it holds that limy,_,oc D(T'Zp, ) = 0 for a bounded sequence {z,} such that
limp oo (D(p, z) — D(p, Tz,,)) = 0 for any p € F(T).

Taking the function ||-|* as the convex, continuous and Gateaux differentiable
function f, we obtain the fact that the Bregmann distance D(-,-) coincides with
V(:,-). Especially in a Hilbert space, D(z,y) = V(z,y) = ||z — y||>. We shall recall
some nonlinear mappings in a Hilbert space H. '

Definition 4. Let C be a nonempty, closed and convex subset of H. A mapping
A :C — H is said to be a-inverse strongly monotone if

(5) a|Tz - Ty||* < (@ -y, Tz — Ty)
for all z,y € C.

- If A: H — H is an a-inverse monotone operator, then T = I — A satisfies the
following inequality. .

(Az — Ay,z —y) <z —y|* - a|[(I - Az — (I - A)y|*.
Therefore, we obtain for an a-inverse strongly monotone A with a > 0 that (I — A)

is V-strongly nonexpanswe with a constant «. Furthermore, we have the following
result.

Proposition 2.1. [14] In a Hilbert space H, the followings hold.

(a) A firmly nonezpansie mapping is V- strongly nonempanswe with A = 1.

(b) A V-strongly nonexpanswe mapping T with F( ) # 0 is strongly nonezpan-
sive.

In a Banach space, V-strongly nonexpansive mappmgs have the following prop—
erties. :

Proposition 2.2. [14] In a smooth Banach space E, the followings hold.
" (a) For c € (=1,1], T = cI is V-strongly nonezpansive. Forc =1, T = I is
V -strongly nonexpansive for any A > 0. For ¢ € (=1,1), T = cI is V-strongly
nonexpansive for any A € (0, i+g

(b) If T is V -strongly nonexpansive with A, then for any a € [-1,1] with a # 0,
oT is also V -strongly nonerpansive with a2)\

(c) If T is V-strongly nonezpansive with A > 1, then A = I — T is V-strongly
nonexpansive with A1

(d) Suppose that T is V -strongly nonezpansive with X and that a € [—1,1] satis-
fies &®X > 1. Then (I — oT) is V-strongly nonexpansive with (a2X)~1. Moreover,
if T, =1—aT, then

(6) V(Toz,Toy) < V(z,y) — A7V (T, Ty).
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It is obvious that a V-strongly nonexpansive mapping T is nonexpansive in a
Hilbert space. However in Banach spaces, as we will show the following example,
a V-strongly nonexpansive mapping T is not necessary nonexpansive even ifTisa
continuous mapping with a fixed point ([15]).

Example 1. [15] Let 1 < p,¢ < oo such that 1—1, + % =1. Let E=1P(R x R) be
a real Banach space with a norm ||-||, defined by

lzll, = {lz:[? + lzo[P}?  for all z = (z1,22) € E.

Then E is smooth, and the normalized duality rhapping J is single-valued. J is
given by
Jr = Hmlli_” (:1:1|x1|p_2,:1;2|m2|p_2) € (R x R) for all z = (z1,22) € E.
Hence we have for z,y € F that , |
V(z,y) = ll=l; + lyll; - 2 (2, Jv)

= |lzll? + lyll2 — 2llyll, ™ {z192l91 P2 + z2elyelP 2}

We define a mapping T : E — FE as follows:

[ & el <1,
T= ”—21”::1: if ||z, > 1.

_ This example simultaneously give a fact that T is not quasi-nonexpansive for
some p. Let p= 2, z=(0,1) € F(T) and y = (0.2,0.95) € E, we have that

- 3
ITz — Tyl = llyll;? {(0.2)% + (llyll, — 0.95)3}
> (0.2)% + (0.05)% = ||z — 2.

Finally, we give a convergence theorem for finding common zero points of a
maximal monotone operator and a V-strongly nonexpansive mappings.

Theorem 2.3. Let E be a reflexive, smooth and strictly convex Banach space.

Suppose that the duality mapping J of E is weakly sequentially continuous. Let C-

be a nonempty, closed and convex subset of E. Let B :-E* — 2F be a mazimal
monotone operator and let J,, = (I +r,BJ )~1 be a generalized resolvent of B for
a sequence {rp} C (0,00). Suppose that T : C — E is a V -strongly nonexpansive
mapping with A > 1 such that Co = T~(0)N (BJ)~1(0) # 0 and that Rc : E — C
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is a sunny and generalized nonezpansive retraction. For an a € [—1,1] such that .

a2 > 1, let an iterative sequence {z,} C C be defined as follows: for any r =z, €
C andn €N, '

@ { yn = Re(I — aT)zy,
Tn+1 = RC(ﬂnm + (1 - ﬁn)Jrnyn),



 where {8} C [0,1] and {rp} C (0,00) satisfy that
(8) Zﬁn <oo and liminfr, > 0.

n>1
Then, there ezists an element u € Cy such that

(9) TZn—=u and Re,(Tn) — u.
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