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MEAN ERGODIC THEOREMS FOR ASYMPTOTIC
ISOMETRY SEMIGROUPS IN BANACH SPACES

HIROMICHI MIYAKE (=% &)

1. INTRODUCTION

In 1948, Lorentz [12] introduced a notion of almost convergence for
bounded sequences of real numbers: Let {z,} be a bounded sequence of
real numbers. Then, {z,} is said to be almost convergent if u,(z,) =
Vn(z,) for any Banach limits u and v. Day [7] defined a notion of
almost convergence for bounded real-valued functlons defined on an
amenable semigroup. '

On the other hand, von Neumann [15] introduced a notion of almost
periodicity for bounded real-valued functions defined on an abstract
group and proved the existence of the mean values for those functions.
Later, Bochner and von Neumann [3] proved the existence of the mean
values for vector-valued almost periodic functions defined on an ab-
stract group with values in a complete locally convex space.

Motivated by the works of Lorentz and von Neumann, we [13] in-
troduced notions of almost convergence in the sense of Lorentz and
the mean values for vector-valued bounded functions defined on a left
amenable semigroup with values in a locally convex space and also ob-
tained characterizations of almost convergence for those functions in
the case of commutative semigroups.. By applying these notions and
characterizations to transformation semigroups, we prove non-linear
mean ergodic theorems for non-Lipschitzian asymptotically isometric
semigroups on a compact convex subset of a general Banach space; see
also [2], [19], [16], [17] and [14]. In this case, however, the mean value
for such a semigroup is not always a common fixed point for it.

In this paper, we first introduce a notion of asymptotic isometry
semigroups of continuous self-mappings of a closed convex subset C
of a Banach space E, motivated by Hyers and Ulam [10] and discuss
the action of such a semigroup S on the w-limit set w(z) of cluster
points of the orbit of z € C under S by using Banach-Ulam’s theo-
rem and the structure theorem for the kernel of semigroups (Clifford’s
theorem). Next, we prove non-linear mean ergodic theorems for these



non-Lipschitzian semigroups in which the mean value for such a semi-
group is a common fixed point for it in the case when a Banach space
E is strictly convex and C is compact; see also [5], [11] and [1].

2. PRELIMINARIES

Throughout this paper, we denote by S a semigroup with identity
and by E a locally convex topological vector space (or l.c.s.). We also
denote by R, and N, the set of non-negative real numbers and the
set of non-negative integers, respectively. Let (E, F) be the duality
between vector spaces E and F. For each y € F, we define a linear
functional f, on E by f,(z) = (z,y). We denote by o(E, F) the weak
topology on E generated by {f, : y € F}. E, denotes a l.c.s. F with
the weak topology o(FE,E’). If X is a lLc.s., we denote by X' the
topological dual of X. We also denote by (-,-) the canonical bilinear
" form between E and E’, that is, for z € E and 2’ € E', (z,2') is the
value of z’ at z. If A is a subset of E, then the closure of A and the
closure of convex hull of A is denoted by A and €6A, respectively.

We denote by [*°(S) the Banach space of bounded real-valued func-
tions defined on S. For each s € S, we define operators I(s) and r(s)
on [*(S) by

(Us)f)(X) = f(st) and (r(s)f)(t) = f(ts)

for each t € S and f € 1°°(9), respectively. A subspace X of [*°(S) is
said to be translation invariant if [(s)X C X and r(s)X C X for each
s € S. Let X be a subspace of {°°(S) which contains constants. A linear
functional 1 on X is said to be a mean on X if ||u|| = u(e) = 1, where
e(s) = 1 for each s € S. We often write u,f(s) instead of u(f) for each
f € X. For s € S, we define a point evaluation 8, by d,(f) = f(s) for
each f € [*(S). A convex combination of point evaluations is called a
finite mean. As is well known, y is a mean on X if and only if

inf f(s) < A(f) < sup f(s)
s seS

for each f € X; see Day [7] and Takahashi [20] for more details. Let X
be also translation invariant. Then, a mean p on X is said to be left (or

right) invariant if u(1(s)f) = u(f) (or pu(r(s)f) = u(f)) for each s € S
and f € X. A mean uon X is said to be invariant if p is both left and

right invariant. If there exists a left (or right) invariant mean on X,

then X is said to be left (or right) amenable. If X is also left and right -

amenable, then X is said to be amenable. We know from Day [7] that
if S is commutative, then X is amenable. Let {u,} be a net of means
on X. Then {u,} is said to be asymptotically invariant (or strongly
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regular) if for each s € S, both I(s) g — 1o and 7(s) e — pe converge

to 0 in the weak topology o(X’, X) (or the norm topology), where I(s)’
and r(s)’ are the adjoint operators of I(s) and r(s), respectively. Such
nets were first studied by Day [7]. |
We denote by [*°(S, E) the vector space of vector-valued functions
defined on S with values in E such that for each f € I*°(S, E), f (S)
{f(s) : s € S} is bounded. Let 4 is a neighborhood base of 0 in E

and let M(V) = {f € 1®°(S,E) : f(S) c V} for each V € {l. A family"

B ={M(V):V € U} is a filter base in I°°(S, E). Then, I*(S, E) is
a l.c.s. with the topology ¥ of uniform convergence on S that has a
neighborhood base 8 of 0. For each s € S we define the operators
L(s) and R(s) on l°°(S E) by

(L@)Xﬂ==(8)émd Uﬁ@ﬂ@)=f@$

for each t € S and f € I™(S, E), respectively. Let f € I®(S, E).
We denote by RO(f) the right orbit of f, that is, the set {R(s)f €
[°°(S, E) : s € S} of right translates of f. Similarly, we also denote by
LO(f) the left orbit of f, that is, the set {L(s)f € I*°(S,E) : s € S} of
left translates of f. A subspace = of l°°(5’ E) is said to be translation
invariant if L(s)Z C = and R(s)= C Z for each s € S. Let = be
a subspace of [*°(S, E) which contains constant functions. For each
s € S, we define a (vector-valued) point evaluation A, by A,(f) = f(s)
for each f € I*°(S,E). A convex combination of vector-valued point
evaluations is said to be a (vector-valued) finite mean. A mapping M
of Z into F is called a vector-valued mean on Z if M is contained in
the closure of convex hull of {A; : s € S} in the product space (E,)=.
Then, a vector-valued mean M on = is a linear continuous mapping of
Z into £ such that (i) Mp = p for each constant function p in Z, and (ii)
- M(f) is contained in the closure of convex hull of f(.S) for each f € =.
We denote by ®= the set of vector-valued means on =. Let'= be also
translation invariant. Then, a vector-valued mean M on = is said to be
left (or right) invariant if M(L(s)f) = M(f) (or M(R(s)f) = M(f))
for each s € S and f € Z, respectively. A vector-valued mean M on =
is said to be invariant if M is both left and right invariant.

We also denote by [3°(S, E') the subspace of (.S, E) such that for
each f € I2°(S, E), f(9) is relatively weakly compact in E. Let X be a
subspace of [°°(S) containing constants such that for each f € I°(S, E)
and 2’ € E', a function s — (f(s),z’) is contained in X. Such an X is
called admzsszble Let u € X'. Then, for each f € I2°(S, E), we define
a linear functional 7(u)f on E’ by

T(w)f :z' = p(f(), 2).
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It follows from the bipolar theorem that 7(u) f is contained in E. Then,
~ a mapping 7 of X’ onto ®;»(s,k) is linear and continuous where X’ is
equipped with the weak topology o(X’, X). Indeed, for each mean p
on X, 7(u) is a vector-valued mean on I2°(S, E) (generated by u).
Conversely, every vector-valued mean on I(S, E) is also a vector-
valued mean in the sense of Goldberg and Irwin [9], that is, for each
M € ®i(s,5), there exists a mean y on X such that 7(u) = M. Note
that ®j0(s,p) is compact and convex in (E,)'<°(5:8); see also Day [7],
Takahashi [19, 20] and Kada and Takahashi [11]. Let X be also trans-
lation invariant and amenable. If u is a left (or right) invariant mean
on X, then 7(u) is also left (or right) invariant. Conversely, if M is
a left (or right) invariant vector-valued mean on [°(S, E), then there
exists a left (or right) invariant mean p on X such that 7(u) = M.

Let C be a closed convex subset of a l.c.s. E and let § be the semi-
group of self-mappings of C under operator multiplication. If T' is a
semigroup homomorphism of S into §, then T is said to be a repre-
sentation of S as self-mappings of C. Let S = {T(s) : s € S} be a
representation of S as self-mappings of C such that for each z € C, the
orbit O(z) = {T'(s)x : s € S} of z under S is relatively weakly compact
in C and let X be a subspace of I°°(S) containing constants such that
for each z € C and =’ € E', a function s — (T'(s)z,z’) is contained in
X. Such an X is called admissible with respect to S. If no confusion
will occur, then X is simply called admissible. Let u € X'. Then, there
exists a unique point ¢ of E such that u(T(-)z,z") = (z,z') for each
2’ € E’. We denote such a point zo by T(u)z. Note that if 1 is a mean
on X, then for each x € C, T(u)z is contained in the closure of convex
hull of the orbit O(z) of z under S; see Takahashi [19, 20].

3. ON ALMOST CONVERGENCE FOR VECTOR—VALUED FUNCTIONS

In this section, we recall a notion of almost convergence for those
functions and summarize its characterizations for the sake of complete-
ness; see also Miyake [13].

Definition 1. Let S be left amenable and let f € I2°(S, E). Then, f
is said to be almost convergent in the sense of Lorentz if

T(w)f=71(W)f |
for any left invariant means x4 and v on [°°(S). Note that f is almost
convergent in the sense of Lorentz if and only if M(f) = N(f) for any
left invariant vector-valued means M and N on [(S, E).
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Theorem 1. Let S be left amenable and let f € I2°(S, E). Then, the |

following are equivalent:



(i) f is almost convergent in the sense of Lorentz; :

(ii) the closure of conver hull of RO(f) contains exactly one con-
stant function with value p in the topology of weakly pointwise
convergence on S.

In this case, we call such a value p the mean value of f; see also
von Neumann [15], Bochner and von Neumann [3] and Miyake and
Takahashi [14]. Let S = {T'(s) : s € S} be a representation of S

as self-mappings of a weakly compact convex subset C of a locally
convex space E. We define a mapping ¢s of C into I2°(S, E) by
#s(x)(s) = T(s)xz for each z € C and s € S. Then, S is said to
be almost convergent in the sense of Lorentz if for each z € C, ¢s(z)
has the mean value p,. Such a point p, is also said to be the mean
value of £ under S. |

Theorem 2. Let S be commutative, let f € [2(S,E) and let X be a
closed, translation invariant and admissible subspace of 1°°(S) contain-
ing constants. Then, the following are equivalent:

(i) f is almost convergent in the sense of Lorentz;
(ii) there erists a strongly regular net {A,} of finite means such

that {T(A,).f} converges in the topology Ty, of weakly uniform

convergence on S,
(iii) for each strongly regular net {u.} of means on X, {1(pta)-f}
converges in the topology Ty..

4. MEAN ERGODIC THEOREMS FOR ASYMPTOTIC ISOMETRY
SEMIGROUPS

By applying a notion and a characterization (Theorem 2) of almost
convergence in the sense of Lorentz for vector-valued bounded functions

defined on a commutative semigroup with values in a locally convex

space to transformation semigroups, we prove mean ergodic theorems
for non-Lipschitzian asymptotic isometry semigroups in strictly convex
Banach spaces. The following theorems are crucial for proving our
results.

Theorem 3 (Banach-Ulam, [21]). A compact metric space cannot be
1sometric with a proper subset of itself.

Let I be a subset of S. Then, I is said to be a left (or right) ideal
of S if for each 0 € Sand 7 € I, o7 € I (or 70 € I), respectively. If J
is a left and right ideal of S, then I is said to be a two-sided ideal of
S. The intersection of the two-sided ideals of S is called the kernel of
S and denoted by K(S). If K(S) is non-empty, it is the smallest two-
sided ideal of S. The structure theorem for the kernel of semigroups
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" is known in the case when semigroups have mlmmal left and minimal
right ideals.

Theorem 4 (Clifford, [6]). Let S be a compact semitopological semi-
group. Then K(S) is non-empty. If L is a minimal left ideal of S and
R is a minimal right ideal of S, then L and R are contained in K(S)
and LN R contains a unique zdempotent e, that is, ee = e. In this case,
LN R is a compact topological group with e as identity. '

Definition 2. Let S be commutative and let S = {T'(s) : s € S} be
a representation of S as continuous self-mappings of a closed convex
subset C of a Banach space. Then, S is said to be an asymptotic
isometry semigroup on C if there exists a net {e(s)} of non-negative
real numbers converging to 0 such that for each z,y € C and s € S,

IT(s)x = T(s)yll — llz = ylll < e(s).

The following lemmas are immediately deduced from Banach-Ulam’s
theorem and Clifford’s theorem, respectively.

- Lemma 1. Let S be commutative, let S be a representation of S as con-
tinuous self-mappings of a compact convez subset C' of a Banach space
and let £ € C. Then the closure S of S is a compact left semitopo-
logical semigroup in the product topology of CC. If S is an asymptotic
isometry semigroup on C, then the kernel K(S) of S is a non-empty,
commutative, compact topological semigroup of isometries of C. More-
over, K(S) acting on w(z) is contained in a compact topological group
G, with identity mapping as identity, of isometries of w(z), where w(z)
is the set.of cluster points of the orbit O(x) of x under S.

~ Lemma 2. Let S be commutative, let S be a representation of S as
continuous self-mappings of a compact convexr subset C of a Banach
space and let x € C. If S is an asymptotic isometry semigroup on C,
then K(S) is a commutative, compact topological group, with identity
mapping as identity, of isometries of w(z) and S = K(S) acts on
w(z). Moreover, w(z) is a minimal set with respect to S, that is, for
each y € w(z), the orbit O(y) of y under S is dense in w(a:)

From the works of Bruck [5] and Atsushiba and Takahashi [1], the
above lemmas imply the following result.

Lemma 3. Let S be commutative, let S be a representation of S as
continuous self-mappings of a compact conver subset C of a strictly
conver Banach space and let x € C. If S is an asymptotic isome-
try semigroup on C, then K(S) is an affine isometry group acting on
cow(z). -
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It follows from Lemma 3 and Markov-Kakutani’s fixed point theorem
that for each x € C, tow(z) contains a unique common fixed point for
S. By .using Theorem 2, we can prove mean ergodic theorems for
asymptotic isometry semigroups in strictly convex Banach spaces.

Theorem 5. Let S be commutative, let S = {T(s) : s € S} be a
representation of S as continuous self-mappings of a compact convex
subset C of a strictly convex Banach space, let X be a closed, translation
invariant and admissible subspace of 1°(S) containing constants and let
{ua} be a strongly regular net of means on X. If S is an. asymptotic
isometry semigroup on C, then S is almost convergent in the sense of

- Lorentz, that is, for each z € C, {T(ua)T(h)x} converges to the mean

value p, of x under S in C uniformly in h € S. In this case,
Pz} = NsesTo{T(t + s)z : t € S}NF(S) = {T(u)z} -

for each invariant mean p on X, where F(S) is the set of common
fized points for S. ‘

For example, the following corollaries are the case when a semigroup
S is the set of the non-negative integers or real numbers.

Corollary 1. Let C be a compact conver subset of a strictly convex
Banach space, let T' be a continuous self-mapping of C and let {e,} be
a sequence of non-negative real numbers converging to 0 such that for
each z,y € C and n € N,

Tz = T"y|| = ||z - yll| < €.

Then, for each x € C, the Cesaro means

n-—-1
I A"
By .
converge to a ﬁxed poz’nt of T' in C uniformly in h € N_.

Corollary 2. Let C be a compact convexr subset of a strictly convex

Banach space, let S = {T'(t) : t € R.} be a one-parameter semigroup

of continuous self-mappings of C and let {e(t)} be a net of non-negative
real numbers converging to O such that for each r,y € C and t € R,

HT@)z =Tyl — llz = ylll < et).
Then, for each x € C, the Bohr means '
t
l/ T(t+ h)z dt
t Jo :

converge to a common fized point for S in C uniformly in h € R, as
t — +oo0.
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