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1. INTRODUCTION

In 1948, Lorentz [12] introduced a notion of almost convergence for
bounded sequences of real numbers: Let $\{x_{n}\}$ be a bounded sequence of
real numbers. Then, $\{x_{n}\}$ is said to be almost convergent if $\mu_{n}(x_{n})=$

$v_{n}(x_{n})$ for any Banach limits $\mu$ and $\nu$ . Day [7] defined a notion of
almost convergence for bounded real-valued functions defined on an
amenable semigroup.

On the other hand, von Neumann $[15]$ introduced a notion of almost
periodicity for bounded real-valued functions defined on an abstract
group and proved the existence of the mean values for those functions.
Later, Bochner and von Neumann [3] proved the existence of the mean
values for vector-valued almost periodic functions defined on an ab-
stract group with values in a complete locally convex space.

Motivated by the works of Lorentz and von Neumann, we [13] in-
troduced notions of almost convergence in the sense of Lorentz and
the mean values for vector-valued bounded functions defined on a left
amenable semigroup with values in a locally convex space and also ob-
tained characterizations of almost convergence for those functions in
the case of coinmutative semigroups. By applying these notions and
characterizations to transformation semigroups, we prove non-linear
mean ergodic theorems for non-Lipschitzian asymptotically isometric
semigroups on a compact convex subset of a general Banach space; see
also [2], [19], [16], [17] and [14]. In this case, however, the mean value
for such a semigroup is not always a common fixed point for it.

$-$ In this paper, we first introduce a notion of asymptotic isometry
semigroups of continuous self-mappings of a closed convex subset $C$

of a Banach space $E$ , motivated by Hyers and Ulam [10] and discuss
the action of such a semigroup $S$ on the $\omega$-limit set $\omega(x)$ of cluster
points of the orbit of $x\in C$ under $S$ by using Banach-Ulam’s theo-
rem and the structure theorem for the kernel of semigroups (Clifford’s
theorem). Next, we prove non-linear mean ergodic theorems for these
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non-Lipschitzian semigroups in which the mean value for such a semi-
group is a common fixed point for it in the case when a Banach space
$E$ is strictly convex and $C$ is compact; see also [5], [11] and [1].

2. PRELIMINARIES

Throughout this paper, we denote by $S$ a semigroup with identity
and by $E$ a locally convex topological vector space (or l.c. $s.$ ). We also
denote by $\mathbb{R}_{+}$ and $\mathbb{N}_{+}$ the set of non-negative real numbers and the
set of non-negative integers, respectively. Let $\langle E,$ $F\rangle$ be the duality
between vector spaces $E$ and $F$ . For each $y\in F$ , we define a linear
functional $f_{y}$ on $E$ by $f_{y}(x)=\langle x,y\rangle$ . We denote by $\sigma(E, F)$ the weak
topology on $E$ generated by $\{f_{y} : y\in F\}.$ $E_{\sigma}$ denotes a l.c. $s.$ $E$ with
the weak topology $\sigma(E, E’)$ . If $X$ is a l.c. $s.$ , we denote by $X’$ the
topological dual of $X$ . We also denote by $\langle\cdot,$ $\cdot\rangle$ the canonical bilinear
form between $E$ and $E’$ , that is, for $x\in E$ and $x’\in E’,$ $\langle x,$ $x’\rangle$ is the
value of $x’$ at $x$ . If $A$ is a subset of $E$ , then the closure of $A$ and the
closure of convex hull of $A$ is denoted by $\overline{A}$ and $\overline{co}A$ , respectively.

We denote by $l^{\infty}(S)$ the Banach space of bounded real-valued func-
tions defined on $S$ . For each $s\in S$ , we define operators $l(s)$ and $r(s)$

on $l^{\infty}(S)$ by

$(l(s)f)(t)=f(st)$ and $(r(s)f)(t)=f(ts)$

for each $t\in S$ and $f\in l^{\infty}(S)$ , respectively. $A$ subspace $X$ of $l^{\infty}(S)$ is
said to be tmnslation invariant if $l(s)X\subset X$ and $r(s)X\subset X$ for each
$s\in S$ . Let $X$ be a subspace of $l^{\infty}(S)$ which contains constants. $A$ linear
functional $\mu$ on $X$ is said to be a mean on $X$ if $||\mu\Vert=\mu(e)=1$ , where
$e(s)=1$ for each $s\in S$ . We often write $\mu_{S}f(s)$ instead of $\mu(f)$ for each
$f\in X$ . For $s\in S$ , we define a point evaluation $\delta_{s}$ by $\delta_{S}(f)=f(s)$ for
each $f\in l^{\infty}(S)$ . $A$ convex combination of point evaluations is called a
finite mean. As is well known, $\mu$ is a mean on $X$ if and only if

$\inf_{s\in S}f(s)\leq\dot{\mu}(f)\leq\sup_{s\in S}f(s)$

for each $f\in X$ ; see Day [7] and Takahashi [20] for more details. Let $X$

be also translation invariant. Then, a mean $\mu$ on $X$ is said to be lefl (or
right) invariant if $\mu(l(s)f)=\mu(f)$ $(or \mu(r(s)f)=\mu(f))$ for each $s\in S$

and $f\in X.$ $A$ mean $\mu$ on $X$ is said to be invariant if $\mu$ is both left and
right invariant. If there exists a left (or right) invariant mean on $X,$

then $X$ is said to be left (or right) amenable. If $X$ is also left and right
amenable, then $X$ is said to be amenable. We know from Day [7] that
if $S$ is commutative, then $X$ is amenable. Let $\{\mu_{\alpha}\}$ be a net of means
on $X$ . Then $\{\mu_{\alpha}\}$ is said to be asymptotically invariant (or strongly
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regular) if for each $\mathcal{S}\in S$ , both $l(s)’\mu_{\alpha}-\mu_{\alpha}$ and $r(s)’\mu_{\alpha}-\mu_{\alpha}$ converge
to $0$ in the weak topology $\sigma(X’, X)$ (or the norm topology), where $l(s)’$

and $r(s)’$ are the adjoint operators of $l(s)$ and $r(s)$ , respectively. Such
nets were first studied by Day [7].

We denote by $l^{\infty}(S, E)$ the vector space of vector-valued functions
defined on $S$ with values in $E$ such that for each $f\in l^{\infty}(S, E),$ $f(S)=$
$\{f(s) : s\in S\}$ is bounded. Let $\mathfrak{U}$ is a neighborhood base of $0$ in $E$

and let $M(V)=\{f\in l^{\infty}(S, E) : f(S)\subset V\}$ for each $V\in \mathfrak{U}.$ $A$ family
$\mathfrak{B}=\{M(V) : V\in \mathfrak{U}\}$ is a filter base in $l^{\infty}(S, E)$ . Then, $l^{\infty}(S, E)$ is
a l.c. $s$ . with the topology $\mathfrak{T}$ of uniform convergence on $S$ that has a
neighborhood base $\mathfrak{B}$ of $0$ . For each $s\in S$ , we define the operators
$L(s)$ and $R(s)$ on $l^{\infty}(S, E)$ by

$(L(s)f)(t)=f(st)$ and $(R(s)f)(t)=f(ts)$

for each $t\in S$ and $f\in l^{\infty}(S, E)$ , respectively. Let $f\in l^{\infty}(S, E)$ .
We denote by $\mathcal{R}\mathcal{O}(f)$ the right orbit of $f$ , that is, the set $\{R(\mathcal{S})f\in$

$l^{\infty}(S, E)$ : $s\in S\}$ of right translates of $f$ . Similarly, we also denote by
$\mathcal{L}\mathcal{O}(f)$ the left orbit of $f$ , that is, the set $\{L(s)f\in l^{\infty}(S, E) : s\in S\}$ of
left translates of $f.$ $A$ subspace $\Xi$ of $l^{\infty}(S, E)$ is said to be translation
invariant if $L(s)\Xi\subset\Xi$ and $R(s)\Xi\subset\Xi$ for each $\mathcal{S}\in S$ . Let $\Xi$ be
a subspace of $l^{\infty}(S, E)$ which contains constant functions. For each
$s\in S$ , we define $a$ (vector-valued) point evaluation $\triangle_{s}$ by $\triangle_{s}(f)=f(s)$

for each $f\in l^{\infty}(S, E)$ . $A$ convex combination of vector-valued point
evaluations is said to be $a$ (vector-valued) finite mean. $A$ mapping $M$

of $\Xi$ into $E$ is called a vector-valued mean on $\Xi$ if $M$ is contained in
the closure of convex hull of $\{\triangle_{s} : s\in S\}$ in the product space $(E_{\sigma})^{\Xi}.$

Then, a vector-valued mean $M$ on $\Xi$ is a linear continuous mapping of
$\Xi$ into $E$ such that (i) $Mp=p$ for each constant function $p$ in $\Xi$ , and (ii)
$M(f)$ is contained in the closure of convex hull of $f(S)$ for each $f\in\Xi.$

We denote by $\Phi_{\Xi}$ the set of vector-valued means on $\Xi$ . Let $\backslash \Xi$ be also
translation invariant. Then, a vector-valued mean $M$ on $\Xi$ is said to be
left (or right) invariant if $M(L(s)f)=M(f)$ $(or M(R(s)f)=M(f))$
for each $s\in S$ and $f\in\Xi$ , respectively. $A$ vector-valued mean $M$ on $\Xi$

is said to be invariant if $M$ is both left and right invariant.
We also denote by $l_{c}^{\infty}(S, E)$ the subspace of $l^{\infty}(S, E)$ such that for

each $f\in l_{c}^{\infty}(S, E),$ $f(S)$ is relatively weakly compact in $E$ . Let $X$ be a
subspace of $l^{\infty}(S)$ containing constants such that for each $f\in l_{c}^{\infty}(S, E)$

and $x’\in E’$ , a function $s\mapsto\langle f(s),$ $x’\rangle$ is contained in $X$ . Such an $X$ is
called admissible. Let $\mu\in X’$ . Then, for each $f\in l_{c}^{\infty}(S, E)$ , we define
a linear functional $\tau(\mu)f$ on $E’$ by

$\tau(\mu)f:x’\mapsto\mu\langle f(\cdot), x’\rangle.$
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It follows from the bipolar theorem that $\tau(\mu)f$ is contained in $E$ . Then,
a mapping $\tau$ of $X’$ onto $\Phi\iota_{c}\infty(S,E)$ is linear and continuous where $X’$ is
equipped with the weak topology $\sigma(X’, X)$ . Indeed, for each mean $\mu$

on $X,$ $\tau(\mu)$ is a vector-valued mean on $l_{c}^{\infty}(S, E)$ (generated by $\mu$).
Conversely, every vector-valued mean on $l_{c}^{\infty}(S, E)$ is also a vector-
valued mean in the sense of Goldberg and Irwin [9], that is, for each
$M\in\Phi_{l_{c}^{\infty}(S,E)}$ , there exists a mean $\mu$ on $X$ such that $\tau(\mu)=M$ . Note
that $\Phi_{l_{c}^{\infty}(S,E)}$ is compact and convex in $(E_{\sigma})^{l_{c}^{\infty}(S,E)}$ ; see also Day [7],
Takahashi [19, 20] and Kada and Takahashi [11]. Let $X$ be also trans-
lation invariant and amenable. If $\mu$ is a left (or right) invariant mean
on $X$ , then $\tau(\mu)$ is also left (or right) invariant. Conversely, if $M$ is
a left (or right) invariant vector-valued mean on $l_{c}^{\infty}(S, E)$ , then there
exists a left (or right) invariant mean $\mu$ on $X$ such that $\tau(\mu)=M.$

Let $C$ be a closed convex subset of a l.c. $s.$ $E$ and let $\mathfrak{F}$ be the semi-
group of self-mappings of $C$ under operator multiplication. If $T$ is a
semigroup homomorphism of $S$ into $\mathfrak{F}$, then $T$ is said to be a repre-
sentation of $S$ as self-mappings of $C$ . Let $S=\{T(s) : s\in S\}$ be a
representation of $S$ as self-mappings of $C$ such that for each $x\in C$ , the
orbit $\mathcal{O}(x)=\{T(s)x : s\in S\}$ of $x$ under $S$ is relatively weakly compact
in $C$ and let $X$ be a subspace of $l^{\infty}(S)$ containing constants such that
for each $x\in C$ and $x’\in E’$ , a function $s\mapsto\langle T(s)x,$ $x’\rangle$ is contained in
X. Such an $X$ is called admissible with respect to $S$ . If no confusion
will occur, then $X$ is simply called admissible. Let $\mu\in X’$ . Then, there
exists a unique point $x_{0}$ of $E$ such that $\mu\langle T(\cdot)x,$ $x’\rangle=\langle x_{0},$ $x’\rangle$ for each
$x’\in E’$ . We denote such a point $x_{0}$ by $T(\mu)x$ . Note that if $\mu$ is a mean
on $X$ , then for each $x\in C,$ $T(\mu)x$ is contained in the closure of convex
hull of the orbit $\mathcal{O}(x)$ of $x$ under $S$ ; see Takahashi [19, 20].

3. ON ALMOST CONVERGENCE FOR VECTOR-VALUED FUNCTIONS

In this section, we recall a notion of almost convergence for those
functions and summarize its characterizations for the sake of complete-
ness; see also Miyake [13].

Definition 1. Let $S$ be left amenable and let $f\in l_{c}^{\infty}(S, E)$ . Then, $f$

is said to be almost convergent in the sense of Lorentz if
$\tau(\mu)f=\tau(\nu)f$

for any left invariant means $\mu$ and $v$ on $l^{\infty}(S)$ . Note that $f$ is almost
convergent in the sense of Lorentz if and only if $M(f)=N(f)$ for any
left invariant vector-valued means $M$ and $N$ on $l_{c}^{\infty}(S, E)$ .

Theorem 1. Let $S$ be lefl amenable and let $f\in l_{c}^{\infty}(S, E)$ . Then, the
following are equivalent:
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(i) $f$ is almost convergent in the sense of Lorentz,$\cdot$

(ii) the closure of convex hull of $\mathcal{R}\mathcal{O}(f)$ contains exactly one con-
stant function with value $p$ in the topology of weakly pointwise
convergence on $S.$

In this case, we call such a value $p$ . the mean value of $f$ ; see also
von Neumann [15], Bochner and von Neumann [3] and Miyake and
Takahashi [14]. Let $S=\{T(\mathcal{S}) : s\in S\}$ be a representation of $S$

as self-mappings of a weakly compact convex subset $C$ of a locally
convex space $E$ . We define a mapping $\phi_{S}$ of $C$ into $l_{c}^{\infty}(S, E)$ by
$\phi_{S}(x)(s)=T(s)x$ for each $x\in C$ and $s\in S$ . Then, $S$ is said to
be almost convergent in the sense of Lorentz if for each $x\in C,$ $\phi_{S}(x)$

has the mean value $p_{x}$ . Such a point $p_{x}$ is also said to be the mean
value of $x$ under $S.$

Theorem 2. Let $S$ be commutative, let $f\in l_{c}^{\infty}(S, E)$ and let $X$ be a
closed, tmnslation invariant and admissible subspace of $l^{\infty}(S)$ contain-
ing constants. Then, the following are equivalent:

(i) $f$ is almost convergent in the sense of Lorentz;
(ii) there exists a strongly regular net $\{\lambda_{\alpha}\}$ of finite means such

that $\{\tau(\lambda_{\alpha}).f\}$ converges in the topology $\tau_{wu}$ of weakly uniform
convergence on $S$ ;

(iii) for each strongly regular net $\{\mu_{\alpha}\}$ of means on $X,$ $\{\tau(\mu_{\alpha}).f\}$

converges in the topology $\tau_{wu}.$

4. MEAN ERGODIC THEOREMS FOR ASYMPTOTIC ISOMETRY
SEMIGROUPS

By applying a notion and a characterization (Theorem 2) of almost
convergence in the sense of Lorentz for vector-valued bounded functions
defined on a commutative semigroup with values in a locally convex
space to transformation semigroups, we prove mean ergodic theorems
for non-Lipschitzian asymptotic isometry semigroups in strictly convex
Banach spaces. The following theorems are crucial for proving our
results.

Theorem 3 (Banach-Ulam, [21]). $A$ compact metric $\mathcal{S}pace$ cannot be
isometric with a proper subset of itself.

Let $I$ be a subset of $S$ . Then, $I$ is said to be a left (or right) ideal
of $S$ if for each $\sigma\in S$ and $\tau\in I,$ $\sigma\tau\in I$ $(or \tau\sigma\in I)$ , respectively. If $I$

is a left and right ideal of $S$ , then $I$ is said to be a two-sided ideal of
$S$ . The intersection of the two-sided ideals of $S$ is called the kernel of
$S$ and denoted by $K(S)$ . If $K(S)$ is non-empty, it is the smallest two-
sided ideal of $S$ . The structure theorem for the kernel of semigroups
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is known in the case when semigroups have minimal left and minimal
right ideals.

Theorem 4 (Clifford, [6]). Let $S$ be a compact semitopological semi-
gmup. Then $K(S)$ is non-empty. If $L$ is a minimal lefl ideal of $S$ and
$R$ is a minimal right ideal of $S$ , then $L$ and $R$ are contained in $K(S)$

and $L\cap R$ contains a unique idempotent $e$ , that is, $ee=e$ . In this case,
$L\cap R$ is a compact topological gmup with $e$ as identity.

Definition 2. Let $S$ be commutative and let $S=\{T(s) : s\in S\}$ be
a representation of $S$ as continuous self-mappings of a closed convex
subset $C$ of a Banach space. Then, $S$ is said to be an asymptotic
isometry semigroup on $C$ if there exists a net $\{\epsilon(s)\}$ of non-negative
real numbers converging to $0$ such that for each $x,$ $y\in C$ and $s\in S,$

$|\Vert T(s)x-T(s)y\Vert-\Vert x-y\Vert|\leq\epsilon(s)$ .

The following lemmas are immediately $dedu_{\sim}ced$ from Banach-Ulam’s
theorem and Clifford’s theorem, respectively.

Lemma 1. Let $S$ be commutative, let $S$ be a representation $ofS$ as con-
tinuous self-mappings of a compact convex subset $C$ of a Banach space
and let $x\in C.$ Then the closure $\overline{S}$ of $S$ is a compact left semitopo-
logical semigroup in the pmduct topology of $C^{c}$ . If $S$ is an asymptotic
isometry semigroup on $C$ , then the kemel $K(\overline{S})of\overline{S}$ is a non-empty,
commutative, compact topological semigroup of isometries of C. More-
over, $K(\overline{\mathcal{S}})$ acting on $\omega(x)$ is contained in a compact topological group
$G$ , with identity mapping as identity, of isometries of $\omega(x)$ , where $\omega(x)$

is the set. of cluster points of the orbit $\mathcal{O}(x)$ of $x$ under $S.$

Lemma 2. Let $S$ be commutative, let $\mathcal{S}$ be a representation of $S$ as
continuous self-mappings of a compact convex subset $C$ of a Banach
space and let $x\in C$ . If $S$ is an asymptotic isometry semigroup on $C,$

then $K(\overline{S})$ is a commutative, compact topological gmup, with identity
mapping as identity, of isometries of $\omega(x)$ and $\overline{S}=K(\overline{S})$ acts on
$\omega(x)$ . Moreover, $\omega(x)$ is a minimal set with respect to $S$ , that is, for
each $y\in\omega(x)$ , the orbit $\mathcal{O}(y)$ of $y$ under $S$ is dense in $\omega(x)$ .

From the works of Bruck [5] and Atsushiba and Takahashi [1], the
above lemmas imply the following result.

Lemma 3. Let $S$ be commutative, let $S$ be a representation of $S$ as
continuous self-mappings of a compact convex subset $C$ of a strictly
convex Banach space and let $x\in C.$ If $S$ is an asymptotic isome-
try semigroup on $C$ , then $K(\overline{S})$ is an affine isometry gmup acting on

$\overline{co}\omega(x)$ .
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It follows from Lemma 3 and Markov-Kakutani’s fixed point theorem
that for each $x\in C,$ $\overline{co}\omega(x)$ contains a unique common fixed point for
$S$ . By using Theorem 2, we can prove mean ergodic theorems for
asymptotic isometry semigroups in strictly convex Banach spaces.
Theorem 5. Let $S$ be commutative, let $S=\{T(\mathcal{S}) : s\in S\}$ be a
representation of $S$ as continuous $self-mapping_{\mathcal{S}}$ of a compact convex
subset $C$ of a strictly convex Banach space, let $X$ be a closed, tmnslation
invariant and admissible subspace $ofl^{\infty}(S)$ containing constants and let
$\{\mu_{\alpha}\}$ be a stmngly regular net of means on X. If $S$ is an asymptotic
isometry semigroup on $C$ , then $S$ is almost convergent in the sense of
Lorentz, that is, for each $x\in C,$ $\{T(\mu_{\alpha})T(h)x\}$ converges to the mean
value $p_{x}$ of $x$ under $S$ in $C$ uniformly in $h\in S$ . In this case,

$\{p_{x}\}=\bigcap_{s\in S}\overline{co}\{T(t+s)x:t\in S\}\cap F(S)=\{T(\mu)x\}$

for each invariant mean $\mu$ on $X$ , where $F(S)$ is the set of common
fixed points for $S.$

For example, the following corollaries are the case when a semigroup
$S$ is the set of the non-negative integers or real numbers.
Corollary 1. Let $C$ be a compact convex subset of a strictly convex
Banach space, let $T$ be a continuous self-mapping of $C$ and let $\{\epsilon_{n}\}$ be
a sequence of non-negative real numbers converging to $0$ such that for
each $x,$ $y\in C$ and $n\in \mathbb{N}_{+},$

$|\Vert T^{n}x-T^{n}y\Vert-\Vert x-y\Vert|\leq\epsilon_{n}.$

Then, for each $x\in C$ , the Ces\‘am means

$\frac{1}{n}\sum_{i=0}^{n-1}T^{i+h_{X}}$

converge to a fixed point of $T$ in $C$ uniformly in $h\in \mathbb{N}_{+}.$

Corollary 2. Let $C$ be a compact convex subset of a strictly convex
Banach space, let $S=\{T(t) : t\in \mathbb{R}_{+}\}$ be $a$ one-pammeter semigroup
of continuous self-mappings of $C$ and let $\{\epsilon(t)\}$ be a net of non-negative
real numbers converging to $0$ such that for each $x,$ $y\in C$ and $t\in \mathbb{R}_{+},$

$|\Vert T(t)x-T(t)y\Vert-\Vert x-y\Vert|\leq\epsilon(t)$ .
Then, for each $x\in C$ , the Bohr means

$\frac{1}{t}\int_{0}^{t}T(t+h)xdt$

converge to a common fixed point for $S$ in $C$ uniformly in $h\in \mathbb{R}_{+}a\mathcal{S}$

$tarrow+\infty.$
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