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On the image of the Saito-Kurokawa lifting over a

totally real number field and the Maass relation

Kz AZ (Atomu Otsuka)*
FEBRZEREBE A 5eR

1 Introduction

H. Saito and N. Kurokawa independently conjectured that there exists a lift-
ing from an eigenform ¢ € S5 (SLy(Z)) with k odd to an eigenform &(Z) =
Y5 A(B) exp(2my/~1t1(BZ)) € Sk+1(Sps(Z)) such that

L(s,®,sp) =((s —k){(s—k+1)L(s, ).

Here ((s) is the Riemann zeta function, and L(s, ®, sp) is the spin L-function of $. More-
over they conjectured that the Fourier coefficient A(B) satisfies the Maass relation
A(B)= ) d*A(By)
dle(B)
for any nonzero matrix B € S5(Z), where §3(Z) is a set of all half integral symmetric ma-

trix of size 2 x 2. Here the summation runs over all positive integer d which divide ¢(B) =

god(biz, 2b1z, bs) for B = (by;) € S§(Z), and By is defined by By = | © 22/4 .
bi2/d biiba2/d

The conjecture was proved by Maass, Andrianov and Zagier (see [2], [17]). Then the
lifting is called the Saito-Kurokawa lifting.

Naturally, we can consider the generalization of the Saito-Kurokawa lifting, i.e. we
consider the lifting from a Hilbert modular form to a Hilbert-Siegel modular form over
a totally real number field. In fact, Piatetski-Shapiro [12] and Schmidt [13] proved the
existence of the generalized Saito-Kurokawa lifting using representation theory.

The main purpose of this paper is to give a Fourier coefficient formula of the lifted form

and a generalization of the Maass relation.
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2 Hilbert-Siegel modular form

In this section, K is a totally real number field of degree d = [K : Q], Ok is the ring
of integers of K, and Dk is the different of K relative to Q. Let $),, be the Siegel upper

half space of degree n, i.e.,

$n={ZeMy(C)|Z=2 ImZ>0}.

Let GSpf(R) = { g € GL2x(R) | *gJng = v(9)Jn, v(g) > 0}, where J, = (> 7g*). For

1
Z=(Z1,...,24) € ¢ and M = (My,..., M) € GSp, (R)? with M; = (& 5 ), put

MZ = (MlZl,. ..,MdZd) E ﬁia

where M;Z; = (AiZi + B;)(CiZ; + D)™ 1. Let © = (z1,...,24) € RS, (resp. z € C?) and

k= (K1,...,kq) € R? (resp. k € Z%). We define a multi-index notation z* by

Put
F(M, Z)* = det(M)™"/? det(CZ + D)",

using the multi-index notation. Here we use following abbreviations:
det(M) = (det My, ..., det My),
CZ+ D = (C1Z,+ Dy,...,CqZ4+ Dy),

for Z =(21,...,24) € $¢ and M = (My,...,M;) € GSp;} (R)?¢ with M, = (éL g:) Fix

the mutually different real embeddings K > z — z() ¢ R(i = 1,...,d) with 2() = z. Let
K and GSp; (K) be the archimedian parts of Ax and GSp; (Ag). Then we identify
R* (resp. GSp;(R)?%) with Ko (resp. GSpf(Ko)) by K 3 @ — (z0),...,2(9) € R?,
Let & be a function on ¢, and M € GSp;l (K) ¢ GSp; (R)¢. Define a function ¢|,M by

(2] M)(Z)=3j(M,2)""D(MZ).
Put W = GSp; (Kw) X I1,<o0 Wo, where W, = GSp,,(Ok,, ). Take h elements ty,...,t;

of A% so that ty, = 1 for all vjoo and t,Ok,...,t,Ok form a complete set of repre-

sentatives for narrow ideal classes of K. Here we denote by yOg the fractional ideal
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of K associated to y € A%. Let z) = diag(t;'I,,I,). Then we have GSp,(Ag) =
[_Ii=1 GSp,,(K)zAW, where | | is the disjoint union. Put I'\ = :c)‘W:c;1 N GSp, (K).
Now we assume K # Q or n # 1. Then a Hilbert-Siegel modular form of weight x € Z¢
with respect to I'\ is a holomorphic function @ : $¢ — C such that &|.M = & for any
M € I'\. We denote the space of Hilbert-Siegel modular forms of weight « and degree n
with respect to I'y by M{™ (I'y). Let @ € M,gn)(l",\) and M € GSp; (K). It is known that

®|. M has a Fourier expansion

(81xM)(2) = ) _ Am(B) exp(2nv/~1Tx(B2)).
B

Here Tr(BZ) = tr(Z?=1 B®WZ,), and the summation runs over B € S (t\Dx") such that
B® (;=1,...,d) are all positive semi-definite. We define a space of cusp forms S,(g")(F,\)
by

A(B) =
s&”’(FA)={¢eM,£"’(FA)' u(B) OunlE’SSB»[)}

for any M € GSp; (K)

Here B > 0 if B® > 0 for i = 1,...,d. Put M{™ = [[*_, M{(I)) and S =
Hf\L:lSﬁn)(F,\). Let (@1,...,Pn) € M. We define a function ¢ on GSp,(A) by
d(azrsw) = By |cWeo (%), where a € GSp,(K), w € W, and i = (V=11,,...,v/—11I,) €
He. We identify ¢ with (S1,...,P,) € MM,

3 Siegel series

In this section K, O, p and w denote a finite algebraic extension of Q,, the integral
closure of Z, in K, maximal ideal of O, and a prime element of K, respectively. Let
g =[O : p], and | - | be the normalized absolute value on K, i.e. |w| = ¢~!. Let R be
a fractional ideal of K. Let S,(R) denote the set of symmetric matrices of size n with
entries in R, and put S}(R) = { (bi;) € Sp(K) |bis,2b;; € R, (3,5 = 1,...,n) }. Let
x(z) = exp(—2my/—1y) be a character of K with y € Z[1/p] such that trg/q,(z) —y € Z,.
Then we have { B € S,.(K) | x(tr(BS,(0))) =1} = S;(Dg'). Here Dk is the different
of K relative to Q,. For S € S,,(K), we put v(S) = [SO™ + O™ : O"].

Given B € S(Dx'), we define a formal Dirichlet series b(B, s) by

b(B,s)= > x(tr(BR))v(R)™".
ReSA(K)/Sn(0)
We call the series b(B, s) a Siegel series of degree n over K. Here v(R) and x(tr(BR))
depend only on the class R and then the sum is formaly well-defined. It is known that

b(B, s) is convergent if Re(s) sufficiently large for any given B € S:(Dg').
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Now we consider the Siegel series in the case n = 2. We fix F' = diag(w!!,w!1tk) ¢ F
and nonzero matrix B € S3(Dg'). Let ¢(B) be the minimal integral ideal a satisfying
B € 8;(Dg'a), and a1 = ord, 6(B). We put § € K so that 60 = Dg. For N € K*, we
define a(N) and &y by a(N) = 5(ordy N — ordp Dy /), x) + 0rdy & and

1 if N e K*2,

Ev=< -1 if K(v/N)/K is unramified extension,
0 if K(v/N)/K is ramified extension,

respectively. Here D K (vF)/ K i different of K (vV/N) relative to K, and 9 is maximal ideal
of K(v/N). Put t = —det(26B), o = a(t) — ordy 6, and & = &4.

Theorem 3.1 Let B € S3(Dg'), and det B # 0, then

(1-q*)(1—-¢>>)
1-¢&pgt—s

where F'(B, X) is a polynomial of X with integral coefficients:

b(B,s) = F(B,q")

i a—1 a—1-—1
F(B,X>=Z<qzx>l{ S (PXY)T —paX Y (q3x2>m}

=0 m=0 m=0

Corollary 3.2 Let F(B,X) = X~*F(B,q~3/2X), then

~ xXa— +1 __ X—a+l—1 Xo“l _ X_QH
F(B l/2 _ —1/2
(B, X)= E q ( ¥ %1 3:4 % X1

4 Main results

Assume (o)) € Szi) is a Hecke eigenform with the Satake parameter {av,a; 1} for
v < 00. Let (@y) € SNJrl be the image of the Saito-Kurokawa lifting of (¢,), and Ay (B)

the B'" Fourier coefficient of

@)\ = ZA,\ exp 271'\/ T‘I‘(BZ ) S,(fﬁl(F)‘)
Here Tr(BZ) = tr(Zle B#Z,), and the summation runs over B € S;(t2Dx") such that
B® (i =1,...,d) are all positive semi-definite. Then the first main result is as follows:

Theorem 4.1 (Fourier coefficient formula) The following assertion holds:

A(B) = CpN(t\Ok)*/? det B*/>=1/* ] Fu(t;} B, o)

v<0o0
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using the multi-index notation. Here fU(B,X ) is the Laurent polynomial in Corollary
3.2, and ¢y = (ty ) € Ak are as in §2.

Moreover the constant Cp satisfies C,p(a) = sgn(det A)+1Cp for any A € GLy(K),
r € KX. Thus the constant Cp depends only on det B mod (K3)%.

For given B € S3(tADy') and 6, € K, such that 6,0k, = Dk,, let tp = — det(2B), and
ax(B) = 5(ordtp — ord Dk, (i5)/k,) + Ordy &, — ord, ts . Let £x(B) be the minimal
integral ideal a satisfying B € S3(tADg'a), Put fa s = [[ycoo p{',‘*'"(B)
maximal ideal of K. For an integral ideal a|e)(B), we take a fractional ideal ¢,0x and
ne€ Ky ={ze€K*|z>0} sothat txa=1,(n). We put A3(B/a) = A%(n~*B). Then
AY(B/a) is independent of the choice of 7. Let u(a) be the Mébius function, and SﬁaSK

the subspace of S,(ci)l spanned by the Saito-Kurokawa lifting of all Hecke eigenforms in

, where p, is the

S;,lc). Then the second main result is as follows:

Theorem 4.2 (Maass relation) Let & = ($),) € S 5K and A, B) the B Fourier
, Kk+1
coefficient of &y. Put AQ(B) = N(t\Ok)~3/2det B~%/2*1/4A,(B). Then for N €
(N, a) such that

K*/K*? and an integral ideal a, there exists a C-valued function T

A())\(B): Z N(a)1/2T¢(tBaf)\,Ba—l)a
alex(B)

for any B € S3(tADx') and A. Here a runs over all integral ideals dividing e (B).

Next we assume that the narrow class number of K is one. Take 0 « § € Ok so

that Dg = 00k. For 0 <« B = §~1(b;;) € S3(Dg') and 0 < d € Ok, put By =

1 bi2/d
5—1<b12/d blll:l)zz//d2> Let ¢ = ¢1 = Sl(jg,ISK7 A(B) - AI(B), AO(B) = A?(B) and

t10x = Ok. Then we can take Tp(tp,f1,8(d)"") = A%(By). Thus we have the same

formulation as the classical Maass relation.

Corollary 4.3 Assume above setting. Then the Fourier coefficients satisfy a linear rela-
tion
AB)= )  d*A(Ba)
dOk|e(B)
for any B € S3(Dx') using the multi-index notation. Here 0 < d € Ok, and for given B,
d*A(Bgy) depends only on the ideal dOk.
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5 An example

In this section, we give an example of the Saito-Kurokawa lifting, and we see the lifted
form satisfies the Maass relation. Let K = Q(v5), Z = (Z1,23) € $2, ¢ = 1*2—‘/5 and
Q € Mg(Ogk) which is positive definite and even-integral. Then we define a theta function
©q(Z) by

Q[X]Z
Oo(Z) = E exp(mv —1lo .

(1) (2) .
Here J(Qs)jsz) = tr((%lf—gl) Z) + tr((%f[—gl) Z5) , and (¥ is a real embeddings
K3z —z® eR (i =1,2). Note that the narrow class number of K = Q(+/5) is one,
and the different Dy is generated by a totally positive element /5 of K. Then O¢(2) is
a Hilbert-Siegel modular form of weight k = (4, 4) for Sp,(Ok), and the Fourier expansion

is

Oa(Z) = Z exp(m/——la(Q[X]Z)),

XeMsg 2(Ok) E\/g
= Y A@Q B)exp(2rV-10(BZ)).
BeS3(Dgh)

Here

A(Q,B) = tt{ X € Mg 2(Ox) \Q[X} = 2B } .

Thus we can compute the B** Fourier coefficient of ©¢ counting the solutions of Q[X] =
26v/5B.

By Maass [10], there exist exactly two inequivalent classes of even quadratic form with
determinant one and eight variables over Q(v/5). These two classes are represented by
following matrices: FZ = Fy, @ Fy and Fs.

2 -1 0 1-—¢
Here Fy = _01 21 _21 ¢ ; ! , and Eg € GLg(Z) is a positive definite even
l—¢ -1 ¢ 2
unimodular matrix over Z.
Put

$4(2) = 555(053(2) - O, (2).
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Proposition 5.1 s4(Z) € S(4,4)(Sp2(Ok)).

Let S5X, (Sp,(Ok)) be the subspace of Sk41(Spy(Ok)) spanned by the Saito-Kurokawa
lifting of all Hecke eigenforms in So,(SL2(Ok)).

Proposition 5.2 The following assertion holds:

1. dim 52341'(4) (sz(OK)) = dim S(4’4) (Spg(oK)) =L
2. 54(Z) € S(S4I,(4)(Sp2(0K))-

We show some Fourier coefficients A(FZ, B), A(Es, B) and A(B) of OFz, O, and sy,

respectively:

N  (a,bc) A(F2,B) A(Es,B) A(B)
(2,¢,2) 2880 0 1
80 (2,26,8) 1918080 1814400 36
80 (4,26,4) 2102400 1814400 100
9  (2,1,2) 4800 13440 -3
144  (2,2,8) 8083200 8117760  —12
144  (4,2,4) 8390400 8977920 —204

(9,

Here N = NK/Q(det(26\/5B)), and (a,b,c) is an abbreviation for B so that 2¢v/5B =
( ab ) .

be

Put (a,b,c) = B, A(a,b,c) = A(B) using above abbreviation. Then we see the Maass
relation (Corollary 4.3) holds:

A(4,2,4) = 100 = A(2,2¢,8) + 64 A(2,¢,2),

A(4,2,4) = —204 = A(2,2,8) + 64 A(2,1,2).
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