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0. Introduction

In the conference, $I$ talked about the ongoing joint work with Jonas
Bergstr\"om and Gerard van der Geer. See [5], \S \S 2-3 for a survey and
[1] for a detailed presentation. Some of the results mentioned in the
talk and below have not yet been written up.

It is a pleasure to thank Bergstr\"om and van der Geer for the con-
tinuing collaboration and Professors Ibukiyama and Moriyama for the
kind invitation and hospitality.

1. Preliminaries

The subject of interest here is the cohomology of certain moduli
spaces. The main characters are the moduli spaces $M_{g}$ of smooth
curvcs of genus $g$ and $A_{g}$ of principally polarizcd abelian varieties of
dimension $g$ , but the moduli spaccs $\overline{M}_{g}$ of stable curves of genus $g,$

and $M_{g,n}$ resp. $\overline{M}_{g,n}$ of smooth resp. stable $n$-pointed curves of genus $g$

play a role as well. The natural action of the symmetric group $\Sigma_{n}$

permuting the $n$ ordered points will be important. All moduli spaces
above are smooth over $\mathbb{Z}$ ; as a result, the modular forms that we will
encounter will always be of level one.

For $g\geq 2$ , the space $M_{g,n}$ is open in $C_{g}^{n}$ , the $n$-fold fibre product
of the universal curve $C_{g}=M_{g,1}$ over $M_{g}$ ; this is the moduli space of
smooth curves of genus $g$ with $n$ ordercd points, which may coincide.
The fiber over $[C]\in M_{g}$ is $C^{n}$ . Now the interesting cohomology of
a curve is its first cohomology group $H^{1}(C)$ . So, instead of studying
$H^{*}(M_{g,n})$ , it makes sense to focus on the cohomology of $\mathbb{V}^{\otimes n}$ on $M_{g},$

where $\mathbb{V}$ is the system of $H^{1\prime}s$ of curves of genus $g$ (i.e., $\mathbb{V}=R^{1}\pi_{*}\mathbb{Q}$ or
$R^{1}\pi_{*}\mathbb{Q}_{\ell}$ for $\pi:C_{g}arrow M_{g}$ ). For $g=1$ , we study the corresponding local
system on $M_{1,1}.$

Taking into account the $\Sigma_{n}$-action, we should also study the coho-
mology of $Sym^{j}\mathbb{V},$ $\wedge^{k}\mathbb{V}$ , and, more generally, of $\mathbb{V}_{\lambda}$ , where $\lambda=(\lambda_{1}\geq$

$\lambda_{2}\geq\ldots\lambda_{g}\geq 0)$ corresponds to an irreducible representation of $GSp_{2g}$
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(the one of highest weight in

$Sym^{\lambda_{1}-\lambda_{2}}V\otimes Sym^{\lambda_{2}-\lambda_{3}}(\wedge^{2}V)\otimes\ldots Sym^{\lambda_{9}}(\wedge^{g}V)$ ,

where $V$ , corresponding to V, is the contragredient of the standard
representation of $GSp_{2g}$ ). Note that $\mathbb{V}=\mathbb{V}_{1}$ comes with a symplectic
pairing onto the Tate twisted trivial local system $\mathbb{V}_{0}(-1)$ .

We will study $e_{c}(M_{g}, \mathbb{V}_{\lambda})$ , the Euler characteristic of the compactly
supported cohomology, as this is good enough for much of what we
want. The cohomology groups have a lot of structure (as, e.g., $\ell$-adic
Galois representations or mixed Hodge structures) and we remember
this structure (so that $e_{c}$ takes values in an appropriate Grothendieck
group).

The $\mathbb{V}_{\lambda}$ are pulled back from $A_{g}$ , via the Torelli morphism $t:M_{g}arrow$

$A_{g}$ , sending $[C]$ to the class $[Jac(C)]$ of its Jacobian. So we will also
study $e_{c}(A_{g}, \mathbb{V}_{\lambda})$ .

2. Results

2.1. Outline. We have found a formula for $e_{c}(A_{g}, \mathbb{V}_{\lambda})$ for $g\leq 3$ . This
was known before for $g=1$ , is conjectural, but known in many cases
for $g=2$ , and is conjectural (with much evidence) for $g=3$ . From
the formula for $g=2$ , we obtain one for $e_{c}(M_{2}, \mathbb{V}_{\lambda})$ , which by work of
Getzler leads to a formula for the $\Sigma_{n}$-equivariant Euler characteristic
$e_{c}^{\Sigma_{n}}(M_{2,n})$ , and then, by Getzler-Kapranov [8] and the known results
in genus $0$ and 1, to a formula for $e_{c}^{\Sigma_{n}}(\overline{M}_{2,n})$ , for all $n$ . For $g=3,$
however, new phenomena appear; it doesn’t suffice to know $e_{c}(A_{3},\mathbb{V}_{\lambda})$ .

Summarily, our method is to count curves over finite fields and to
interprct the data, in accordance with known results (as well as certain
widely believed conjectures).

2.2. Genus one. Write $\lambda=a\in \mathbb{Z}_{\geq 0}$ . For $a$ odd, all cohomology
vanishes due to the action of the elliptic involution, so assume $a$ even.
For $a>0$ , we have

$e_{c}(M_{1,1},\mathbb{V}_{a})=e_{c}(A_{1},\mathbb{V}_{a})=-S[a+2]-1.$

Scholl [16] has constructed the $S[k]$ as motives. Considered as a Hodge
structure, $S[k]$ satisfies

$S[k]\otimes \mathbb{C}\cong S_{k}\oplus\overline{S_{k}},$

where $S_{k}$ is the vector space of holomorphic cusp forms for $SL(2, \mathbb{Z})$

of weight $k$ . So $\dim S[k]=2\dim S_{k}=:2s_{k}$ . The Hodge types are
$(k-1,0)$ and $(0, k-1)$ . The trace of Frobenius at a prime $p$ on $S[k]$

130



considered as an $\ell$-adic Galois representation equals the trace of the
Hecke operator $T(p)$ on $S_{k}$ :

$Tr_{F_{p}}S[k]=Tr_{T(p)}S_{k}.$

For $a=0$ , we have of course $e_{c}(A_{1}, \mathbb{V}_{0})=L$ , the Lefschetz motive,
the second cohomology group of a curve: $\dim L=1$ , the Hodge type
is (1, 1), and $Ik_{F_{q}}L=q$ . To get a universal formula, we simply put
$S[2]=-L-1$ , so that $s_{2}:=-1$ (sic).

It is clear that $\# M_{1,n}(\mathbb{F}_{q})$ can be computed by counting elliptic
curves over $\mathbb{F}_{q}$ and how many points they have; one need only keep
in mind that each curve should be counted with the reciprocal of the
order of its automorphism group. So, from counting elliptic curves over
finite fields, one can compute traces of Hecke operators on $S_{k}$ (there
are other, more straightforward ways of doing this).

2.3. Genus two. Just as above, we may assume that the weight $a+b$

of $\lambda=(a, b)$ is even. Our conjecture (cf. [4]) reads as follows:

Conjecture 1. For $a\geq b\geq 0$ and $a+b$ even,

$e_{c}(A_{2}, \mathbb{V}_{a,b})=-S[a-b, b+3]-s_{a+b+4}S[a-b+2]L^{b+1}$

$+s_{a-b+2^{-\mathcal{S}_{a+b+4}}}L^{b+1}-S[a+3]+S[b+2]+ \frac{1}{2}(1+(-1)^{a})$ .

Here, $S[j, k]$ is the conjectural motive (constructed as a Galois repre-
sentation by Weissauer (cf. [19]) for $j>0$ and $k>3$ ) associated to
the space $S_{j,k}$ of vector valued Siegel cusp forms of type $Sym^{j}\det^{k}$ In
algebro-geometric terms,

$S_{j,k}=H^{0}(A_{2}’\otimes \mathbb{C}, Sym^{}$ $(\mathbb{E})\otimes\det^{k}(\mathbb{E})(-D_{\infty}))$ ,

where $A_{2}’=\overline{M}_{2}$ is the canonical toroidal compactification of $A_{2}$ with
boundary divisor $D_{\infty}$ and $\mathbb{E}$ is the Hodge bundle [6, p. 195]. The
dimension of $S[j, k]$ equals 4 $\dim S_{j,k}=:4s_{j,k}$ . The trace of $F_{p}$ on
$S[j, k]$ equals the trace of the Hecke operator $T(p)$ on $S_{j,k}$ . Again,
special care is required in the case of a singular weight $\lambda$ (i.e., $a=b$ or
$b=0)$ . First, $S[O, 3]$ is defined $as-L^{3}-L^{2}-L-1$ , so that $s_{0,3}$ $:=-1.$
Second, the submotive $SK[0, a+3]$ of $S[O, a+3]$ corresponding to the
Saito-Kurokawa lifts must be defined as

$S[2a+4]+s_{2a+4}(L^{a+1}+L^{a+2})$

for $a$ odd.
The conjecture is proved in the regular case $a>b>0$ , in the context

of Galois representations, by combining the work of Weissauer (loc. cit.)
and van der Geer [7] (see also the recent paper of Harder [9]).
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In the regular case, the various terms in the conjecture have an inter-
pretation that in general is not available in the singular case. The natu-
ral map $H_{c}^{i}arrow H^{i}$ has kernel the Eisenstein cohomology $H_{Eis}^{i}$ and image
the inner cohomology $H_{!}^{i}$ . Faltings has proved that $H_{!}^{i}(A_{g}, \mathbb{V}_{\lambda})=0$ for
$i\neq g(g+1)/2$ and $\lambda$ regular $(\lambda_{1}>\lambda_{2}>\ldots\lambda_{g}>0)$ . The terms in the
first line of the display are contributed by $H_{!}^{3}(A_{2}, \mathbb{V}_{a,b})$ . The first term
is a direct sum of 4-dimensional Galois representations corresponding to
Hecke eigenforms (over a field containing the eigenvalues). The second
term is the endoscopic contribution. The terms in the second line of
the display form the contribution of the Eisenstein cohomology, cf. [9].
We write

$e_{c}(A_{2}, \mathbb{V}_{a,b})=-S[a-b, b+3]+e_{2,extra}(a, b)$

for future reference.
As is well-known, $M_{2}$ may be considered as an open substack of

$A_{2}$ . The difference, $A_{1,1}=Sym^{2}A_{1}$ presents no difficulties (see [1] for
dctails). $\backslash$ Let us note that the result of [6] on the possible degrees of
the nonzero steps of the Hodge filtration on $H_{c}^{i}(A_{g}, \mathbb{V}_{\lambda})$ , i.e., that they
belong to the set of $2^{g}$ partial sums of the $g$ numbers $\lambda_{1}+g,$ $\lambda_{2}+g-1,$

. . . , $\lambda_{g}+1$ , doesn’t hold for $e_{c}(M_{2}, \mathbb{V}_{a,b})$ .
The conjecture was obtained by determining the trace of $F_{q}$ on

$e_{c}(M_{2}, \mathbb{V}_{a,b})$ for $q\leq 37$ . Equivalently, we determined the $\Sigma_{n}$-equivariant
trace of $F_{q}$ on $e_{c}(M_{2,n})$ ; for this, it suffices to count smooth curves of
genus 2 over $\mathbb{F}_{q}$ together with their numbers of points over $\mathbb{F}_{q}$ and $\mathbb{F}_{q^{2}}.$

Of great help was Tsushima’s formula for $\dim S_{j,k}$ for $k>4$ (see [17]).
Using an optimized version of the Getzler-Kapranov formula, we have

verified that the ensuing conjectural formula for $e_{c}^{\Sigma_{n}}(\overline{M}_{2,n})$ satisfies
Poincar\’e Duality for $n\leq 22$ . This appears to be a very non-trivial
check. Besides the motives mentioned above, we find here also terms
of the following types:

$\wedge^{2}S[k]$ , Sym2 $S[k],$ $S[k]\otimes S[l].$

See [5], \S 3.6, for some interesting consequences of the occurrence of
such terms.

2.4. Genus three. As above, we assume that the weight $a+b+c$ of
$\lambda=(a, b, c)$ is even. In [1], we formulate the following conjecture:
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Conjecture 2. For $a\geq b\geq c\geq 0$ and $a+b+c$ even,

$e_{c}(A_{3}, \mathbb{V}_{a,b,c})=S[a-b,$ $b-C,$ $C+4]$

$-e_{c}(A_{2}, \mathbb{V}_{a+1,b+1})+e_{c}(A_{2}, \mathbb{V}_{a+1,c})-e_{c}(A_{2}, \mathbb{V}_{b,c})$

$-e_{2}$ ,extra $(a+1, b+1)\otimes S[c+2]+e_{2,extra}(a+1, c)\otimes S[b+3]$

$-e_{2,extra}(b, c)\otimes S[a+4].$

The conjecture was obtained by determining the Frobenius traces on
$e_{c}(M_{3}, \mathbb{V}_{a,b,c})$ for $q\leq 17$ , or equivalently, the $\Sigma_{n}$-equivariant traces of
$F_{q}$ on $e_{c}(M_{3,n})$ ; to do this, we counted smooth curves of genus 3 over
$\mathbb{F}_{q}$ together with their numbers of points over $\mathbb{F}_{q},$ $\mathbb{F}_{q^{2}}$ , and $\mathbb{F}_{q^{3}}.$

Note that $M_{3}$ cannot be considered as an open substack of $A_{3}$ , even
though the Torelli map is an open immersion of the corresponding
coarse moduli spaces. The stack $M_{3}$ is a stacky double cover of its
image in $A_{3}$ , the locus of Jacobians of smooth curves. The automor-
phism group of a non-hyperelliptic curve is an index-two subgroup of
the automorphism group of its Jacobian, whereas equality holds for a
hyperelliptic curve. The double cover is thus ramified along the hyper-
elliptic locus.

The curve count determines the corresponding count of Jacobians.
The non-Jacobians can be dealt with inductively; naturally, this is more
involved than in genus 2 (see [1], \S 8.3).

Conjecture 2 displays a striking recursive structure. In the case of
a regular weight, the terms in the second line are explained by the
structure of the rank one Eisenstein cohomology, see [7]. The remain-
ing terms are not as well understood, although we can identify the
endoscopic and Eisenstein contributions (see [1], \S 7.4).

Denote by $E_{c}(A_{3}, \mathbb{V}_{a,b,c})$ the integer-valued Euler characteristic, com-
puted by my co-authors [2]. Conjecture 2leads to a dimension predic-
tion for the spaces of (in general vector valued) Siegel cusp forms of
genus 3: $s_{a-b,b-c,c+4}$ should equal

$\frac{1}{8}(E_{c}(A_{3}, \mathbb{V}_{a,b,c})-E_{3,extra}(a, b, c))$ .

The latter number is a nonnegative integer for all $\lambda=(a, b, c)$ with
$a+b+c\leq 60$ . In 317 cases it equals zero; then the Frobenius traces on
$e_{c}(A_{3}, \mathbb{V}_{a,b,c})$ and $e_{3,extra}(a, b, c)$ are equal for $q\leq 17$ . When $a=b=c,$
the prediction agrees with Tsuyumine’s results [18] on scalar valued

$i$

cusp forms of genus 3. In their recent work [3], Chenevier and Renard
obtai\’{n} partly conjectural dimension formulas for $s_{a-b,b-c,c+4}$ by very
different means. In all explicitly computed cases, including 623 nonzero
ones, their results agree with ours!
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When the dimension prediction equals 1, we can compute the Hecke
eigenvalues for primes $p\leq 17$ of a generator (137 cases with $a+b+c\leq$

$60)$ . This has enabled us to conjecture the existence of 3 types of
lifts, one of which may occur for regular $\lambda$ : for $a\geq b\geq c$ and Hecke
eigenforms $f\in S_{b+3},$ $g\in S_{a+c+5}$ , and $h\in S_{a-c+3}$ , we conjecture the
existence of a Hecke eigenform $F\in S_{a-b,b-c,c+4}$ with spinor $L$-function

$L(F, s)=L(f\otimes g, s)L(f\otimes h, s-c-1)$ .

See [1], Conj. 7.7; this extends work of Miyawaki [15] and Ikeda [13] in
the scalar valued case.

We also expect the existence of lifts from $G_{2}$ , following work of Gross
and Savin; see [1], \S 9.1.

Finally, \S 10 of [1] discusses certain conjectural $congrue\backslash$nces for Hecke
eigenvalues of various types of cusp forms. Below, $I$ just give an
overview; for more details and precise references, $I$ refer to [1].

The base case is Harder’s conjecture, tying an elliptic cusp form to
a Siegel cusp form of degree 2, in general vector valued. The congru-
ences are in this case modulo powers of an ordinary prime dividing
a suitable ‘critical value’ of the elliptic cusp form (the actual critical
value of the completed $L$-function divided by the appropriate period).
They originate from denominators of certain Eisenstein classes in the
Betti cohomology. Harder’s original conj\’ecture is trivially true when
Saito-Kurokawa lifts are present. But one can refine it by considering
only Siegel cusp eigenforms that aren’t of this type. This refined state-
ment has been proved in certain cases by Dummigan, Ibukiyama, and
Katsurada.

Along analogous lines, we formulate a generalization to the vector-
valued case of the Kurokawa-Mizumoto congruence, proved by Kat-
surada and Mizumoto. It originates from a different type $6f$ Eisenstein
classes and relies on work of Satoh, Dummigan, and Harder.

In genus 2, there is also a Yoshida-type congruence, originating from
the endoscopic contribution. The required critical values were here
computed by Dummigan.

As to congruences in genus 3, we formulate two conjectural congru-
ences of Eisenstein type connected to the two types of lifts mentioned
above that can only occur for $singular\prime\lambda$ . The first one generalizes
work of Katsurada on Miyawaki-Ikeda lifts and uses work of Mellit and
Katsurada; in one case, the original conjecture was proved by Poor
and Yuen. Furthermore, we have found examples for two other con-
gruences of Eisenstein type; we also see possibilities for two additional
such congruences, but haven’t found examples yet.
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$\backslash We$ conclude [1] with a congruence connected to the type of lift that
can occur for regular $\lambda$ and a congruence connected to one of the two
endoscopic $co$ntributions. This relies on work of Dummigan and Mel-
lit. In both cases, we have one example. We have no examples for a
congruence connected to the other endoscopic contribution.

2.5. Curves of genus three. As mentioned above, when considered
as a map of stacks, the Torelli map $M_{3}arrow A_{3}$ is 2 : 1 ont $0$ its image.
The answers for a $10$cal.system of even weight $a+b+c$ for $A_{3}$ and the
loci of products will yield the answer for $M_{3}$ . But the local systems
of odd weight will in general have cohomology on $M_{3}$ , whereas they
have no cohomology on $A_{3}.$ $A$ priori, there doesn’t seem to be a reason
why this cohomology should be‘explainable’ in terms of Siegel modular
forms.

In fact, $I$ have been able to prove that new types of motives do
appear in the cohomology of local systems of odd weight on $M_{3}$ (the
first examples are provided by two systems of weight 17). My method
is based on three ingredients. The first is an explicit formula for the
weight-zero term in the Euler characteristic of compactly supported
cohomology of a symplectic local system on $M_{g}$ . The formula is proved
for all $g\leq 9$ . The theoretical basis for this work is provided by the
work of Getzler and Kapranov [8] on modular operads. The concrete
formula was found by Zagier based on data obtained for $g\leq 8$ and
then verified for $g=9$ . The second ingredient is provided by the data
obtained with Bergstr\"om and van der Geer by counting curves of genus
at most 3 over finite fields. The third ingredient is the realization that
non-Tate twisted terms in the Euler characteristic are detected if the
trace of Frobenius at a prime $p$ and the weight-zero term differ modulo
$p$ , coupled with the fact that motives corresponding to modular forms of
genus 1 and 2 are not detected at certain primes. Thus $e1liptic\backslash$ motives
are not detected at $p\leq 7$ , but $S[12]$ is detected at $p=11$ ; certain
genus 2 motives are detected at $p=7$ , but all relevant genus 2 motives
are not detected at $p\leq 5$ ; finally, for two local systems of weight 17
on $M_{3}$ , cohomology is detected at $p=5$ , which cannot possibly come
from Siegel modular forms of genus $\leq 3.$

Subsequently, in the style of the initial work done for $A_{2}$ and $A_{3},$ $I$

was able to guess formulas for the motivic Euler characteristic of all
local systems of weight $\leq 17$ \’on $M_{3}$ , the two local systems mentioned
above being the only exceptions. For two new local systems, the answer
was particularly interesting, since it pointed directly to the existence
of some kind of modular form – if one assumes that a variant of
the Faltings-Chai-Eichler-Shimura theory still holds. In particular, the
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existence of a classical modular form of weight 9 on $M_{3}$ is predicted
this way. Luckily, such a form is known to exist; it is the square root
of the classical Siegel modular form of weight 18 on $A_{3}$ which vanishes
on the divisor of hyperelliptic Jacobians. Mpdular forms on $M_{g}$ of
this type were studied in detail by Ichikawa in the $1990’ s[10,11,12]$
and baptized Teichmuller modular forms. The form of weight 9 was
already known to Klein and it has been studied recently in connection
with the problem of distinguishing a three-dimensional Jacobian from
a non-Jacobian [14].

Recently, van der Geer and I found a method for constructing vec-
tor valued Teichm\"uller modular forms, which apparently haven’t been
studied earlier. We still need to check certain details, but the first
results are very promising. In particular, we construct Teichm\"uller

modular forms corresponding to each of the special local systems men-
tioned above. Our method works just as well in genus 2 and provides
us with a new way to study the modular forms occurring there.

We also want to study in detail the Galois representations associated
to Teichm\"uller modular forms. In two cases, we know that representa-
tions associated to Siegel modular forms of genus 2 are involved, which
suggests that the $mo$dular forms themselves are lifts in a suitable (new)
sense.

An exciting development here is the recent appearance of the preprint
[3] of Chenevier and Renard. They specifically study level one, which
is very relevant to our work. At this point, it seems likely that two of
the seven 6-dimensional symplectic Galois representations of motivic
weight 23 associated to cusp forms for $SO$ (7) identified by them appear
in the cohomology of $M_{3,17}.$
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