0oooo0O0oooo
018290 20130 163-177 163

—ift RN & A S EHTERE I N T 2 FERAEE

B &g (KIRRE),)l EM (B@kRatt), EkEE (AEEXRE)

"=

ELHEEMEL I, BERLZDEDERDRBIVERIEEGDIR Y BEZ oNE
E, BEAODETOERL AT 22X RN ORTESGOHAADLE R RO ZMETH 3.
AR ESHENEICN L CHRN 2K RNEEIREIN T3 —FT, EEOIGHES
TIRMEA OEEEICEEOBEMEFRZ b4) 20, B clRBEEHERMECNT2REAY LV
N—%FHAR 228 L0BEBILEL Ry, AFETIR, ABAYZY2—Y v BB
ZEED ASHIR, EXEEICB I 2EBEOGEMIR, F— 7 oRBENEITICB T30
A b RN £ NG AERICIRN 2 8 IER I /ST B 7, SEFIR & — R LR
ZEAHBEREICEA L - —BL LRGN 2 £ BEHBELNEIC N U TRIRN 2 5 RRE
BRETS,

1 Introduction

The set covering problem (SCP) is one of representative combinatorial optimization problems.
We are given a ground set of m elements i € M = {1,...,m}, n subsets S; € M(|S;| > 1) and
costs ¢j(> 0) for j € N = {1,...,n}. We say that X C N is a cover of M if U;cx S; = M
holds. The goal of SCP is to find a minimum cost cover X of M. The SCP is formulated as a
0-1 integer programming (IP) problem as follows:

(SCP) minimize Z CjT;

JEN

subject to Z ax; > 1, 1€ M, (1)
JEN
z; € {0,1}, j €N,

where a;; = 1 if i € S; holds and a;; = 0 otherwise, and z; = 1 if j € X holds and z; = 0
otherwise, respectively. That is, a column a; = (@1,...,am;j) of matrix (a;;) represents the
corresponding subset S; by S; = {i € M | a;; = 1}, and the vector x also represents the
corresponding cover X by X = {j € N | x; = 1}. For notational convenience, for each i € M,
let N; = {j € N | a;; = 1} be the index set of subsets S; that contain element 4.

The SCP is known to be NP-hard in the strong sense, and there is no polynomial time ap-
proximation scheme (PTAS) unless P = NP. However, the worst-case performance analysis does
not necessarily reflect the experimental performance in practice. The continuous development of
mathematical programming has much improved the performance of heuristic algorithms accom-
panied by advances in computational machinery [7, 21]. For example, Beasley [2] presented a
number of greedy algorithms based on Lagrangian relaxation (called the Lagrangian heuristics),
and Caprara et al. [5] introduced pricing techniques into a Lagrangian heuristic algorithm to
reduce the size of instances. Several efficient heuristic algorithms based on Lagrangian heuristics
have been developed to solve very large-scale instances with up to 5000 constraints and 1,000,000

164

variables with deviation within about 1% from the optimum in a reasonable computing time
[5, 8, 9, 23].

The SCP is often referred in the literature that it has many important applications, e.g., crew
scheduling [5], vehicle routing [17], facility location, and logical analysis of data [4]. However,
it is often difficult to formulate problems in real applications into the SCP, because they often
have additional side constraints in practice. Most practitioners accordingly formulate them into
general mixed integer programming (MIP) problem and apply general purpose solvers, which
are usually less efficient compared to solvers specially tailored to SCP.

In this paper, we consider an extension of SCP introducing (i) multicover and (ii) generalized
upper bound (GUB) constraints, which arise in many real applications of SCP, e.g., vehicle
routing [10], crew scheduling [19], staff scheduling [6, 18] and logical analysis of data [16].
The multicover constraint [20, 22] is a generalization of covering constraint, in which each
element ¢ € M must be covered at least b; € Z, (Z, is the set of non-negative integers)
times. GUB constraint is defined as follows. We are given a partition {Gi,...,Gg} of N
(Vh # R ,GLN G = B,Uf_; Gr = N). For each block G, C N (h € K = {1,...,k}), the
number of selected subsets S; (j € G},) is constrained to be at most dp(< |Gp|). We call this
problem the set multicover problem with GUB constraints (SMCP-GUB).

The SMCP-GUB is NP-hard, and the (supposedly) simpler problem of judging the existence
of a feasible solution is NP-complete, since the satisfiability (SAT) problem can be reduced
to this problem. In real applications, we often encounter instances with no feasible solution,
and it is necessary to find an acceptable solution that violates only a small number of less
important constraints. We accordingly consider the following formulation of SMCP-GUB that
allows violations of the multicover constraints and introduces a penalty function with a penalty
weight vector w = (w1,...,wn) € RT.

(SMCP-GUB) minimize z(z) = Y cjz; + > with

JEN €M
subject to Z a;;Tj + y; > b, 1€ M,
jEN
Z%’Sdh, h €K,)
JE€GH
z; € {0,1}, JEN,
vi €1{0,...,b;}, ie M.

For a given = € {0,1}", we can easily compute an optimal y by y; = max{b; — > jen ijT5,0}.
We note that when y* = O holds for an optimal solution (x*,y*) of SMCP-GUB under the
soft multicover constraints, * is also optimal under the original (hard) multicover constraints
if w; > ZjeN c; holds for all i € M. In this paper, we accordingly set w; = EJEN c; + 1 for all
1€ M.

This generalization of SCP substantially extends the variety of its applications. However,
GUB constraints often make the pricing method less effective, because they prevent solutions
from containing highly evaluated variables together. To overcome this, we propose a heuris-
tic algorithm to reduce the size of problem instances. In this algorithm, we introduce a new
evaluation scheme of variables taking account of GUB constraints. We also develop a 2-flip
neighborhood local search algorithm. It features (i) an efficient implementation that reduces

the number of candidates in the neighborhood without sacrificing the solution quality, and (ii)
an adaptive control of penalty weights to guide the search to visit better solutions. The latter
feature is adopted because when fixed large penalty weights are used, the search tends to stop
at locally optimal solutions of low quality. This is because to reach from a good solution to
a better one by a sequence of neighborhood operations, it is often unavoidable to temporarily
increase the values of some variables y;, and large penalty weights prevent the algorithm from
moving between such solutions. To guide the search to visit a wide variety of good solutions,
we also introduce an evolutionary approach called the path relinking method [15] that generates
new solutions by combining two or more solutions obtained by then.

Figure 1 illustrates the outline of the entire algorithm for SMCP-GUB. Our algorithm first
solves a Lagrangian dual problem to obtain a Lagrangian multiplier vector @ and a lower bound
zr (@) by the subgradient method (Section 2), where it is applied only once in the entire algo-
rithm. Then, our algorithm applies the following three procedures in this order: (i) the heuristic
reduction of problem sizes (Section 6), (ii) the path relinking method to generate initial solutions
(Section 5), and (iii) the 2-flip neighborhood local search algorithm with the adaptive control of
penalty weights (Sections 3 and 4), where they are iteratively applied until a given time limit
has run out.

X 1: The outline of the proposed algorithm for SMCP-GUB

2 Lagrangian Relaxation and Subgradient Method

For a given vector w = (uz,...,um) € R, called the Lagrangian multiplier vector, the
Lagrangian relaxation of SMCP-GUB is defined as follows:

chxj + Zwiyi + Zuz b; — Zaz‘jxj - Y

It

(LR(w)) minimize zpg(u)

JEN iEM ieM JEN
= Z (Cj - Z aiju]) zj+ Z yi{w; — ug) + Z biu;
jEN ieM ieM ieM (3
subject to »_ x;<dy, hEK,

JEGH
z; € {0,1}, JEN,
in{O,...,bi}, 1 €M,

165

166

where we call &;(u) = ¢; — D, ai5u; the Lagrangian cost associated with column j € N.

For any u, 2.5 (u) gives a lower bound on the optimal value of SMCP-GUB z(x*). The problem
of finding a Lagrangian multiplier vector u that maximizes z;r(u) is called the Lagrangian dual
problem:

(LRD) maximize {zr(u) | u € RT}. (4)

For a given u, we can easily compute an optimal solution to LR(u). Let &(u) = (Z1(u),...,
Zn(u)) and g(u) = (§1(u),...,¥m(u)) be an optimal solution to LR(u). For each block G},
(h € K), if the number of columns j € G}, satisfying ¢;(u) < 0 is equal to dj or less, then set
Z;(u) « 1 (respectively, Z;(u) « 0) for variables satisfying &;(u) < 0 (respectively, &;(u) > 0);
otherwise, set &;(u) + 1 for variables with the dj lowest Lagrangian costs ¢;(u) and Z;(u) + 0
for the other variables. For i € M, set §;(u) « b; (respectively, §i(u) « 0) if u; > w;
(respectively, u; < w;) holds.

The Lagrangian relaxation LR(u) has integrality property, i.e., an optimal solution to the
linear programming (LP) relaxation problem of LR(u) (i.e., the problem obtained by replacing
z; € {0,1} with 0 < z; < 1for j € N, and y; € {0,...,b;} with 0 < y; < b; for i € M,
respectively) is also optimal to the original problem LR(u). In this case, any optimal solution
u* to the dual of the LP relaxation problem of SMCP-GUB is also optimal to the Lagrangian
dual problem LRD. Hence, the optimal value of the LP relaxation problem of SMCP-GUB 2.5
is equal to that of LRD zpg(u*).

A common approach to compute a near optimal Lagrangian multiplier vector u is the subgra-

dient method. It uses the subgradient vector s(u) = (s1(u),...,sm(u)) € R™, associated with
a given u, defined by
si(u) =b;— Y _ ai;&;(u) — Gi(w). (5)
JEN

This method generates a sequence of non-negative Lagrangian multiplier vectors u(o), ul, ...,
where u(® is a given initial vector and u{*+D is updated from u{® by the following formula:

(1+1) 0] zUB_zLR(u(l)) (2D ;
u; (—ma.x{ui +/\———————“$(u(l))||2 s;(u™),03, i€ M, (6)

where zyp is an upper bound on z(x), and A > 0 is a parameter called the step size.

When huge instances of SCP are solved, the computing time spent on the subgradient method
becomes very large if a naive implementation is used. Caprara et al. [5] developed a variant of
pricing method on the subgradient method. They define a dual core problem consisting of a
small subset of columns Cy C N (|Cy4| < |NJ), chosen among those having the lowest Lagrangian
costs &j(u) (j € Cy), and iteratively update the dual core problem in a similar fashion to that
used for solving large scale LP problems. In order to solve huge instances of SMCP-GUB, we
also introduce their pricing method into the basic subgradient method (BSM) described in [21].

3 The 2-flip Neighborhood Local Search Algorithm

The local search (LS) starts from an initial solution & and repeats replacing & with a better
solution @’ in its neighborhood NB(zx) until no better solution is found in NB(z). For a positive
integer 7, the r-flip neighborhood NB,(z) is defined by NB,(z) = {z’ € {0,1}" | d(z,2’) < r},

where d(z,2') = |{j € N | z; # «/}| is the Hamming distance between = and #’. In other words,
NB, () is the set of solutions obtained from z by flipping at most r variables. In our LS, the r
is set to 2. In order to improve efficiency, our LS searches NB;(x) first, and NBy(x) \ NBy(x)
only if z is locally optimal with respect to NBy(z).

Since the region searched in a single application of LS is limited, LS is usually applied many
times. When a locally optimal solution is obtained, a standard strategy of our algorithm is to
update penalty weights and to resume LS from the obtained locally optimal solution. We accord-
ingly evaluate solutions with an alternative evaluation function Z(x), where the original penalty
weight vector w is replaced with W = (i1,...,%m) € RT, which are adaptively controlled in
the search (See the details in Section 4).

We first describe our LS to search NB;(z), called the 1-flip neighborhood search. Let

Aéf(:t:) = ¢j— Z Wi,

iEML(w)ﬂSj (7)
Az7 () = —ci+ Z Wi,

z‘e(ML(m)UME(w))ﬂSj

denote the increase of Z(x) by flipping z; = 0 — 1 and z; = 1 — 0, respectively, where
My(@) ={i € M | }jcnaiyz; < b} and Mg(x) = {i € M | 2 jen @ijzj = bi}. Our LS first
searches for an improved solution obtainable by flipping z; = 0 — 1 by searching for j € N\ X
satisfying Aéf(:z:) < 0and Zj’eGh zj < dy for Gp 3 j. If an improved solution exist, it chooses
j with the minimum Aé;f(cc); otherwise, it searches for an improved solution obtainable by
flipping ; = 1 — 0 by searching for j € X satisfying Aé} (z) < 0.

We next describe our LS to search NBqo(x) \ NB;(z), called the 2-flip neighborhood search.
Yagiura et al. [23] developed an LS with the 3-flip neighborhood for SCP. They derived condi-
tions that reduce the number of candidates in NBy(x) \ NB;(z) and NB3(z) \ NBa(x) without
sacrificing the solution quality. However, those conditions are not applicable to the 2-flip neigh-
borhood for SMCP-GUB because of GUB constraints. We therefore propose new conditions
that reduce the number of candidates in NBy(x) \ NB; () taking account of GUB constraints.

Our LS is based on the following three lemmas. Let AZ; ;,(x) denote the increase of 2(x) by
flipping the values of z;, and z;, simultaneously.

Lemma 1 Suppose that a solution x is locally optimal with respect to NBy(x). Then Azj, j,(z) <
0 holds, only if z;, # x;,.

The proofs is omitted due to space limitations. Based on this lemma, we consider only the set
of solutions obtainable by flipping z;, =1 — 0 and z;, = 0 — 1 simultaneously. We now define

Az (@) = Az () + Az (z) - > ;. (8)
iEME(w)ﬂSjl NSj,

Lemma 2 Suppose that a solution x is locally optimal with respect to NBq(x), x5 =1 and
zj, = 0. Then AZ; j,(x) < 0 holds, only if at least one of the following two conditions holds.

(i) Both j1 and jo belong to the same block Gy, satisfying 2 jeGy Ti = dn-

(i) Mp() NS, NSj, #0.

167

168

Lemma 3 Suppose that a solution x is locally optimal with respect to NB1(z), and for a block G,
and a pair of indices j1, j2 € Gy withxj, = 1 and zj, = 0, AZ; 4 (x) < 0 and Mg(x)NS; NS, =
0 hold. Then we have minjeg, AZ; (¢) + minjeg, AZ; () < 0.

The proof of Lemmas 2 and 3 are omitted due to space limitations. Note that the condition of
Lemma 3 implies that the condition (i) of Lemma 2 is satisfied. Then, from Lemma 3, we can
conclude that to find an improved solution that satisfies condition (i), it suffices to check only
one pair for each block G}, satisfying ZjeGh z; = dp, instead of checking all pairs (j1, j2) with
J1,J2 € Gh, zj; = 1 and x;, = 0 (provided that the algorithm also checks the solutions that
satisfy condition (ii)).

Our LS first searches for an improved solution in NBy(x) \ NB; () that satisfies the condition
(i). For each block G, (h € K) that satisfies 2_jeGy, Ti = dn, it checks the solution obtained by
flipping z; = 1 — 0 and z;, = 0 — 1 with the minimum AZ} (x) and Aéj'z(w) (41,42 € Gp),
respectively. Our LS then searches for an improved solution in NBy(x) \NB; (z) that satisfies the
condition (ii). Let Nngl)(m) denote the subset of NBz(x) obtainable by flipping z;, =1 — 0.

Our LS searches Nng 1)(:1:) for each ji € X in the ascending order of AZ; (x). If an improved
solution is found, it chooses a pair j; and j, with the minimum AZ; j;,(x) among those in
Nngl)(m), and it returns to the 1-flip neighborhood search algorithm. Our LS is formally
described as follows.

Algorithm LS(z,)

Input: A solution x and a penalty weight vector .

Output: A solution z.

Step 1: If I (z) = {j € N\ X | Azf () < 0,% e, T < dp for G, 3 j} # 0
holds, choose j € I}t (x) with the minimum Aéf(w), set z; «— 1 and return to
Step 1.

Step 2: If IT (z) = {j € X | Az; (x) < 0} # 0 holds, choose j € I} (x) with the
minimum AZ; (z), set z; < 0 and return to Step 2.

Step 3: For each block G, satisfying)i, = = dn (h € K), if AZj, j,(x) < 0holds
for j1 and j; with the minimum AZ; () and Aé;; (@) (41,2 € Gy), respectively,
set z;, < 0 and zj, < 1. If the current solution = has been updated at least
once in Step 3, return to Step 3.

Step 4: For each ji € X in the ascending order of Az} (), if L(x) = {jz € N\ X |
AZj,5,(®) < 0,3 g, Tjt < dn for Gi 3 jo} # 0 holds, choose js € I(x) with
the minimum AZ;, ;,(x) and set z; < 0 and z;, + 1. If the current solution
x has been updated at least once in Step 4, return to Step 1; otherwise output
x and exit.

We note that our LS does not necessarily output a locally optimal solution with respect to
NB2(x), because the solution « is not necessarily locally optimal with respect to NB;(x) in
Steps 3 and 4. Though it is easy to keep the solution « locally optimal with respect to NB; ()
in Steps 3 and 4 by returning to Step 1 whenever an improved solution is obtained in Step 2 or
3, we did not adopt this option because it consumes much computing time just to conclude that
the current solution is locally optimal with respect to NB;(z) in most cases.

Let one-round be the computation needed to find an improved solution in the neighbor-
hood or to conclude that the current solution is locally optimal. For convenience, let o =
DieM 2jen ®ijy T = MaXjeN Y ies, |Nil, v = maxjen |Sj] and n’ = 3y ;. If implemented
naively, our LS requires O(c) and O(no) one-round time for NB;(z) and NB2(z), respectively.
In order to improve efficiency, we make use of the following auxiliary data

pf@ = > jEN\X,

_ 1€ML (x)NS; ‘ (9)
p; (x) = Z W, JjeX.
1€(ML (2)UME(x))NS;

We store the values of p;f (z) and p; (z) for j € N in memory to compute each Aéj’(w) =c;—
pj (w) and AZ; (x) = —c; +p; (z) in O(1) time. We also store the values of 6;(z) = 2 jen @iiT;
for < € M in memory to update the values of pj(:z:) and p; (z) for j € N in O(7) time when
z is changed. In our implementation, one-round time is reduced to O(n + 7) for NB; () and
O(n + kv + n'r) for NBy(x) \ NB; () by making use of the memory structure. Because 7 <
and n’ < n always hold, these orders are not worse than those of naive implementation, and are
much better if 7 < ¢ and »’ < n hold.

4 Adaptive Control of Penalty Weights

Recall that in our algorithm, solutions are evaluated by the alternative evaluation function
%(z) in which the fixed penalty weight vector w in the original objective function z(z) is replaced
with @ = (W1, ...,%y) € R, and the values of @; are adaptively controlled in the search. It is
often reported that local search (LS) alone may not attain a sufficiently good solution. Our LS
tends to be also attracted to locally optimal solutions of insufficient quality when the original
large penalty weights w; = 3, v ¢; +1 (i € M) are used as w; in the evaluation function
2(x). We accordingly incorporate a mechanism to adaptively control the values of w0, i.e., our
algorithm iteratively applies LS, updating the penalty weight vector w after each call to LS. We
call such a sequence of calls to LS LS-probe, and use it as the main engine to improve solutions.

Let x denote the solution at which the previous local search stops. The LS-probe resumes LS
from @ after updating the penalty weight vector w. Starting from the original penalty weight
vector w < w, the penalty weight vector w is updated as follows. Let x°** denote the best
feasible solution with respect to the original objective function z() obtained in the current
call to LS-probe. If z(x) > z(x®**) holds, LS-probe uniformly decreases the penalty weights
W; < (1 — n)w; for ¢ € M, where the parameter 7 is adaptively computed so that for 15% of
variables satisfying z; = 1, the new value of Aé{ (z) becomes negative. Otherwise, LS-probe
increases the penalty weights by

'uA)i < min {’UA)Z (1 +(5—pi(m)) ,wi} , 1€ M, (10)

max;e s p; ()
where p;(x) = max{b; — 3_ ..y ai;z;,0} is the amount of violation of the ith multicover con-
straint, and ¢ is a parameter that is set to 0.2 in our experiment. LS-probe iteratively applies
LS, updating the penalty weight vector w after each call to LS, until the best solution obtained
in the current call to LS-probe with respect to the original objective function z(x) has not

improved in the last 50 iterations.

169

170

Algorithm LS-probe(z)

Input: A solution x.
Output: The best solution z*** with respect to z(x).
Step 1: Set iter + 0, x*** + &, & < « and W + w.

Step 2: Apply LS(&,w) to obtain an improved solution'&’. Let x’ be the best
solution with respect to the original objective function z(-) obtained during the
call to LS(&,w). Set & « &'

Step 3: If z(z') < z(z>*) holds, then set *** « z’ and iter + 0; otherwise set
iter « iter + 1. If iter > 50 holds, output ** and halt.

Step 4: If 2(&) > 2(x**) holds, then uniformly decrease the penalty weights ; for
all i € M by w; + (1 — n)w;; otherwise, increase the penalty weights w; for all
i € M by (10). Return to Step 2.

5 Path Relinking Method

The path relinking [15] is an evolutionary approach to integrate intensification and diversifica-
tion strategies that generates new solutions by combining two or more solutions. This approach
generates new solutions by exploring trajectories that connect good solutions. It starts from one
of the good solutions, called an initiating solution, and generates a path by iteratively moving
to a solution in the neighborhood that leads toward the other solutions, called guiding solutions.

Because it is preferable to apply path relinking to solutions of high quality, we keep reference
sets R; and Ry of good solutions with respect to the original objective function z(z) and the
alternative evaluation function Z(x) with the current penalty weight vector w, respectively.
Initially R; and R; are prepared by applying LS-probe to randomly generated solutions. They
are then updated by reflecting outcomes of LS-probe whenever LS-probe stops. Suppose that
the last call to LS-probe stops at a solution @ and " is the best solution with respect to z()
obtained during the last call to LS-probe. Then, the worst solution *°™* in R; (with respect to
z()) is replaced with the solution z®** if z(z®*) < 2(x*°™*) and x®** # 2’ hold for all ' € R;.
The worst solution #"™** in R, (with respect to 2(-)) is also replaced with the solution z if
#(x) < 2(&*°*) and = # ' hold for all ¢’ € Rs.

The path relinking is applied to two solutions 2’ (initiating solution) and =" (guiding solution)
randomly chosen from R; and R;, respectively. Let £ = d(z’,2"”) be the Hamming distance
between solutions ' and x”. It then generates a sequence ' = (@, z(1) ... 2© = z" of
solutions as follows. Starting from z(® « &/, for il =1, ... ,&, it chooses a solution ™ with the
best value of 2(z) among those satisfying € NB;(z(!~V) and d(z,z") < d(z*~D,2"). Our
algorithm chooses the first solution ¥ (I = 1,...,£ — 1) satisfying 2(z®) < (@) as the
next initial solution of LS-probe.

6 Heuristic Reduction of Problem Sizes

For a near optimal Lagrangian multiplier vector u, the Lagrangian costs &;(u) give reliable
information on the overall utility of selecting columns j € N for SCP. Based on this property, the

Lagrangian costs ¢;(u) are often utilized to solve huge instances of SCP, e.g., several heuristic
algorithms successively solve a number of subproblems, called primal core problems, consisting
of a small subset of columns C, C N (|Cp| < |N]), chosen among those having low Lagrangian
costs &;(u) (7 € Cp) [5, 8, 9, 23].

The Lagrangian costs ¢;(u) are unfortunately unreliable about selecting columns j € N for
SMCP-GUB, because GUB constraints often prevent solutions from containing more than dj,
variables x; with the lowest Lagrangian costs ¢;(u). To overcome this, we develop an evaluation
scheme of columns j € N for SMCP-GUB taking account of GUB constraints. The main idea of
our algorithm is that we modify the Lagrangian costs ¢;(u) to reduce the number of redundant
columns j € Cp resulting from GUB constraints.

For each block Gy (h € K), let -y, be the value of the (dj, + 1)st lowest Lagrangian cost ¢&;(u)
among those for columns in G}, where we set 74, « 0 if dj, = |Gp| holds. We then define a
score ¢j(u) for a column j € Gy by é(u) = &j(u) — 75 if v, < 0 holds, and é;(u) = &;(u)
otherwise. That is, we normalize the Lagrangian costs ¢;(u) so that at most dp, columns have
negative scores ¢j(u) < 0 for each block G (h € K). Let n' = 3°. v z; be the number of
selected subsets for a solution ®. Given a solution # and a Lagrangian multiplier vector u, a
primal core problem is defined by a subset Cp, C N consisting of (i) columns j € N; with the b;
lowest scores ¢;(u) for each ¢ € M, and (ii) columns j € N with the 10n’ lowest scores &;(u).

Algorithm CORE(z,u)

Input: A solution & and the Lagrangian multiplier vector wu.

Output: The primal core problem C, C N.

Step 1: For each block G (h € K), let 75, be the value of (dj + 1)st lowest La-
grangian cost ¢;(u) (j € Gp) if dp, < |G| holds and ~y;, < 0 otherwise, and then
set scores by ¢&;(u) « &;(u) — v if 4, < 0 holds and é;(u) < &;(u) otherwise
for all j € Gy,.

Step 2: For each i € M, let C1(%) be the set of columns j € N; with the b; lowest
¢j(u) among those in N;. Then set C} < ;¢ C1(4).

Step 3: Set C; be the set of columns j € N with the 10n’ lowest ¢;(u).

Step 4: Set C, < C1 U Cy. Output Cp, and halt.

The primal core problem C, is updated before every call to LS-probe. Before updating the
primal core problem Cj, our algorithm heuristically fixes some variables z; to 1 to reflect the
characteristics of the incumbent solution z* and the current solution #’. Let @ be the Lagrangian
multiplier vector obtained by the subgradient method, and V = {j € N | z} = 2, = 1} be an
index set from which variables to be fixed are chosen. Our algorithm randomly chooses a variable
zj (7 € V) with probability

Cmex (W) — ()
erev(émx(ﬁ) — Ejr ('a)), (11)

and fixes x; = 1, where ¢,..(#) = maxjcy ¢y (@). We note that uniform distribution is used if

prob; () =

Cmax(@) = (@) holds for all j/ € V. Our algorithm iteratively chooses and fixes a variable z;
(4 € V) until 20% of multicover constraints are satisfied. It then sets the Lagrangian multiplier

171

172

up — 0if) jeF Gij 2 b; holds and u; + @; otherwise for i € M, and computes the Lagrangian
costs j(u) for j € N \ F, where F is the index set of the fixed variables.

Algorithm FIX(z*,z/,4)

Input: The incumbent solution «*, the current solution ' and the Lagrangian
multiplier vector .

Output: The set of fixed variables F C N and the Lagrangian multiplier vector u.
Step 1: Set V < {j € N |z} =2 =1} and F + 0.
Step 2: If Eje F@ij > b; holds for 20% of multicover constraints i € M, then for

each i € M, set u; « 0 if Zje F @ij = b; holds and u; < @; otherwise, output F
and u, and halt.

Step 3: Randomly choose a column j € V with probability prob;(@) defined by
(11), and set F + FU{j} and V < V' \ {j}. Return to Step 2.

7 Computational Results

We first prepared eight classes of random instances for SCP, where classes G and H were
taken from Beasley’s OR Library [3] and classes I-N were newly generated in the same manner,
where each class has five instances. We denote instances in class G as G.1, ..., G.5, and other
instances in classes H-N similarly. The summary of these instances are given in Table 1, where
the density is defined by ;.\, > jen @ij/mn and the costs c; are random integers taken from
interval [1,100]. For each SCP instance, we generate four types of SMCP-GUB instances with
different values of parameters dj, and |G| as shown in Table 1, where all blocks Gh (h € K)
have the same size |G| and upper bound dj, for each instance. Here, the right-hand sides of
multicover constraints b; are random integers taken from interval [1, 5].

We compared our algorithm, called the local search algorithm with the heuristic size reduction
(LS-SR), with one of the latest mixed integer program (MIP) solver called CPLEX12.3, where
they were tested on an IBM-compatible personal computer (Intel Xeon E5420 2.5 GHz, 4 GB
memory) and were run on a single thread. Table 1 also shows the time limits in seconds for LS-
SR and CPLEX12.3, respectively. We tested two variants of LS-SR: LS-SR1 evaluates variables
z; with the proposed score é;(z), and LS-SR2 uses the Lagrangian cost ¢j() in the heuristic
reduction of problem sizes. Tables 2-5 show the average objective values (columns “ob j.”) and
the average time to find the best solution (columns “t.t.b.”) of LS-SR1, LS-SR2 and CPLEX12.3
for instance types 1-4. The best results among these algorithms are marked with underlines.
We also illustrate in Figures 2 and 3 their comparison for each type of SMCP-GUB instances
with respect to the relative gap (%)

z(x) — zip
2Lp
where zp is the optimal value of LP relaxation for SMCP-GUB.
We first observe that LS-SR1 and LS-SR2 achieve better upper bounds than CPLEX12.3
for types 3 and 4 instances. This indicates that LS-SR1 and LS-SR2 are more efficient than
CPLEX12.3 for large instances with 10,000 variables or more. One of the main reasons for this is

gap(x) = x 100, (12)

173

1: The benchmark instances for SMCP-GUB and time limits for our algorithm LS-SR and
the MIP solver CPLEX (in seconds)

Instance types (dn/|Gpl) Time limit
Instance Rows Columns Density Typel Type2 Type3 Typed LS-SR CPLEX
G.1-G.5 1000 10,000 2.0% 1/10 10/100 5/10 50/100 600 3600
H.1-H.5 1000 10,000 5.0% 1/10 10/100 5/10 50/100 600 3600
L1-1.5 1000 50,000 1.0% 1/50 10/500 5/50 50/500 600 3600
J.1-J.5 1000 100,000 1.0% 1/50 10/500 5/50 50/500 600 3600
K.1-K.5 2000 100,000 0.5% 1/50 10/500 5/50 50/500 1200 7200
L.1-L.5 2000 200,000 0.5% 1/50 10/500 5/50 50/500 1200 7200
M.1-M.5 5000 500,000 0.25% 1/50 10/500 5/50 50/500 3000 18,000
N.1-N.5 5000 1,000,000 0.25% 1/100 10/1000 5/100 50/1000 3000 18,000

that the proposed algorithms evaluate a series of candidate solutions efficiently while CPLEX12.3
consumes much computing time for solving LP relaxation problems (even though it uses the
warm-start technique for solving a series of LP relaxation problems efficiently). We also observe
that LS-SR1 achieves much better upper bounds than those of LS-SR2 and CPLEX12.3 for types
1 and 2 instances. This indicates that LS-SR2 was not able to choose appropriate columns for
the primal core problem Cj, and LP relaxation based heuristic algorithms in CPLEX12.3 (e.g.,
local branching [12], feasibility pump [1, 13, 14] and RINS [11]) does not work efficiently for the
tested instances. This is probably because the gap between upper and lower bounds is large.

#¢ 2: Computational results of LS-SR and CPLEX12.3 on instance type 1

LS-SR1 LS-SR2 CPLEX

Instance ZLP obj. t.t.b. obj. t.t.b. obj. t.t.b.

G.1-G.5 1683.51 23134 346.3 2319.8 335.6 2578.0 3286.6
H.1-H.5 395.17 586.6 325.2 589.2 191.5 658.8 1514.9
IL1-1.5 2806.81 3920.4 375.5 5708.4 173.3 4339.0 1882.5
J.1-J.5 1453.48 20124 362.8 3977.8 117.2 2361.0 2054.2
K.1-K.5 5593.62 79744 951.4 11721.8 64.9 18842.2 515.9
L.1-L.5 2916.64 4178.8 1037.0 8633.6 186.3 5447.2 5295.2
M.1-M.5 5451.55 84244 1432.0 18250.8 858.4 19066.0 1555.2
N.1-N.5 4761.81 7951.6 1115.9 20746.2 747.7 18790.0 4841.5

400 T T T T T T T 400 T T T T T T T T
LS-SR1(Proposed score) —+— LS-SR1(Proposed score) —+—
350 LS-SR2(Lagrangian cost) -->-- - 350 + LS-SR2(Lagragian cost) -->¢-- %
CPLEX12.3 % X CPLEX12.3 ---%-- 7
300 - 300 / T
g 250 S 5 S
~ - - ~ 2 - 4o -
g g s i
o 200 . © 00 b K
% 2 T
g 10 s S 150 XK -
T 100k 4 T 00 b XN .
X
50] 50 - W T
0 1 i 1 1 1 1 | 1] 0 1 1 1 L 1 1 1 1
G H i J K L M N G H I J K L M N
Instance (Type1) Instance (Type2)

Xl 2: Comparison of LS-SR and CPLEX12.3 on instance types 1 and 2

174

3: Computational results of LS-SR and CPLEX12.3 on instance type 2

LS-SR1 LS-SR2 CPLEX

Instance ZLp obj. t.t.b. obj. t.t.b. obj. t.t.b.

G.1-G.5 1491.11 1888.4 347.2 1896.2 298.6 2084.2 1654.7
H.1-H.5 370.59 512.0 286.0 513.4 271.8 571.6 1227.6
I.1-1.5 2661.28 3518.6 312.6 4637.6 156.2 5663.4 3453.8
J.1-J.5 1382.59 1810.2 389.1 3427.0 326.8 3499.4 3384.0
K.1-K.5 5322.89 7301.2 736.2 10300.4 128.9 14407.2 6608.2
L.1-L.5 2771.20 3780.0 940.6 8089.4 67.5 8491.6 531.7
M.1-M.5 5219.12 7642. 2060.5 16695.4 1007.3 17504.2 1354.4
N.1-N.5 4596.99 7078.0 1780.3 20177.0 1255.6 17348.4 3277.6

% 4: Computational results of LS-SR and CPLEX12.3 on instance type 3

LS-SR1 LS-SR2 CPLEX

Instance ZLp obj. t.t.b. ob)j. t.t.b. obj. t.t.b.

G.1-G.5 711.02 765.6 261.8 765.6 262.2 830.0 3308.1
H.1-H.5 182.71 205.0 238.8 205.0 239.3 210.0 1186.7
I1.1-1.5 930.40 1108.0 243.5 1108.4 300.6 1245.0 2440.9
J.1-J.5 547.47 638.4 423.5 638.0 351.0 693.6 3261.0
K.1-K.5 1851.0 2218.4 846.3 2233.0 633.5 3461.8 6724.1
L.1-L.5 1087.2 1286.8 845.5 1293.0 673.5 2022.2 5298.4
M.1-M.5 2083.5 2575.2 2429.4 2583.2 2534.5 4292.8 1178.9
N.1-N.5 1743.5 2324.4 2282.3 2394.4 1446.1 4444.0 3922.4

We finally compared LS-SR1 with the 3-flip neighborhood local search algorithm proposed
by Yagiura et al. [23] (denoted as "YKI”) and CPLEX12.3 on the standard SCP instances,
where YKI was run on the same conditions as LS-SR1. Table 6 shows the average objective
values and the average time to best solution of LS-SR1, YKI and CPLEX12.3 for the standard
SCP instances. Figure 4 illustrates their comparisons for the SCP instances with respect to the
relative gap (%).

We observe that LS-SR1 achieve comparable upper bounds to those of YKI and better upper
bounds than CPLEX12.3, and the gap between upper and lower bounds is still large regard-
less of multicover and GUB constraints. We accordingly suppose that LS-SR1 achieved good
performance for both SMCP-GUB and SCP instances.

8 Conclusion

In this paper, we considered an extension of SCP called the set multicover problem with the
generalized upper bound constraints (SMCP-GUB). We proposed a heuristic algorithm to reduce
the size of problem instances. For this algorithm, we introduced a new evaluation scheme of
variables taking account of GUB constraints. We also developed an efficient implementation of
a 2-flip neighborhood local search algorithm. The algorithm reduces the number of candidates
in the neighborhood without sacrificing the solution quality. According to computational com-
parison on benchmark instances with the latest version of a MIP solver called CPLEX12.3, our

175

5: Computational results of LS-SR and CPLEX12.3 on instance type 4

LS-SR1 LS-SR2 CPLEX
Instance 2Lp obj. t.t.b. obj. t.t.b. obj. t.t.b.
G.1-G.5 690.00 727.0 351.6 727.0 352.3 728.6 2715.2
H.1-H.5 179.40 197.2 208.0 197.2 208.5 200.8 1691.7
I.1-1.5 915.54 1063.8 444.3 1065.0 553.9 1132.6 2893.9
J.1-J.5 537.95 612.0 327.6 611.4 296.4 632.8 2779.1
K.1-K.5 1819.01 2132.6 665.8 2130.6 831.4 3138.0 7052.2
L.1-L.5 1017.17 1235.2 840.0 1234.8 736.9 19324 6799.9
M.1-M.5 2052.04 2491.4 2423.0 24924 1863.4 3985.2 7097.9
N.1-N.5 1720.12 2230.2 2309.1 2238.2 1638.5 4336.2 2887.7
400 T T T T T T T T 400 T T T T T T T T
LS-SR1(Proposed score) —+—— LS-SR1(Proposed score) —+—
350 LS-SR2(Lagrangian cost) ---- - 350 LS-SR2(Lagrangian cost) --%-- -
CPLEX12.3 ---%-- (CPLEX12.3 ---¥%--
_ 300 | - 300 F .
g &
g 250 B g 250
2 200 4 @ 200 - B
8 L * 4 k] L E
3 150 . §'1w ”/x
100 Koo X R 100 |- *H”wu*' b
50 - B 50 o i
0 0 *—’*"H’W‘T
G H I J K L M N
Instance (Type3) Instance (Type4)

3: Comparison of LS-SR and CPLEX12.3 on instance types 3 and 4

algorithm performs quite effectively for various types of instances, especially for very large-scale

instances.

SE B

[1]

[2]

[6]

Achterberg, T., Berthold, T.: Improving the feasible pump. Discrete Optim., 4 (2007),
77-86.

Beasley, J.E.: A Lagrangian heuristic for set-covering problems. Nav. Res. Logist., 37
(1990), 151-164.

Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. J. Oper. Res.
Soc. 41 (1990), 1069-1072.

Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A.: An implementation of logical analysis of
data. IEEE Trans. Knowl. Data. Eng., 12 (2000), 292-306.

Caprara, A., Fischetti, M., Toth, P: A heuristic method for the set covering problem. Oper.
Res., 47 (1999), 730-743.

Caprara, A., Monaci, M., Toth, P.: Models and algorithms for a staff scheduling problem.
Math. Program., 98 (2003), 445-476.

176

% 6: Computational results of LS-SR1, YKI and CPLEX12.3 on the standard SCP

LS-SR1 YKI CPLEX

Instance ZLp obj. t.t.b. obj. t.t.b. obj. t.t.b.

G.1-G5 149.48 166.4 119.3 166.4 2.8 167.6 605.9
H.1-H5 45.67 59.6 44 59.6 14 60.8 649.8
1.1-1.5 138.27 158.4 88.5 157.6 22.4 160.6 2966.0
J.1-J.5 104.78 130.8 235.9 129.4 80.0 136.0 2740.1
K.1-K.5 276.66 3194 267.3 313.8 175.3 321.6 6430.8
L.1-L.5 209.33 263.6 829.0 258.4 445.8 285.2 4640.6
M.1-M.5 415.77 565.8 1554.1 550.4 1265.3 635.6 8452.0
N.1-N.5 348.79 517.6 2048.3 503.8 1517.7 631.4 4274.3

400 T T T T T T T
LS-SR1(Proposed score) —+—
350 YKI -=%-- E
CPLEX123 ---%--
300 -

Relative gap (%)
T
1

G H | J K L M N
Instance (standard SCP)

Xl 4: Comparison of LS-SR1, YKI and CPLEX12.3 on the standard SCP

[7] Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Ann. Oper.
Res., 98 (2000), 353-371.

[8] Caserta, M.: Tabu search-based metaheuristic algorithm for large-scale set covering prob-
lems. In: Gutjahr, W.J., Hartl, R.F., Reimann, M. (eds.) Metaheuristics: Progress in
Complex Systems Optimization, pp. 43-63. Springer-Verlag, Berlin, 2007.

[9] Ceria, S., Nobili, P., Sassano, A.: A Lagrangian-based heuristic for large-scale set covering
problems. Math. Program., 81 (1998), 215-228.

[10] Choi, E., Tcha, D-W.: A column generation approach to the heterogeneous fleet vehicle
routing problem. Comput. Oper. Res., 34 (2007), 2080-2095.

[11] Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Math. Prog., 102 (2004), 71-90.

[12] Fischetti, M., Lodi, A.: Local branching. Math. Prog., 98 (2003), 23-47.
(13] Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Prog., 104 (2005), 91-104.
[14] Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Math. Prog. Comp., 1 (2009), 201-222.

[15] Glover, F., Laguna, M.: Tabu Search, Kluwer Academic Publishers, Massachusetts, 1997.

16

[17]

[18]

[19]

Hammer, P.L., Bonates, T.O.: Logical analysis of data — An overview: From combinatorial
optimization to medical applications. Ann. Oper. Res., 148 (2006), 203-225.

Hashimoto, H., Ezaki, Y., Yagiura, M., Nonobe, K., Ibaraki, T., Lgkketangen, A.: A set
covering approach for the pickup and delivery problem with general constraints on each
route. Pac. J. Optim., 5 (2009), 183-200.

Ikegami, A., Niwa, A.: A subproblem-centric model and approach to the nurse scheduling
problem. Math. Prog., 97 (2003), 517-541.

Kohl, N., Karisch, S.E.: Airline crew rostering: Problem types, modeling, and optimization.
Ann. Oper. Res., 127 (2004), 223-257.

Pessoa, L.S., Resende, M.G.C., Ribeiro, C.C.: A hybrid Lagrangean heuristic with GRASP
and path-relinking for set k-covering. Comput. Oper. Res., in press.

Umetani, S., Yagiura, M.: Relaxation heuristics for the set covering problem. J. Oper. Res.
Soc. Jpn., 50 (2007), 350-375.

Vazirani, V.V.: Approzimation algorithms, Springer-Verlag, Berlin, 2004.

Yagiura, M., Kishida, M., Ibaraki, T.: A 3-flip neighborhood local search for the set covering
problem. Eur. J. Oper. Res., 172 (2006), 472-499.

177

