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1. INTRODUCTION

1.1. General setting. We are interested here in the motion of the interface be-
tween two incompressible fluids of different densities $\rho^{+}>\rho^{-}$ , with vorticity con-
centrated at the interface, and at rest at infinity (the limit case $\rho^{-}=0$ is also
known as the water waves problem). We refer to [6] for a recent review of the
stability issue of such interfaces. In the case of water waves $(\rho^{-}=0)$ , the situation
is now quite well understood since [33, 34]: the well posedness of the water waves
equations requires that the Rayleigh-Taylor criterion is satisfied,

(Rayleigh-Taylor) $-\partial_{z}P_{1}$

surface
$>0,$

where $z$ is the vertical coordinate and $P$ the pressure. It is instructive to remark
that the hnearized version of this criterion (around the rest state) is simply $\rho^{+}g>0,$

where $g$ is the (vertical) acceleration of gravity-in other words, water must stands
below the interface.

For the two fluids problem $(\rho^{-}>0)$ the situation is more complex. It is known,
at least for $1D$ interfaces, that, outside the analytic framework of [31, 30], the
evolution equations are ill-posed in absence of surface tension [15, 17, 18]. The
reason of this ill-posedness is that the nonlinearity creates locally a discontinuity of
the tangential velocity at the interface that induces Kelvin-Helmholtz instabilities.
Taking into account the surface tension restores the local well-posedness of the
equations $[$4, 5, 28, 9, 29, 24, 10, $25]$ . However, the existence time of the solution
provided by these results is very small when the surface tension is small. The
fact that the role of gravity (or gravity itself) is not considered in these references
suggests that these general results can be improved in the “stable” configuration
where the heavier fluid is placed below the lighter one.

The goal of this paper is to present one of the results of [21], namely, the deriva-
tion of a two fluids generalization of the afore mentioned Rayleigh-Taylor criterion
governing the stability of two fluids interfaces:

(1) $[- \partial_{z}P^{\pm_{1_{z=\zeta}}}]>\frac{1}{4}\frac{(\rho^{+}\rho^{-})^{2}}{\sigma(\rho^{+}+\rho^{-})^{2}}c(\zeta)|\omega|_{\infty}^{4},$

where $\zeta$ is the interface parametrization, $\omega=[V^{\pm_{1_{z=\zeta}}}]$ is the jump of the horizontal
velocity at the interface, and $c(\zeta)$ is a constant that depends on the geometry of the
problem (two layers of finite depth in this paper) and that can be estimated quite
precisely. Since the proof of [21] is quite lengthy and technical, we chose to give
in this short presentation a more qualitative approach. For the sake of simplicity,
we do not deal here with one of the main difficulties of [21], that is, handling the
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$1$

shallow water asymptotics; this aspect of the problem is just shortly addressed in
the last section.

1.2. Notations. -We denote by $H^{s}(\mathbb{R}^{d})(s\in \mathbb{R})$ the standard Sobolev spaces,

$H^{s}(\mathbb{R}^{d})=\{f\in S’(\mathbb{R}^{d}), |f|_{H^{8}}<\infty\}$ , with $|f|_{H^{s}}^{2}= \int_{\mathbb{R}^{d}}(1+|\xi|^{2})^{s}|\hat{f}(\xi)|^{2}d\xi.$

and by $\dot{H}^{s}(\mathbb{R}^{d})$ the Bepp$0$-Levi spaces
$\dot{H}^{s}(\mathbb{R}^{d})=\{f\in L_{loc}^{2}(\mathbb{R}^{d}), \nabla f\in H^{s-1}(\mathbb{R}^{d})^{d}\},$

equipped with the (semi) norm $|f|_{\dot{H}^{s}}=|\nabla f|_{H^{\epsilon}}$ (we refer to [14, 21, 22] for some
properties of these spaces).
-We use the classical notation $f(D)$ for Fourier multipliers,

$f(D)u=\mathcal{F}^{-1}(f(\xi)\hat{u}(\xi))$ .

2. SEVERAL FORMULATIONS OF THE EQUATIONS

We consider throughout this article the motion of the interface between two
fluids of density $\rho^{+}>\rho^{-}$ , and denote by $\Omega_{t}^{+}$ and $\Omega_{\overline{t}}$ the volume they occupy at
time $t$ . Choosing the origin of the vertical axis to correspond with the interface
between the two fluids at rest, we assume that $\Omega_{t}^{+}$ (resp. $\Omega_{t}^{-}$ ) is bounded below
(resp. above) by an horizontal wall located at $z=-H^{+}$ (resp. $z=H^{-}$ ). We
also denote by $\Gamma_{t}$ the interface between both fluids, and assume that it can be
parametrized as the graph of a function $\zeta(t, \cdot)$ , i.e. $\Gamma_{t}=\{(X, z), z=\zeta(t, X)\}$ ; we
denote by $\Gamma^{\pm}$ the upper and lower boundaries $\Gamma^{\pm}=\{z=\mp H^{\pm}\}.$

Finally, we denote by $U^{\pm}$ the velocity field in $\Omega_{t}^{\pm}$ ; the horizontal component of
$U^{\pm}$ is written $V^{\pm}$ and its vertical one $w^{\pm}$ . The pressure is denoted by $P^{\pm}.$

For the sake of clarity, it is also convenient to introduce some notation to express
the difference and average of these quantity across the interface.

Notation 2.1. If $A^{+}$ and $A^{-}$ are two quantities (real numbers, functions, etc.), the
notations $[A^{\pm}]$ and $\langle A^{\pm}\rangle$ stand for

$[A^{\pm}]=A^{+}-A^{-}$ and $\langle A^{\pm}\rangle=\frac{A^{+}+A^{-}}{2}.$
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2.1. The free interface Euler equations. We assume that both fluids are invis-
cid, incompressible, and that the fluid motion is irrotational in the interior of these
two domains. The corresponding equations are the so called free interface Euler
equations:

$\bullet$ Equations in the fluid layers. In both fluid layers, the velocity field $U^{\pm}$ and
the pressure $P^{\pm}$ satisfy the equations

(2) $divU^{\pm}(t, \cdot)=0$ , curl $U^{\pm}(t, \cdot)=0$ , in $\Omega_{t}^{\pm}$ $(t\geq 0)$ ,

which express the incompressibility and irrotationality assumptions, and
(3) $\rho^{\pm}(\partial_{t}U^{\pm}+(U^{\pm}\cdot\nabla_{X,z})U^{\pm})=-\nabla_{X},{}_{z}P^{\pm}-\rho^{\pm}ge_{z}$ in $\Omega_{t}^{\pm}$ $(t\geq 0)$ ,

which expresses the conservation of momentum (Euler equation).
$\bullet$ Boundary conditions at the rigid bottom and lid. Impermeability of these

two boundaries is classically rendered by
(4) $w^{\pm}(t, \cdot)_{1_{\Gamma}}\pm=0, (t\geq 0)$ .

$\bullet$ Boundary conditions at the moving interface. The fact that the interface is
a bounding surface (the fluid particles do not cross it) yields the equations

(5) $\partial_{t}\zeta-\sqrt{1+|\nabla\zeta|^{2}}U_{n}^{\pm}=0, (t\geq 0)$ ,

where $U_{n}^{\pm};=U^{\pm_{1_{\Gamma_{t}}}}$ . n, n being the upward unit normal vector to the
interface $\Gamma_{t}.$ $A$ direct consequence of (5) is that there is no jump of the
normal component of the velocity at the interface. Finally, the continuity
of the stress tensor at the interface gives in our particular case

(6) $[P^{\pm}(t, \cdot)_{1r_{t}}]=\sigma k(\zeta) , (t\geq 0)$ ,

where $\sigma$ is the surface tension coefficient and $k(\zeta)$ denotes the mean cur-
vature of the interface,

$k_{\backslash }( \zeta)=-\nabla\cdot(\frac{\nabla\zeta}{\sqrt{1+|\nabla\zeta|^{2}}})$ .

2.2. The free interface Bernoulli equations. Taking advantage of the irrota-
tionahty assumption made on both fluids, it is possible to reduce the number of
unknowns by working with $a$ (scalar) velocity potential $\Phi^{\pm}$ instead of the (vectorial)
velocity field $U^{\pm}$ ; this velocity potential is classically defined as

$U^{\pm}(t, \cdot)=\nabla_{X,z}\Phi^{\pm}(t, \cdot)$ in $\Omega_{t}^{\pm}$ $(t\geq 0)$ .

The free surface Euler equations (2)$-(6)$ can then be written in terms of this velocity
potential, and become the free interface Bemoulli equations:

$\bullet$ Equations in the fluid layers. In both fluid layers, the velocity potentials
$\Phi^{\pm}$ and the pressure $P^{\pm}$ satisfy the equations

(7) $\Delta_{X,z}\Phi^{\pm}(t, \cdot)=0$ , in $\Omega_{t}^{\pm}$ $(t\geq 0)$ ,

and the Bemoulli equation,

(8) $\rho^{\pm}(\partial_{t}\Phi^{\pm}+\frac{1}{2}|\nabla_{X,z}\Phi^{\pm}|^{2})=-P^{\pm}-\rho^{\pm}gz$ in $\Omega_{t}^{\pm}$ $(t\geq 0)$ .

$\bullet$ Boundary conditions at the rigid bottom and lid. Written in terms of $\Phi^{\pm},$

(4) becomes

(9) $\partial_{z}\Phi^{\pm}(t, \cdot)_{1_{r\pm}}=0, (t\geq 0)$ .
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$\bullet$ Boundary conditions at the moving interface. The kinematic boundary
condition (5) can be written as

(10) $\partial_{t}\zeta-\sqrt{1+|\nabla\zeta|^{2}}\partial_{n}\Phi_{1r_{t}}^{\pm}=0, (t\geq 0)$ ,

where $\partial_{n}$ always stands for the upwards normal derivative at the interface.
Finally, (6) is left unchanged,

(11) $[P^{\pm}(t, \cdot)_{1r_{t}}]=\sigma k(\zeta) , (t\geq 0)$ .

2.3. Reduction to the interface. Inspired by the standard Zakharov-Craig-
Sulem hamiltonian formulation of the water waves equations [32, 13], we introduce
the trace of $\Phi^{\pm}$ at the interface,

$\psi^{\pm}(t, \cdot)=\Phi^{\pm}(t, \cdot)_{1_{\Gamma_{t}}} (t\geq 0)$ .
The knowledge of $\psi^{\pm}$ and $\zeta$ (which determines the shape of the fluid domains $\Omega^{\pm}$ )
allows one to recover the velocity potentials $\Phi^{\pm}$ in the interior of the fluid domains
through the resolution of the boundary value problem

(12) $\{\begin{array}{l}\triangle_{X,z}\Phi^{\pm}=0 in\Omega_{t}^{\pm},\Phi^{\pm_{1r_{t}}}=\psi^{\pm}, \partial_{z}\Phi^{\pm_{1_{\Gamma^{\pm}}}}=0\end{array}$

(we recall that $\partial_{n}\Phi_{1r_{t}}^{\pm}$ stands for the upward normal partial derivative of $\Phi^{\pm}$ at the
interface). Under appropriate regularity assumptions, it is therefore possible to see
the normal derivative of $\Phi^{\pm}$ at the interface as an operator acting (nonlinearly)
on $\zeta$ and (linearly) on $\psi^{\pm}$ ; we denote by $\mathcal{G}^{\pm}[\zeta]$ this operator, which is called the
Dirichlet-Neumann operator corresponding to the two fluid layer $\Omega^{\pm}$ :

$\mathcal{G}^{\pm}[\zeta]\psi^{\pm}=\sqrt{1+|\nabla\zeta|^{2}}\partial_{n}\Phi^{\pm_{1r_{t}}},$

where $\partial_{n}$ stands for the upwards normal derivative at the interface.
By taking the trace of (8) at the interface, it is therefore possible to reduce the

free surface Bernoulli equations (7)$-(11)$ ae a set of equations on $\zeta$ and $\psi^{\pm},$

(13) $\partial_{t}\zeta-\mathcal{G}^{\pm}[\zeta]\psi^{\pm}=0,$

(14) $\rho^{\pm}(\partial_{t}\psi^{\pm}+g\zeta+\frac{1}{2}|\nabla\psi^{\pm}|^{2}-\frac{(\mathcal{G}^{\pm}[\zeta]\psi^{\pm}+\nabla\zeta\cdot\nabla\psi^{\pm})^{2}}{2(1+|\nabla\zeta|^{2})})=-P_{1r_{t}}^{\pm},$

(15) $[P^{\pm}(t, \cdot)_{1_{\Gamma_{t}}}]=\sigma k_{\backslash }(\zeta)$ .

In the case of the water waves equations corresponding to $\rho^{-}=0$ and $P^{-}=$

$0$ , the equations (13)-(15) correspond to the hamiltonian Zakharov-Craig-Sulem
formulationl. In this formulation the pressure has disappeared by the choice of
evaluating the Bernoulli equation on the free surface. In presence of an upper layer
of nonzero density, the situation is more complex since we have to deal with two
evolution equations on $\psi+$ and $\psi^{-}$ instead of only one evolution equation on $\psi+$

in the water waves case. In order to eliminate the pressure from the equations, one
must use (15), and therefore consider the difference (14) $-(14)^{-}$ It is therefore

lThis is a set of two evolution equations on $\zeta$ and $\psi+,$

$\partial_{t}\zeta-\mathcal{G}^{+}[\zeta]\psi^{+}=0,$

$\partial_{t}\psi^{+}+g\zeta+\frac{1}{2}|\nabla\psi^{+}|^{2}-\frac{(\mathcal{G}^{+}[\zeta]\psi^{+}+\nabla\zeta\cdot\nabla\psi^{+})^{2}}{2(1+|\nabla\zeta|^{2})}=-\sigma k(\zeta)$ ,
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natural to try to rewrite the two-fluid equations as a set of two equations on the
surface elevation $\zeta$ and of the quantity $\psi$ defined as

$\psi:=\underline{\rho}^{+}\psi^{+}-\underline{\rho}^{-}\psi^{-},$

where $\underline{\rho}^{\pm}$ stands for the relative density, $\underline{\rho}^{\pm}=\ovalbox{\tt\small REJECT}_{-}^{\pm}\rho\dagger+\rho^{-}$ (in particular, $\underline{\rho}^{+}+\underline{\rho}^{-}=1$

and $\underline{\rho}^{+}-\underline{\rho}^{-}$ is the so called Atwood number). We obtain therefore

(16) $\{\begin{array}{l}\partial_{t}\zeta-\mathcal{G}^{\pm}[\zeta]\psi^{\pm}=0,\partial_{t}\psi+g’\zeta+\frac{1}{2}[\underline{\rho}^{\pm}|\nabla\psi^{\pm}|^{2}]-\frac{1}{2}\frac{[\underline{\rho}^{\pm}(\mathcal{G}^{\pm}[\zeta]\psi^{\pm}+\nabla\zeta\cdot\nabla\psi^{\pm})^{2}]}{1+|\nabla\zeta|^{2}}=-\frac{\sigma}{\rho^{+}+\rho^{-}}k(\zeta) ,\end{array}$

where $g’$ stands for the reduced gravity,

$g’=(\underline{\rho}^{+}-\underline{\rho}^{-})g.$

In the water waves case $\rho^{-}=0$ (and therefore $\psi=\psi^{+}$ ), this coincides with the
classical Zakharov-Craig-Sulem formulation. In the two fluids case $\rho^{-}>0$ , a new
difficulty occurs, namely, one has to express $\psi+$ and $\psi^{-}$ in terms of $\zeta$ and $\psi$ . This
can be done by solving the system

(17) $\{\begin{array}{ll}\underline{\rho}^{+}\psi^{+}-\underline{\rho}^{-}\psi^{-} = \psi,\mathcal{G}^{+}[\zeta]\psi^{+}-\mathcal{G}^{+}[\zeta]\psi^{-} = 0;\end{array}$

the first equation is the definition of $\psi$ , while the second traduces the continuity
of the normal component of the velocity as it crosses the interface (this relation is
obtained by considering the difference (13) $-(13)^{-})$ . One obtains formally the
following solution to (17),

(18) $\psi^{+}=J[\zeta]^{-1}\psi, \psi^{-}=(\mathcal{G}^{-}[\zeta])^{-1}\circ \mathcal{G}^{+}[\zeta]\psi^{+},$

with

(19) $J[\zeta]=\underline{\rho}^{+}-\underline{\rho}^{-}(\mathcal{G}^{-}[\zeta])^{-1}\mathcal{G}^{+}[\zeta].$

Let us state here a few facts about the Dirichlet-Neumann operators that show
that (18) and (19) do make sense; in what follows, $t_{0}$ is any real number such that
$t_{0}>d/2$ , and $\zeta\in H^{t_{0}+1}(\mathbb{R}^{d})$ does not touch the bottoms $( i.e. \inf_{\mathbb{R}^{d}}(H^{\pm}\pm\zeta)>0)$ .
We also recall that the Beppo-Levi spaces have been defined in \S 1.2.

(1) The operator $G^{\pm}[\zeta]$ is a continuous operator mapping $\dot{H}^{s+1/2}(\mathbb{R}^{d})$ into
$H^{s-1/2}(\mathbb{R}^{d})$ for all $0\leq s\leq t_{0}+1/2$ (see Theorem 3.15 of [22]).

(2) This mapping is not onto and the inverse $(\mathcal{G}^{\pm}[\zeta])^{-1}$ is not well defined as
a mapping $H^{s-1/2}(\mathbb{R}^{d})arrow\dot{H}^{s+1/2}(\mathbb{R}^{d})$ .

(3) However, the range of $\mathcal{G}^{+}[\zeta]$ is included in the range of $\mathcal{G}^{-}[\zeta]$ , and the
operator $(\mathcal{G}^{-}[\zeta])^{-1}\mathcal{G}^{+}[\zeta]$ : $\dot{H}^{s+1/2}(\mathbb{R}^{d})arrow\dot{H}^{s+1/2}(\mathbb{R}^{d})$ is well defined and
bounded (see [21], Proposition 1).

(4) From the previous point $J[\zeta]$ : $H^{s+1/2}(\mathbb{R}^{d})arrow\dot{H}^{s+1/2}(\mathbb{R}^{d})$ is well defined.
It is also invertible (Neumann series) for small values of $\underline{\rho}^{-}$ It remains
invertible in the general case using Redholm’s index theory (Lemma 2 of
[21] $)$ .
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It follows from this brief analysis that the formal solution (18)-(19) is well defined,
and therefore that $\psi+$ and $\psi^{-}$ can be expressed in terms of $\zeta$ and $\psi$ . More precisely,
one can write

$\mathcal{G}^{\pm}[\zeta]\psi^{\pm}=\mathcal{G}[\zeta]\psi$ with $\mathcal{G}[\zeta]=\mathcal{G}^{-}[\zeta]J[\zeta](\mathcal{G}^{-}[\zeta])^{-1}\mathcal{G}^{+}[\zeta].$

The two-fluids genemlization of the Zakharov-Cmig-Sulem formulation of the water
waves equations is then given by a closed set of two evolution equations on $\zeta$ and
$\psi,$

(20) $\{\begin{array}{l}\partial_{t}\zeta-\mathcal{G}[\zeta]\psi=0,\partial_{t}\psi+g’\zeta+\frac{1}{2}[\underline{\rho}^{\pm}|\nabla\psi^{\pm}|^{2}]-\frac{1}{2}\frac{[\underline{\rho}^{\pm}(\mathcal{G}[\zeta]\psi+\nabla\zeta\cdot\nabla\psi^{\pm})^{2}]}{1+|\nabla\zeta|^{2}}=-\frac{\sigma}{\rho^{+}+\rho^{-}}k(\zeta)\end{array}$

(we kept the notation $\psi^{\pm}$ here, but they must be understood as functions of $\zeta$ and
$\psi$ through (18) $)$ .

Remark 2.2. Benjamin and Bridges [7] (see also [19, 12]) showed that the two fluids
equations are Hamiltonian with $\zeta$ and $\psi$ as the two canonical variables and the total
energy as the Hamiltonian.

3. A STABILITY CRITERION

We know from the previous section that (16) can be viewed as a set of two
evolution equations on $\zeta$ and $\psi$ . We show here that they are well posed under
suitable assumptions on the initial data, and provided that the stability criterion
(1) is satisfied.

3.1. The linearized equations around the rest state $(\underline{\zeta}, \underline{\psi})=(0,0)$ . It is
instructive to consider the linearization of (20) around the rest state, namely,

(21) $\{\begin{array}{l}\partial_{t}\zeta-\mathcal{G}[0]\psi=0,\partial_{t}\psi+(g’-\frac{\sigma}{\rho^{+}+\rho^{-}}\triangle)\zeta=0.\end{array}$

By simple Fourier analysis, one can explicitly compute $\mathcal{G}^{\pm}[0]$ and therefore $\mathcal{G}[0],$

$\mathcal{G}^{\pm}[0]=|D|\tanh(H^{\pm}|D|)$ ,

(22) $\mathcal{G}[0]=|D|\frac{\tanh(H^{+}|D|)\tanh(H^{-}|D|)}{\underline{}\rho^{+}\tanh(H^{-}|D|)+\underline{\rho}^{-}\tanh(H^{+}|D|)}.$

It follows that the equations (21) are well posed in Sobolev spaces, even in absence
of surface tension $(\sigma=0)$ . The linearization around the rest state therefore misses
one of the most important features of the two fluids problem: the Kelvin-Helmholtz
instabilities.

In order to prepare the ground for the nonlinear analysis of the equations, let
us remark that the equations can be made “symmetric” if we multiply them by $S_{0}$

with

$S_{0}= (g’- \frac{\sigma}{\rho+,o^{+\rho^{-}}}\Delta \mathcal{G}^{0}[0])$ ;

47



denoting $U=(\zeta, \psi)$ , a natural energy for the system is therefore

$E_{0}(U) = (U, S_{0}U)$

(23) $= g’| \zeta|_{H_{\sigma}^{1}}^{2}+\frac{\sigma}{\rho^{+}+\rho^{-}}|\nabla\zeta|_{2}^{2}+|\psi|_{\dot{H}_{*}^{1/2}}^{2},$

with the norms $|\cdot|_{H_{\sigma}^{1}}$ and $|\cdot|_{\dot{H};/2}.$

$| \zeta|_{H_{\sigma}^{1}}^{2}=|\zeta|_{2}^{2}+\frac{\sigma}{g(\rho^{+}+\rho^{-})}|\nabla\zeta|_{2}^{2},$ $|\psi|_{\dot{H}^{1/2}}.=|\mathfrak{P}\psi|_{2}$ $($and $\mathfrak{P}=\sqrt{\mathcal{G}[0]})$ ;

two important features of these norms are the following,

(1) The $H^{1}$ and $H_{\sigma}^{1}$ norms are equivalent, but with equivalence constants de-
pending on $\sigma$ ; it is important to distinguish these norms if we want an
existence time that has a sharp dependence on $\sigma.$

(2) The $\dot{H}^{1/2}$ and $\dot{H}_{*}^{1/2}$ are equivalent but with equivalence constant that de-
pend on $H^{+}$ and $H^{-}$ ; if one wants to be able to handle shallow water
asymptotics, it is important to distinguish them.

3.2. The linearized equations around a constant shear. In order to under-
stand simply the occurrence of Kelvin-Helmholtz instabilities, let us consider the
linearized equations around a constant shear. More precisely, we consider the hn-
earization of the two fluids equations (13)-(15) around the constant flow

$\underline{U}^{\pm}=(\begin{array}{l}c^{\pm}0\end{array}), \underline{\zeta}=0,$

which yields the following system

$\{\begin{array}{l}\partial_{t}\zeta+c^{\pm}\cdot\nabla\zeta-\underline{w}^{\pm}=0,\partial_{t}\psi+g’\zeta+[\underline{\rho}^{\pm}c^{\pm}\cdot\nabla\psi^{\pm}]=\frac{\sigma}{\rho^{+}+\rho^{-}}\Delta\zeta,\end{array}$

with $\psi=\underline{\rho}^{+}\psi^{+}-\underline{\rho}^{-}\psi^{-}$ and $\underline{w}^{\pm}=\mathcal{G}^{\pm}[0]\psi^{\pm}$ . The quantities $\psi^{\pm}$ (and therefore
$\underline{w}^{\pm}$ since $\underline{w}^{\pm}=\pm|D|\tanh(H^{\pm}|D|)\psi^{\pm})$ can be expressed in terms of $\zeta$ and $\psi$ by
adapting the computations of \S 2.3. This leads to

$- \underline{w}^{\pm}=\frac{\underline{\rho}^{-}\tanh(H^{+}|D|)}{\underline{\rho}^{-}\tanh(H^{+}|D|)+\underline{\rho}^{+}\tanh(H^{-}|D|)}[c^{\pm}]\cdot\nabla\zeta+\mathcal{G}[0]\psi,$

where $\mathcal{G}[0]$ is as in (22). For the term $[\underline{\rho}^{\pm}c^{\pm}\cdot\nabla\psi^{\pm}]$ that appears in the second
equation, we write

$[\underline{\rho}^{\pm}c^{\pm}\cdot\nabla\psi^{\pm}]=\langle c^{\pm}\rangle\cdot\nabla\psi+[c^{\pm}]\cdot\nabla\langle\underline{\rho}^{\pm}\psi^{\pm}\rangle.$

The dependence on $\zeta$ is specific to the two fluids system (i.e. it disappears if $\rho^{-}=$

$0)$ , and is responsible for the Kelvin-Helmholtz instabilities through the operator
$e(D)$ in the resulting set of equations in $\zeta,$ $\psi,$

(24) $\{\begin{array}{l}\partial_{t}\zeta+T(D)\zeta-\mathcal{G}[0]\psi=0,\partial_{t}\psi+T(D)\psi+(g’-\underline{\rho}^{+}\underline{\rho}^{-}[c^{\pm}]\cdot e(D)([c^{\pm}]\bullet)-\frac{\sigma}{\rho^{+}-\rho^{-}}\Delta)\zeta=0,\end{array}$
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with

$T(D) = \frac{c^{+}\underline{\rho}^{+}\tanh(H^{+}|D|)+c^{-}\underline{\rho}^{-}\tanh(H^{+}|D|)}{\underline{\rho}^{-}\tanh(H^{+}|D|)+\underline{\rho}^{+}\tanh(H^{-}|D|)}\cdot\nabla,$

$e(D) = \frac{1}{\underline{}\rho^{-}\tanh(H^{+}|D|)+\underline{\rho}^{+}\tanh(H^{-}|D|)}\frac{DD^{T}}{|D|}.$

The diagonal terms in (24) are govemed by the operator $T(D)$ , which can be seen
as a nonlocal transport term; consequently, they do no play any role in the stability
analysis. Since $\mathcal{G}[0]$ is a positive operator, the linear stability of (24) depends
therefore on the $sign$ of the stability opemtor

Ins $(D)=g’- \underline{\rho}^{+}\underline{\rho}^{-}[c^{\pm}]\cdot e(D)([c^{\pm}]\bullet)-\frac{\sigma}{\rho^{+}-\rho^{-}}\triangle,$

in the sense that stability for all frequencies is obtained if Ins$(\xi)>0$ for all $\xi\in$

$\mathbb{R}^{d}$ . Conversely, Kelvin-Helmholtz instability is the mechanism that amplifies the
frequencies for which Ins$(\xi)<0$ . Therefore,

All frequency are stable $\Leftrightarrow\forall\xi\in \mathbb{R}^{d}$ , Ins $(\xi)>0.$

Remarking that

$[c^{\pm}]\cdot e(\xi)([c^{\pm}]\bullet)\sim\underline{\rho}^{+}\underline{\rho}^{-}|[c^{\pm}]|^{2}|\xi|$ as $|\xi|arrow\infty,$

$[c^{\pm}]\cdot e(\xi)([c^{\pm}]\bullet)\sim\underline{\rho}^{+}\underline{\rho}^{-}|[c^{\pm}]|^{2}H_{0}^{-1}$ a$s$ $|\xi|arrow 0$

$($with $H_{0}=\underline{\rho}^{-}H^{+}+\underline{\rho}^{-}H^{-})$ , one can deduce the following facts:
(1) In absence of surface tension, high frequencies are always unstable;
(2) In presence of surface tension, high frequencies are always stable;
(3) Low frequencies are stable if $|[c^{\pm}]|^{2}< \frac{g’H_{0}}{\underline{\rho}+\underline{\rho}^{-}}.$

In the situation we are interested in this article, the fluid is assumed to be at
rest at infinity, and the situation of \S 3.1 may look more relevant. However, when
considering the full (nonlinear) equations, the discontinuity of the velocity must
be taken into account, and the situation considered here gives a qualitative insight
of the phenomena at stake in the nonlinear case. Therefore, from the three fact
discussed above, we can expect the following consequences for the full two fluids
equations (20),

(1) In absence of surface tension, the equations (20) are ill-posed because of
the high-frequency $instabilities^{2}$ ;

(2) In presence of surface tension, the equations (20) are locally well posed on a
very small time scale depending strongly3 on the surface tension $co$efficient
$\sigma$ ;

(3) Under an additional assumption on the low frequency behavior, one can
expect a longer existence time4.

$2_{To}$ be more precise, the equations are then elliptic in space-time.
$3_{Since}$ the components $g’$ and $e(D)$ of Ins $(D)$ are of lower order than $- \frac{\sigma}{\rho++\rho-}\Delta$ , they can be

neglected in this analysis. In particular, the $sign$ of $g’$ (or equivalently, the fact that the heavier
fluid is below or above the lighter one) is of no importance under this approach, while this should
intuitively play a strong role on the stability of the flow.

$4_{In}$ particular, the $sign$ of $g’$ should be relevant in this additional assumption, as it is in the
third observation made above in the linear case.
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The first point has been estabhshed by Iguchi-Tanaka-Tani [17] and made more
precise in [18, 35]. The second point (local well posedness in presence of surface
tension) has been proved for instance in [4, 5, 28, 9, 29]. The goal of this paper is
to deal with the third case, and in particular to obtain an existence time that is
consistent with physical observations5.

3.3. Quasilinearization of the equations. The equations (20) are fully nonlin-
ear. $A$ typical strategy to handle such equations is to differentiate them to form a
quasilinear system. For instance, the eikonal equation

$\partial_{t}u+F(\nabla u)=0$

is fully nonlinear, but if we introduce $V=\nabla u$ and take the gradient of this equation,
we obtain

$\{\begin{array}{l}\partial_{t}u+F(V)=0,\partial_{t}V+dF(V)\cdot\nabla V=0,\end{array}$

which is a quasilinear system. This strategy has been implemented in the water
waves case in the Zakharov-Craig-Sulem formulation in [20, 3] (using a Nash-Moser
iteration) and in [16] (see also [22]). We want to implement it here for the two fluids
equations (20); compared to the standard “quasihnearization approach” described
above, it is worth insisting on two aspects:

(1) The equations must be differentiated several times to obtain a closed quasi-
hnear system;

(2) The new variables that one must introduce (the analogous of $V=\nabla u$ for
the eikonal equation above) are not simply the derivatives of the original
unknowns $\zeta$ and $\psi$ but “good unknowns” that we will comment on later.

In order to motivate the introduction of the good unknowns, let us first give a
differentiation formula for $\mathcal{G}[\zeta]\psi$ . We denote by $\underline{U}^{\pm}=(\underline{V}^{\pm},\underline{w}^{\pm})$ the evaluation of
the velocity at the interface6 and $\underline{w}=\underline{\rho}^{+}\underline{w}^{+}-\underline{\rho}^{-}\underline{w}^{-}$ The linearization formula is
then a consequence of a shape derivative formula for $\mathcal{G}[\zeta]$ (Lemma 7 of [21]), which
is itself a generalization of the shape derivative formula for the Dirichlet-Neumann
operator proved in [20] (see also Chapter 3 of [22]); it is given by the following
relation

$\forall\alpha\in \mathbb{N}^{d}, |\alpha|=1, \partial^{\alpha}(\mathcal{G}[\zeta]\psi)=\mathcal{G}[\zeta]\psi_{(\alpha)}-\mathcal{T}[U]\partial^{\alpha}\zeta,$

where $\psi_{(\alpha)}=\partial^{\alpha}\psi-\underline{w}\partial^{\alpha}\zeta,$ $U=(\zeta, \psi)$ , and
$\mathcal{T}[U]f=\nabla\cdot(f\underline{V}^{+})+\underline{\rho}^{-}\mathcal{G}[\zeta]\circ(\mathcal{G}^{-}[\zeta])^{-1}(\nabla\cdot(f[\underline{V}^{\pm}])$ .

For all $\alpha\in \mathbb{N}^{d},$ $|\alpha|=1$ , one can then show after some computations that the “good
unknown” $(\zeta_{(\alpha)}, \psi_{(\alpha)})=(\partial^{\alpha}\zeta, \partial^{\alpha}\psi-\underline{w}\partial^{\alpha}\zeta)$ solves the system

(25) $\{\begin{array}{l}\partial_{t}\zeta_{(\alpha)}+\mathcal{T}[U]\zeta_{(\alpha)}-\mathcal{G}[\zeta]\psi_{(\alpha)}=0,\partial_{t}\psi_{(\alpha)}-\mathcal{T}[U]^{*}\psi_{(\alpha)}+Ins[U]\zeta=0,\end{array}$

with the instability opemtor $Ins[U]$ defined as

$Ins[U]f= \mathfrak{a}f-\underline{\rho}^{+}\underline{\rho}^{-}[\underline{V}^{\pm}]\cdot\prime E[\zeta](f[V^{\pm}])-\frac{\sigma}{\rho^{+}+\rho^{-}}\nabla\cdot X[\nabla\zeta]\nabla f,$

$5The$ time scale obtained in the framework of the second point is typically $10^{6}$ to $10^{9}$ smaller
than the physical one [21].

$6_{Proceeding}$ as in \S 2.3 one can show that these quantities depend only on $\psi$ and $\zeta.$
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with
$\mathfrak{a}=g’+[\underline{\rho}^{\pm}(\partial_{t}+\underline{V}^{\pm}\cdot\nabla)\underline{w}^{\pm}]$

$(note that \mathfrak{a} can be$ expressed $in$ terms $of the$ pressure, $\mathfrak{a}=[-\partial_{z}P_{1_{z=\zeta}}^{\pm}])$ and

$z[\zeta]=\nabla\circ(\underline{\rho}^{+}\mathcal{G}^{-}-\underline{\rho}^{-}\mathcal{G}^{+})^{-1}\circ\nabla^{T},$

$X[\nabla\zeta]=\frac{(1+|\nabla\zeta|^{2})Id-\nabla\zeta\otimes\nabla\zeta}{(1+|\nabla\zeta|^{2})^{3/2}}.$

The system (25) has therefore the same structure as (24), with the following adap-
tations,

$g’\sim \mathfrak{a},$ $T(D)rightarrow \mathcal{T}[U],$ $\mathcal{G}[0]\infty \mathcal{G}[\zeta],$ $[c^{\pm}]\infty[\underline{V}^{\pm}],$ $Ins(D)rightarrow Ins[U]$ ;

in particular, a non zero jump $[\underline{V}^{\pm}]$ creates Kelvin-Helmholtz instabilities through
the operator $z[\zeta]$ in $Ins[U]$ that make the equations ill posed in absence of surface
tension. In presence of surface tension, and as for (24), high frequency are always
stable, but an additional condition is needed for low frequencies. $A$ careful study of
the instability operator $Ins[U]$ shows that a sufficient condition for all frequencies
is the following

(26) $\mathfrak{a}=[-\partial_{z}P_{1_{z=\zeta}}^{\pm}]>\frac{1}{4}\frac{(\rho^{+}\rho^{-})^{2}}{\sigma(\rho^{+}+\rho^{-})^{2}}c(\zeta)|[\underline{V}^{\pm}]|_{\infty}^{4},$

where $c(\zeta)$ is a constant depending on $\zeta,$ $H^{+}$ and $H^{-}$ We can then prove the
following theorem.

Theorem 3.1. Let $U^{0}=(\zeta^{0}, \psi^{0})^{T}$ be smooth enough and satisfy the non vanishing
depth condition

$\exists h_{\min}^{\pm}>0, \inf_{X\in \mathbb{R}^{d}}(H^{\pm}\pm\zeta^{0}(X))\geq h_{\min}^{\pm}.$

If moreover $U^{0}$ satisfies the stability criterion (26) then there exists $T>0$ and
a unique solution to (16) with initial condition $U^{0}$ . Moreover, $T$ depends on the
surface tension coefficient $\sigma$ through $\mathfrak{d}(U^{0})$ only, with

$\mathfrak{d}(U^{0})=[-\partial_{z}P_{1_{z=\zeta^{0}}}^{\pm}]-\frac{1}{4}\frac{(\rho^{+}\rho^{-})^{2}}{\sigma(\rho^{+}+\rho^{-})^{2}}c(\zeta^{0})|[\underline{V^{0\pm}}]|_{\infty}^{4}.$

Remark 3.2. In the water waves case $(\rho^{-}=0)$ , the stability criterion (26) coincides
with the standard Rayleigh-Taylor criterion

$-\partial_{z}P_{1_{z=\zeta}}>0,$

which is a well known condition to have a solution of the water waves equations in
absence of surface tension [33, 34, 20, 23, 27, 11]. In presence of surface tension,
the Rayleigh-Taylor criterion is not necessary to have local-well posedness of the
equations of the water waves equations, but the existence time extremely small
if the Rayleigh-Taylor criterion is not satisfied (it corresponds to the existence
time one obtains when the water is above vacuum and not below). The stability
criterion (26) must therefore be understood as a two fluids genemlization of the
Rayleigh-Taylor criterion.

Sketch of proof. We give here the main steps of the proof, and refer to [21] for full
details.
Step 1. In order to “quasilinearize” the equations, one has to differentiate them
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several times $(up to$ order $N=5 is$ enough $in$ dimension $d=1,2)$ . The go$od$

unknowns $(\zeta_{(\alpha)}, \psi_{(\alpha)})$ mentioned above can be generalized for all $\alpha\in \mathbb{N}^{d},$ $|\alpha|\leq N$

by taking
$\zeta_{(\alpha)}=\partial^{\alpha}\zeta, \psi_{(\alpha)}=\partial^{\alpha}\psi-\underline{w}\partial^{\alpha}\zeta$;

they all satisfy a system of the form (25) up to a residual $(R_{\alpha}^{1}, R_{\alpha}^{2})$ .
Step 2. We introduce the following higher order generalization of the energy $E_{0}(U)$

introduced in (23): for all $N\in \mathbb{N}$ , we define $E_{N}(U)$ as

(27)
$E_{N}(U)=| \nabla\psi|_{H^{t}o+2}^{2}+\sum_{\alpha\in \mathbb{N}^{d},|\alpha|\leq N}|\zeta_{(\alpha)}|_{H_{\sigma}^{1}}^{2}+|\psi_{(\alpha)}|_{\dot{H}_{*}^{1/2}}^{2}$

$(the term |\nabla\psi|_{H^{t}0+2}^{2}, with t_{0}>d/2 is due to$ technical reaeons) , and we also denote
by $m^{N}(U)$ any constant of the form

$m^{N}(U)=C(\frac{1}{h_{\min}^{\pm}}, E_{N}(U))$ .

Step 3. We want to show that the big system formed by all the systems satisfied by
the $(\zeta_{(\alpha)}, \psi_{(\alpha)})$ for all $|\alpha|\leq N$ is quasilinear; this means that the residual $R_{\alpha}^{1}$ for
the first equation is controlled by $m^{N}(U)$ in $H_{\sigma}^{1}$-norm, and that the residual $R_{\alpha}^{2}$ is
controlled by $\mathfrak{m}^{N}(U)$ in $|\psi|_{\dot{H}}y^{2}$ -norm (see \S (23) for the definition of these norms).
It turns out that this is not true and that, when $|\alpha|=N$ , subprincipal terms
cannot be put into the residual terms. This difficulty is related to the presence of
the (second order) surface tension term, and several techniques have been proposed
in the case of the water waves equations. We use here the technique proposed in
[26] and which consists in using not only space derivatives to quasilinearize the
system, but also time derivatives.
Step 4. On can then constmct a solution by a standard iterative scheme. $\square$

4. SHALLOW WATER ASYMPTOTICS

We do not consider here the problem of shallow water asymptotics which consists
in describing the behavior of the solutions when the shallowness parameter $\mu$ is very
small, with $\mu$ defined as

$\mu=\frac{H^{2}}{L^{2}}$ with $H= \frac{H^{+}H^{-}}{\rho+H^{-}+\rho^{-}H+},$

and $L$ the typical order for the wavelength of the interfacial waves under consid-
eration. Let us just mention that the main difficulty is to show that the existence
time provided by Theorem 3.1 is uniform with respect to $\mu$ . Once this is done,
one can derive asymptotic models as $\muarrow 0$ (see [8] for a systematic derivation of
shallow water models for two fluids interfaces). Unfortunately, the limit $\muarrow 0$ is
singular and proving that the existence time is uniform with respect to $\mu$ is not
a straightforward adaptation of what we saw in the previous section. One of the
reasons why this limit is singular is because standard symbolic analysis is itself
singular. Indeed, the standard symbolic approximation of the Dirichlet-Neumann
operator can be stated as

(28) $\mathcal{G}^{+}[\zeta]\psi=g_{1}(X, D)+R_{O},$
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where $R_{0}$ is an operator of order zero and $g_{1}(X, D)$ is the pseudo-differential oper-
ator7 of symbol

$g_{1}(X, \xi)=\sqrt{|\xi|^{2}+(|\nabla\zeta|^{2}|\xi|^{2}-(\nabla\zeta\xi)^{2})}.$

The principal part of the operator $\mathcal{G}^{+}[\zeta]$ is therefore $g_{1}(X, D)$ , and one can check
that it does not depend on the bottom. The above decomposition could be gener-
alized into

$\mathcal{G}^{+}[\zeta]\psi=g_{1}(X, D)+g_{0}(X, D)+\cdots+\ldots g_{-k}(X, D)+R_{-k-1},$

with $g_{j}(X, \xi)(-k\leq j\leq 1)$ a symbol of order $j$ and $R_{-k-1}$ an operator of order
$-k-1$ . One would then check that none of the symbols $g_{j}(X, \xi)$ depends on
the bottom. The reason for this is because the contribution of the bottom to the
Dirichlet-Neumann operator is analytic by standard elhptic theory and therefore
transparent to any homogeneous symbolic expansion (at any order). In the shallow
water limit, where the role of the bottom topography is crucial, this is problematic.

In the water waves case, it is possible to bypass the use of the symbolic ap-
proximation of the Dirichlet-Neumann operator [3, 16], but it is not clear whether
this approach can be generalized to the two fluids case. In [21], another approach
has therefore been proposed. It consists in adding a “tail” to the principal symbol
of the Dirichlet Neumann operator; this tail is of order - $\infty$ and accounts for the
effects of the bottom on the Dirichlet-Neumann operator. More precisely, we use
the decomposition

(29) $\mathcal{G}^{+}[\zeta]\psi=g(X, D)+R_{0},$

where $R_{0}$ is a zero order operator, while the symbol $g(X, \xi)$ is given by

$g(X, \xi)=g_{1}(X, \xi)\tanh((H^{+}+\zeta)\int_{-H}^{0}\frac{|\xi|^{2}+(z+H^{+})^{2}(|\nabla\zeta|^{2}|\xi|^{2}-(\nabla\zeta\cdot\xi)^{2})}{+1+(z+H^{+})^{2}|\nabla\zeta|^{2}}dz)$.

The difference between (28) and (29) is that an infinitely smoothing “tail” has been
added to the symbohc description; this tail $t(X, \xi)$ is

$t(X, \xi)=1-\tanh((H^{+}+\zeta)\int_{-H}^{0}\frac{|\xi|^{2}+(z+H^{+})^{2}(|\nabla\zeta|^{2}|\xi|^{2}-(\nabla\zeta\cdot\xi)^{2})}{+1+(z+H^{+})^{2}|\nabla\zeta|^{2}}dz)$ .

The symbolic description (29) now depends on the bottom, and using this symbolic
approximation “with tail” removes the shallow water singularity, and it is possible
to handle the shallow water limit.
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