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Abstract
In this paper, we consider the motion of isentropic gas in the Laval nozzle.
First, we introduce the physical phenomena of steady flow. In particular, we

investigate two questions: (1) Why does the rocket engine have convergent-divergent
form? (2) Why is the speed of the solar wind large? Considering theses questions,
we study the properties of the Laval nozzle.

Next, we consider the unsteady flow in the Laval nozzle. Our goal is to prove
the time global existence of solutions. Then, the most difficult point is to obtain
the bounded estimate of solutions. To solve this, we introduce an invariant region.

1 Introduction
We are concemed with a convergent-divergent
nozzle, which is pinched in the middle, making
an hourglass-shape (see Figure 1). This is called
the Laval nozzle. We assume the cross section
is a circle and the center lies on a line. Let the
cross section at $x$ be $A(x)$ . Moreover, we call
the left and right of the nozzle the entry and
exhaust section, respectively.

In engineering, it is used for the exhaust
$\Lambda(:l:)$

port of the engines for rockets and supersonic
jet airplanes. On the other hand, the motion
of gas in the Laval nozzle is closely relative to Fi ure 1: Laval Nozzlthat of solar wind, the stream of plasma ejected lgure : ava ozz $e$

fr$om$ the corona of the sun.
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The Laval nozzle is essential for rockets and supersonic jet airplanes, because the Laval
nozzle can accelerate a subsonic gas flow to a supersonic one (see [2]). As a result, the
engine equipped with the Laval nozzle has maximal thrust.

2 Steady Solution
The steady flow of the inviscid and compressible gas through a nozzle is govemed by the
following equation.

$\{\begin{array}{l}m’=-\frac{A’(x)}{A(x)}m,(\frac{m^{2}}{\rho}+p(\rho))’=-\frac{A’(x)}{A(x)}\frac{m^{2}}{\rho},\end{array}$ $x\in R,$ $\prime=\frac{d}{dx}$ , (2.1)

where $\rho,$ $m$ and $p$ are the density, the momentum and the pressure of the gas, respectively.
If $\rho>0,$ $v=m/\rho$ represents the velocity. For a barotropic gae, $p(\rho)=\rho^{\gamma}/\gamma$ , where
$\gamma\in(1,5/3]$ is the adiabatic exponent for usual gases.

In this section, we consider the only gas which flows from left to right. Therefore,
every velocity, momentum and Mach number are positive in this section.

From (2.1), we obtain the mass flow conservation

$A(x)m=A(x)\rho v=C_{1}$ (2.2)

and the Bemoulli equation

$\frac{v^{2}}{2}+\frac{\rho^{\gamma-1}}{\gamma-1}=C_{2}$ , (2.3)

where $C_{1}$ and $C_{2}$ are constants.
Next, we introduce some physical terms. We define the sonic speed by $c=\sqrt{p’(\rho)}=$

$p^{L^{-\underline{1}}}2$ $A$ steady flow is called subsonic, sonic, or supersonic as the speed of gas $v$ is less
than, equal to, or greater than the sound speed, i.e., the Mach number

$M= \frac{v}{c}$

is less than, equal to, or greater than one. The thrust $T$ is defined by

$T=A(x)\rho v^{2}$ . (2.4)

The thrust is the force that produced by an engine to push a plane and rocket forward.

2.1 Laval Nozzle
The Laval nozzle is invented by Gustaf de Laval. He was a Swedish engineer. He first
researched such a convergent-divergent nozzle. In addition, he made important contribu-
tion to dairy machine. In particular, he is famous for inventing milk-cream separator in
Europe.
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In this subsection, we investigate why the exhaust port of the rocket engine has the
convergent-divergent form.

In the rocket engine, the oxygen (oxidizing agent) and hydrogen (fuel) are mixed and
bumed in a combustion chamber. The resultant gas flows through the Laval nozzle, which
constitutes the exhaust port. We study the motion of gas in this nozzle in particular.

We assume that $A(x)$ satisfies the following.

$\{\begin{array}{l}A’(x)\leq 0, x<0,A’(x)\geq 0, x\geq 0,A’(0)=0.\end{array}$ (2.5)

Notice that $A(x)$ is minimum at the origin. We call the origin throat. Moreover, let the
entry section be $x_{0}$ and the Mach number at $x_{0}$ be $M_{0}.$

$\frac{A(x)}{xoOx}$
Figure 2: Laval Nozzle

If the Mach number of the exhaust gas at the entry section is lower than one (i.e.
subsonic $M_{0}<1$ ), our goal is to make the thrust (of the exhaust gas at the exhaust
section) $T$ maximum.

It follows from (2.2) and (2.3) that

$T=A(x) \rho v^{2}=C_{1}\sqrt{(\gamma-1)C_{2}}\frac{1}{\sqrt{\frac{\gamma-1}{2}+_{M}arrow 1}}$
. (2.6)

We find that $T$ is the increasing function of $M$ . Therefore, we devote to investigating the
behavior of $M.$

From (2.1), we obtain the following

$F(M)= \frac{A(x_{0})}{A(x)}F(M_{0})$ , (2.7)

where

$F(M)=M( \frac{\frac{\gamma+1}{2}}{1+\frac{\gamma-1}{2}M^{2}})^{\frac{\gamma+1}{2(\gamma-1)}}$
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Then we find that

$F(0)=0,$ $F(1)=1,$ $\{\begin{array}{l}F’(M)\geq 0, 0\leq M<1,F’(M)\leq 0, M\geq 1,\end{array}$ $F(M)arrow 0$ $(Marrow\infty)$ .

In the view of (2.7), there only exists a solution, if the following holds

$\frac{A(x_{0})}{A(0)}F(M_{0})\leq 1.$

In this case, since $A(x)$ is increasing in the Figure 4: Case (I) (ii)
region, the right hand side of (2.7) is de-
creasing. Therefore, we find $M$ is decreasing (see Figure 4).

As a consequence, the graph of $M$ is as follows.

Figure 5: Graph of the Mach Number in Case (I)
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(II) Critical Case
We next consider the case where

$\frac{A(x_{0})}{A(0)}F(\hat{M}_{0})=1.$

(II) (i) $x_{0}\leq x\leq 0$

In this case, the situation is similar to Case
(I) (i). Notice that the right hand side at
the origin is 1, the top of the graph (see
Figure 6). This fact yields a bifurcation on
the region where $x>0.$

(II) (ii) $x>0$
The flrst solution is the almost same as the
previous case (see Figure 7).

Figure 7: (II) (ii) Solution I
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By using the Laval nozzle, we can obtain the supersonic gas $(M>1)$ from the subsonic
gas $(M< 1)$ . As a result, the gas has the maximal thrust at the exhaust section.
Therefore, the Laval nozzle is essential for the $ro$cket and the supersonic jet plane.

2.2 Solar Wind

(2.8)

The solar wind is the stream of the plasma ejected from the corona of the sun. It consists
of electrons and positive ions. The solar wind collides with the magnetosphere of the
earth. As a result, influencing its magnetic field, the solar wind causes the outbreak of
auroras and the electromagnetic interference. Although these phenomena are well-known,
we pay attention to another one. That is, the speed of the solar wind near the orbit of
the earth is 300 $\sim$700 km$/s$ . In this subsection, we investigate why the speed of the solar
wind is so large.

We consider the spherically symmetric flow around the sun. We denote the radius of
the sun by $r_{0}$ . Let the distance from the center of the sun be $r.$

For simplicity, we consider the isothermal case $(\gamma=1)$ . The motion of the solar wind
is govemed by the following equation.

$\{m’=(\frac{m^{2}}{\rho}+\rho)’-\frac{2}{r}m, =-\frac{2}{r}\frac{m^{2}}{\rho}-\frac{GM_{s}}{r^{2}}\rho, r\geq r_{0}, \prime=\frac{d}{dr},$

where $G$ is the gravitational constant and $M_{8}$ is the mass of the sun. Since $c=1$ in this
case, we find $v=M.$

From (2.8), we have the following.

$(F_{s}(M)A_{S}(r))’=0$ , (2.9)

where

$F_{s}(M)=Me^{-\frac{1}{2}M^{2}} A_{s}(r)=r^{2_{e^{arrow}}^{GM}}r$

$F_{S}(M)$ and $A_{s}(r)$ satisfy the following.

$\{\begin{array}{l}F_{s}’(M)\geq 0,0\leq M\leq 1,F_{s}’(M)\leq 0,1<M,\{\end{array}$

$A_{s}’(r)\leq 0,$ $r_{0}\leq r<GM_{s}/2,$

$A_{s}’(r)\geq 0,$ $r\geq GM_{s}/2,$

$F_{S}(0)=0,$

$F_{s}(M)arrow 0$ $(Marrow\infty)$ ,
$A_{s}’(GM_{s}/2)=0.$

(2.10)

Their decrease and increase is the same as $F(M)$ and $A(x)$ in (2.7).
Therefore, (2.8) has the same structure as the Laval nozzle. This implies that the

motion of solar wind is the same as that of the gas in (2.1). As a result, the solar wind
can be supersonic.
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$Th|s$ plasma is a arge speed.

Figure 10: Graph of Solar Wind

3 Unsteady Flow

3.1 Relative Results and the Main Theorem
The motion of isentropic gas flow through a nozzle is govemed by the following compress-
ible Euler equations.

$\{\begin{array}{l}p_{t}+m_{x}=a(x)m,m_{t}+(\frac{m^{2}}{\rho}+p(\rho))_{x}=a(x)\frac{m^{2}}{\rho}, x\in R,\end{array}$ (3.1)

where the given function $a(x)$ is represented by

$a(x)=-A’(x)/A(x) , A(x)=e^{-\int^{x}a(y)dy},$

where $A\in C^{2}(R)$ is a slowly varying cross section at $x$ in the nozzle. Since we are devoted
to the Laval nozzle, we assume that $A(x)$ satisfies (2.5).

We then consider the Cauchy problem (3.1) with initial data

$(\rho, m)|_{t=0}=(\rho_{0}(x), m_{0}(x))=(\rho_{0}(x), \rho_{0}(x)v_{0}(x))$ . (3.2)

We survey the relative results for the Cauchy problem $(3.1)-(3.2)$ .
LIU [3] is a classical result celebrated for inhomogeneous conservation laws including

(3.1). In this result, the global existence of solutions is proved by the Glimm scheme,
provided that

(Cl) the total variation of initial data is small enough,

(C2) initial data are away from sonic states,

(C3) inhomogeneous terms are small enough in $L^{1}$ and $L^{\infty}.$
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However, as mentioned above, the important subsonic-supersonic flow attains the sonic
state at the throat. In addition, since gas tums from subsonic to supersonic, the value
changes a great deal. Therefore, the condition (Cl) and (C2) are restrictive for physics
and engineering.

To state our main theorem, we define the Riemann invariants.

$z= \frac{m}{\rho}-\frac{\rho^{\theta}}{\theta}=v-\frac{\rho^{\theta}}{\theta}, w=\frac{m}{\rho}+\frac{\rho^{\theta}}{\theta}=v+\frac{\rho^{\theta}}{\theta} (\theta=\frac{\gamma-1}{2})$ . (3.3)

These Riemann invariants satisfy the following.

Remark 1.

$|w|\geq|z|,$ $w\geq 0$ , when $v\geq 0.$ $|w|\leq|z|,$ $z\leq 0$ , when $v\leq 0$ . (3.4)

$v= \frac{w+z}{2}, \rho=(\frac{\theta(w-z)}{2})^{1/\theta}, m=\rho v$ . (3.5)

From the above, the lower bound of $z$ and the upper bound of $w$ yield the bound of $\rho$ and
$|v|.$

Then, the main theorem is as follows.

Theorem 1 ([6]). We assume that, for any fixed positive constant $M$ , initial density and
velocity data $(\rho_{0}, v_{0})\in L^{\infty}(R)$ satisfy

$p_{0}(x) \geq 0, -M\{A_{-}(x)\}^{-\mapsto_{\gamma+}^{-1}}\leq z_{0}(x) :=v_{0}(x)-\frac{\{\rho_{0}(x)\}^{\theta}}{\theta},$

(3.6)
$w_{0}(x) :=v_{0}(x)+ \frac{\{\rho_{0}(x)\}^{\theta}}{\theta}\leq M\{A_{+}(x)\}^{-\mapsto_{\gamma+}^{-1}}.$

Then the Cauchy problem $(3.1)-(3.2)$ has a global entropy weak soluinon, where

$A_{-}(x)=\{\begin{array}{l}A(x) , x\geq 0,A(0) , x<0,\end{array}$ $A_{+}(x)=\{\begin{array}{l}A(0) , x\geq 0,A(x) , x<0.\end{array}$

Remark 2. We make two remarks for the condition (3.6).

$\bullet$ If $A(x)$ is uniformly bounded, (3.6) implies that we can give arbitrary $L^{\infty}$ data.. Solutions of Theorem 1 satisfy

$0 \leq\rho(x, t) , -M\{A_{-}(x)\}^{-\mapsto_{\gamma+}^{-1}}\leq z(x, t) :=v(x, t)-\frac{\{\rho(x,t)\}^{\theta}}{\theta},$

$w(x, t) :=v(x, t)+ \frac{\{\rho(x,t)\}^{\theta}}{\theta}\leq M\{A_{+}(x)\}^{-\mapsto_{\gamma+}^{-1}}.$

That is, the region

$\triangle_{x}=\{(\rho, v);\rho\geq 0, -M\{A_{-}(x)\}^{-L_{\frac{1}{1}}^{-}}\gamma+\leq z, w\leq M\{A_{+}(x)\}^{-2}\gamma^{\frac{-1}{+1}}\}$ (3.7)
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is the invariant region for solutions of Theorem 1. The region depends on the space
variable $x$ and is closely related to the geometric structure of the source term $A(x)$ .
These points are quite different from those of Chueh, Conley and Smoller’s invariant
region theory (see [1]).

The $mo$st difficult point in the proof is to obtain the bounded estimate of solutions. For
the one-dimensional case $(i.e. A’(x)=0)$ , the invariant regions [1] are standard methods
to $0$btain the estimate. However, we cannot apply their method to the nozzle flow (3.1).
In TSUGE [5], the global existence of solutions is proved for the case $A(x)=x^{2}$ (spherical
symmetry). If $A(x)$ is monotone decreasing or increasing, we can apply the method [5] to
the present problem. In fact, LU [4] applies this method to (3.1) with a monotone $A(x)$ .
In this paper, we improve the method and apply it to the Laval nozzle. The main point is
to prove that (3.7) is an invariant region for the Cauchy problem $(3.1)-(3.2)$ . This yields
the desired bounded estimate of solutions.

3.2 Outline of the Proof (Formal Argument)
In this subsection, by formal argument, we deduce the bounded estimate of solutions.

If (3.1) has a smooth solution, we can diagonalize (3.1) into

$z_{t}+\lambda_{1}z_{x}=-a(x)\rho^{\theta}v,$

(3.8)
$w_{t}+\lambda_{2}w_{x}=a(x)\rho^{\theta}v.$

Remark 3. (3.1) has discontinuous solutions. Therefore, (3.8) does not hold in general.

We prove that $\triangle_{x}$ is an invariant region, that is, for any fixed $M>0$ , if initial data
satisfy

$-M\{A_{-}(x)\}^{-arrow-1}\gamma+1\leq z_{0}(x) , w_{0}(x)\leq M\{A_{+}(x)\}^{-arrow-1}\gamma+1,$

solutions to the Cauchy problem $(3.1)-(3.2)$ satisfy

$-M\{A_{-}(x)\}^{-L_{\frac{1}{1}}^{-}}\gamma+\leq z(x, t) , w(x, t)\leq M\{A_{+}(x)\}^{-\iota}\gamma^{\frac{-1}{+1}}$ . (3.9)

We set $\tilde{z}=\{A_{-}(x)\}^{L_{\frac{1}{1}}^{-}}\gamma+z,\tilde{w}=\{A_{+}(x)\}^{arrow-1}\gamma+1w$ . We shall prove the following holds

$-M\leq\tilde{z}(x, t) , \tilde{w}(x, t)\leq M,$

provided that $-M\leq\tilde{z}_{0}(x),\tilde{w}_{0}(x)\leq M.$

For any positive constants $\epsilon$ and $T$ , we set

$\check{z}(x, t)=\tilde{z}(x, t)+\frac{\epsilon}{T-t}, \check{w}(x, t)=\tilde{w}(x, t)-\frac{\epsilon}{T-t}.$

Then we find

$-M<\check{z}_{0}(x) , \check{w}_{0}(x)<M.$
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For simplicity, we assume $\check{z}(x, t)$ and $\check{w}(x, t)$ have compact supports on $0\leq t<T$ . Then,
on $0\leq t<T$ , our goal is to prove

$-M<\check{z}(x, t) , \check{w}(x, t)<M.$

We assume that there exists a point $x=x_{*},$ $t=t_{*}(t_{*}<T)$ such that

$-M=\check{z}(x_{*}, t_{*}) , -M<\check{z}(x, t) , \check{w}(x, t)<M, 0\leq t<t_{*}$ (3.10)

or
$\check{w}(x_{*}, t_{*})=M, -M<\check{z}(x, t) , \check{w}(x, t)<M, 0\leq t<t_{*}$ . (3.11)

Then we shall deduce a contradiction. For symmetry, we hereafter consider the only case
where $x_{*}\geq 0$ . Then, we notice that $a(x_{*})\leq 0$ . We can similarly treat with the case
where $x_{*}<0.$

First, we consider the case (3.10). Then, since $\check{z}$ attains the minimum at $x=x_{*},$ $t=t_{*},$

we find $\check{z}_{t}\leq 0,\check{z}_{x}=0$ . On the other hand, from

$\tilde{z}_{t}+\lambda_{1}(u)\tilde{z}_{x}=-\frac{\gamma-1}{\gamma+1}a(x)\{A(x)\}^{L_{+^{\frac{1}{1}}}^{-}}\gamma((v)^{2}+\frac{(\rho)^{2\theta}}{\theta})$

and $\check{z}(x, t)=\tilde{z}(x, t)+\epsilon/(T-t)$ , at $x=x_{*},$ $t=t_{*}$ we have

$\check{z}_{t}+\lambda_{1}(u)\check{z}_{x}=-\frac{\gamma-1}{\gamma+1}a(x)\{A(x)\}^{L_{\frac{1}{1}}^{-}}\gamma+((v)^{2}+\frac{(\rho)^{2\theta}}{\theta})+\frac{\epsilon}{(T-t)^{2}}>0.$

This is a contradiction.
Next, we consider the case (3.11). Since $\check{w}$ attains the maximum at $x=x_{*},$ $t=t_{*}$ , we

find $\check{w}_{t}\geq 0,\check{w}_{x}=0$ . On the other hand, at $x=x_{*},$ $t=t_{*}$ , we notice that

$w+z=\{A(0)\}^{-L_{\frac{1}{1}}^{-}}\gamma+\tilde{w}+\{A(x_{*})\}^{-\equiv}\gamma+1\tilde{z}1$

$= \{A(0)\}^{-L^{-}\frac{1}{1}}\gamma+(\check{w}+\frac{\epsilon}{T-t})+\{A(x_{*})\}^{-L_{\frac{1}{1}}^{-}}\gamma+(\check{z}-\frac{\epsilon}{T-t})$

$\geq(M+\frac{\epsilon}{T-t})[\{A(0)\}^{-L_{\frac{1}{1}}^{-}}\gamma+-\{A(x_{*})\}^{-L_{\frac{1}{1}}^{-}}\gamma+]\geq 0.$

Then, from

$\tilde{w}_{t}+\lambda_{2}\tilde{w}_{x}=a(x)\{A(0)\}^{2}\gamma^{\frac{-1}{+1}}\rho^{\theta}\frac{w+z}{2}$

and $\check{w}(x, t)=\tilde{w}(x, t)-\epsilon/(T-t)$ , we have

$\check{w}_{t}+\lambda_{2}\check{w}_{x}=a(x)\{A(0)\}^{f}\gamma^{\frac{-1}{+1}}\rho^{\theta}\frac{w+z}{2}-\frac{\epsilon}{(T-t)^{2}}<0.$

This is a contradiction.
Since $\epsilon$ and $T$ are arbitrary, we can prove (3.9).
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