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Abstract

We give the $\Pi_{2}^{0}$-part, the $\Pi_{3}^{0}$-part and the $\Pi_{4}^{0}$-part of $RT_{2}^{2}$ and related combinatorial
principles.

1 Introduction

Determinating the first-order part of $WKL_{0}+RT_{2}^{2}$ and other important combinatorial
principles is a one of the crucial topics in the study of Reverse Mathematics (see, e.g.,
[2, 4] $)$ . The usual approach for these questions is using forcing arguments to construct
a second-order part for the target combinatorial principle. On the other hand, there is
a traditional way to study the strength of combinatorial principles by using indicator
functions. (For the details of indicator functions, see [6].) In [1], Bovykin and Weiermann
gave the $\Pi_{2}^{0}$-part of $WKL_{0}+RT_{2}^{2}$ by means of an indicator function defined by a density
notion, using the idea of Paris [7] and Paris/Kirby [8]. Using similar arguments, we can
show that the $\Pi_{2}^{0}$-part of $WKL_{0}^{*}+RT_{2}^{2}$ is equivalent to Elementary Function Arithmetic
(see [9]). In this paper, we give the $\Pi_{3}^{0}$-part and the $\Pi_{4}^{0}$-part of $WKL_{0}+RT_{2}^{2}$ based on [1].
We will also give several density notions to characterize the $\Pi_{2}^{0}$-part, the $\Pi_{3}^{0}$-part and the
$\Pi_{4}^{0}$-part of $RT_{<\infty}^{2},$ $SRT_{2}^{2},$ $SRT_{<\infty}^{2}$ and $EM.$

2 The $\Pi_{2}^{0}$-part of $WKL_{0}+RT_{2}^{2}$

This section is essentially due to Bovykin/Weiermann[l].

Definition 2.1 (within $I\Sigma_{1}$ ). For a finite set $X$ , we define the notion of $n$ -density as
follows.

$\bullet$ $A$ finite set $X$ is said to be $0$ -dense if $|X|> \min X.$. $A$ finite set $X$ is said to be $n+1$ -dense if for any (coloring) function $P:[X]^{2}arrow 2,$

there exists a subset $Y\subseteq X$ such that $Y$ is $n$-dense and $Y$ is $P$-homogeneous, i. e.,
$P$ is constant on $[Y]^{2}.$
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Note that “$X$ is $m$-dense” can be expressed by a $\Sigma_{0}$-formula.

Definition 2.2. $nPH_{2}^{2}$ asserts that for any $a$ there exists an $n$-dense set $X$ such that
$\min X>a.$

Define $T_{0};=\{kPH_{2}^{2}|k\in\omega\}\cup I\Sigma_{1}.$

Lemma 2.1. $\bullet$ $WKL_{0}+RT_{2}^{2}\vdash nPH_{2}^{2}$ for any $n\in\omega.$. $I\Sigma_{1}\vdash mPH_{2}^{2}arrow PH_{m+1}^{2}.$

Proof. Easy. $\square$

Lemma 2.2 (Bovykin/Weiermann[l]). Let $M$ be a countable model of $I\Sigma_{1}$ , and let $X\subseteq M$

is $a(M-)$finite set which is $k$ -dense for any $k\in\omega$ . Then, there exists a cut $I\subseteq M$ such
that $\min X\in I<\max X,$ $X\cap I$ is unbounded in I and $(I, Cod(I/M)\models$ WKL$0+RT_{2}^{2}.$

Proof. See [1]. $\square$

Theorem 2.3 (Bovykin/Weiermann[l]). $A\Pi_{2}^{0}$ sentence $\psi$ is provable in $WKL_{0}+RT_{2}^{2}$ if
and only if it is provable in $T_{0}.$

Proof. See [1]. $\square$

In fact, we can generalize this theorem as follows.

Theorem 2.4. $A\Pi_{2}^{0}fo\ovalbox{\tt\small REJECT} ula\psi$ ($\psi$ may contain set parameters) is provable in $WKL_{0}+RT_{2}^{2}$

if and only if it is provable in $I\Sigma_{1}^{0}\cup\{kPH_{2}^{2}|k\in\omega\}$ . (Here, $I\Sigma_{1}^{0}$ is a system of second-
order arithmetic which contains basic axioms and induction axioms for $\Sigma_{1}^{0}$ -formulas with
set parameters.)

3 The $\Pi_{3}^{0}$-part of $WKL_{0}+RT_{2}^{2}$

Definition 3.1. Let $\theta(a, x, y)$ be a $\Sigma_{0}$-formula. We say that a finite set $X=\{a_{i}|i\leq l\}$

dominates $\theta(a, \cdot, \cdot)$ if $\forall i<l\forall x\leq a_{i}\exists y\leq a_{i+1}\theta(a, x, y)$ holds. We define several variations
of $PH_{2}^{2}$ as follows:

$\bullet$ $\theta-nPH_{2}^{2}:\equiv\forall a(\forall x\exists y\theta(a, x, y)arrow\exists X(X is$ finite, $n-$dense, $and$ dominates $\theta(a, \cdot, \cdot))$),

$\bullet$

$n\overline{PH_{2}^{2}}$ $:\equiv\forall X(\forall x\exists y\geq xy\in Xarrow\exists Y (Y is$ finite, $n-$dense, $and Y\subseteq X)$ ).

Define $T_{1};=\{\theta-kPH_{2}^{2}|k\in\omega, \theta\in\Sigma_{0}\}\cup I\Sigma_{1}$ and $\overline{T_{1}}$ $:=\{k\overline{PH_{2}^{2}}|k\in\omega\}\cup RCA_{0}$ . Note
that $T_{1}$ is a $\Pi_{3}^{0}$-theory, i. e., $T_{1}$ is a set of $\Pi_{3}^{0}$-sentences.

Lemma 3.1. Let $\theta(a,\underline{x,}y)$ be a $\Sigma_{0}$ -formula, and let $n\in\omega$ . Then, $WKL_{0}+RT_{2}^{2}\vdash\thetaarrow nPH_{2}^{2},$

and $WKL_{0}+RT_{2}^{2}\vdash nPH_{2}^{2}.$

Proof. Easy. $\square$
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Theorem 3.2. $A\Pi_{3}^{0}$ sentence $\psi$ is provable in $WKL_{0}+RT_{2}^{2}$ if and only if it is provable
in $T_{1}$ . Thus, $T_{1}$ is the $\Pi_{3}^{0}$ -part of $WKL_{0}+RT_{2}^{2}.$

Proof. We show that $T_{1}\mu\psi$ implies $WKL_{0}+RT_{2}^{2}?\psi$ for any $\Pi_{3}^{0}$-sentence $\psi$ . Assume that
$\psi\equiv\forall a\exists x\forall y\theta(a, x, y)$ is not provable from $T_{1}$ . Then, there exists a nonstandard countable
$mo$del $M\models T_{1}$ such that $M\models\forall x\exists y\neg\theta(a, x, y)$ for some $a\in M$ . By $(\neg\theta)-kPH_{2}^{2}$ and
overspill, there exists an $m$-dense set $X$ which dominates $\neg\theta(a, \cdot, \cdot)$ for some $m\in M\backslash \omega$ . By
Lemma 2.2, there exists an initial segment $I\subseteq_{e}M$ such that $(I, Cod(I/M)$ ) $\models WKL_{0}+RT_{2}^{2}$

and $I\cap X$ is unbounded in $I$ . Since $X$ dominates $\neg\theta$ , for any $x\in I$ there exists $y\in I$ such
that $I\models\neg\theta(a, x, y)$ . Thus, we have $(I, Cod(I/M)$ ) $\models\neg\psi$ , which means that $WKL_{0}+RT_{2}^{2}\mu$

$\psi.$ $\square$

Theorem 3.3. $A\Pi_{3}^{0}$ formula $\psi$ is provable in $WKL_{0}+RT_{2}^{2}$ if and only if it is provable
in $\overline{T_{1}}.$

Proof. Similar to the proof of Theorem 3.2. $\square$

Note that $\overline{T_{1}}$ is equivalent to $I\Sigma_{1}^{0}\cup\{\forall A\forall a(\forall x\exists y\theta(A, a, x, y)arrow\exists X(X$ is finite, $n$-dense,
and dominates $\theta(A, a, \cdot, \cdot)))|n\in\omega,$ $\theta\in\Sigma_{0}^{0}\}$ with respect to $\Pi_{1}^{1}$ -sentences.

4 The $\Pi_{4}^{0}$-part of $WKL_{0}+RT_{2}^{2}$

Definition 4.1 (within $I\Sigma_{1}$ ). Let $\theta(a, x, y, z)$ be a $\Sigma_{0}$-formula. Then, we define the notion
of weakly domination as follows.. $A0$-dense set $X$ weakly dominates $\theta(a, \cdot, \cdot, \cdot)$ .. An $n+1$-dense set $X$ weakly dominates $\theta(a, \cdot, \cdot, \cdot)$ if for any coloring $P:[X]^{2}arrow 2,$

there exists a $P$-homogeneous set $Y\subseteq X$ such that $\forall x<\min X\exists y<\min Y\forall z<$

$\max Y\theta(a, x, y, z),$ $Y$ is $n$-dense and weakly dominates $\theta(a, \cdot, \cdot, \cdot)$ .

Note that “$X$ is $m$-dense and weakly dominates $\theta(a, \cdot, \cdot, \cdot)$
” can be expressed by a $\Sigma_{0}$

formula.

Definition 4.2. Let $\theta(a, x, y, z)$ be a $\Sigma_{0}$-formula. Then, the assertion $\theta^{*}-nPH_{2}^{2}$ is the
following

$\forall a\forall b(\forall x\exists y\forall z\theta(a, x, y, z)arrow\exists X(X is n-$dense, weakly dominates $\theta(a, \cdot, \cdot, \cdot)$ and $\min X>b$).

Define $T_{2}:=\{\theta^{*}-nPH_{2}^{2}|n\in\omega, \theta(a, x, y, z)\in\Sigma_{0}\}\cup I\Sigma_{1}$. Note that $T_{2}$ is a $\Pi_{4}^{0}$-theory.

Lemma 4.1. Let $\theta(a, x, y, z)$ be a $\Sigma_{0}$ -formula, and let $n\in\omega$ . Then, $WKL_{0}+RT_{2}^{2}\vdash$

$\theta^{*}-nPH_{2}^{2}.$

Proof. Easy. $\square$
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Theorem 4.2. $A\Pi_{4}^{0}$ sentence $\psi$ is provable in $WKL_{0}+RT_{2}^{2}$ if and only if it is provable
in $T_{2}$ . Thus, $T_{2}$ is the $\Pi_{4}^{0}$ -part of $WKL_{0}+RT_{2}^{2}.$

Proof. We show that $T_{2}\mu\psi$ implies $WKL_{0}+RT_{2}^{2}\forall\psi$ for any $\Pi_{4}^{0}$-sentence $\psi$ . Assume
that $\psi\equiv\forall a\exists x\forall y\forall z\theta(a, x, y, z)$ is not provable from $T_{2}$ . Then, there exists a nonstan-
dard countable model $M\models T_{2}$ such that $M\models\forall x\exists y\neg\theta(a, x, y, z)$ for some $a\in M$ . By
$(k, \neg\theta)PH_{2}^{2}$ and overspill, there exists an $(m, \theta(a, \cdot, \cdot, \cdot))$ -dense set $X$ such that $\min X>a$

for some $m\in M\backslash \omega$ . As the proof of Theorem 1 of [1], we can construct a descending
sequence $X=X_{0}\supseteq X_{1}\supseteq X_{2}\supseteq\ldots$ which satisfies the following:

$\bullet$ $I= \sup\{\min X_{i}|i\in\omega\}\subseteq_{e}M,$

$\bullet$ $(I, Cod(I/M)$ ) $\models WKL_{0}+RT_{2}^{2},$. $I\cap X$ is unbounded in $I,$

$\bullet$ $\forall x\leq\min X_{i}\exists y\leq\min X_{i+1}\forall z\leq\max X_{i+1}\neg\theta(a, x, y, z)$ for any $i\in\omega.$

Since $\min X_{i}<\min X_{i+1}<I<\max X_{i+1}$ for any $i\in\omega$ , we have $I\models\forall x\exists y\forall z\neg\theta(a, x, y, z)$ ,
i. e., $(I, Cod(I/M)$ ) $\models\neg\psi$ . This means that $WKL_{0}+RT_{2}^{2}\forall\psi.$ $\square$

Remark 4.3. Adding set parameters, we can easily show the following: a $\Pi_{4}^{0}$ formula $\psi$

is provable in $WKL_{0}+RT_{2}^{2}$ if and only if it is provable in

$I\Sigma_{1}^{0}\cup\{\forall A\forall a\forall b(\forall x\exists y\forall z\theta(A, a, x, y, z)arrow\exists X(X is n-$ dense, weakly dominates $\theta(A, a, \cdot, \cdot, \cdot)$

and $\min X>b)|n\in\omega,$ $\theta\in\Sigma_{0}^{0}\}.$

5 $PH_{2}^{2}$ with stronger largeness notion

In this section, we compare $nPH_{2}^{2}$ with $PH_{2}^{2}$ plus “stronger largeness”.

Definition 5.1 (within $I\Sigma_{1}$ ). $\bullet$ $A$ finite set $X$ is said to be $0$ -large if $X\neq\emptyset.$

$\bullet$ $A$ finite set $X$ is said to be $r+1$ -large if there is a partition $X=\sqcup_{i\leq\min X}Y_{i}$ such
that $\max Y_{i}<\min Y_{i+1}$ for any $i< \min X$ and each $Y_{i}$ is $r$-large.

Remark 5.1. 1. For any $r\in\omega,$ $I\Sigma_{1}$ proves that for any $a$ , there exists a finite set $X$

such that $\min X>a$ and $X$ is $r$-large.

2. $Q(a, b)$ $:= \max${$r|[a,$ $b]$ is $r$-large} is an indicator function for $WKL_{0}.$

3, More generally, if $M$ is a model of $I\Sigma_{1}$ and $X\subseteq M$ is $r$-large for some $r\in M\backslash \omega,$

then there exists a cut $I\subseteq_{e}M$ such that $(I, Cod(I/M)$ ) $\models WKL_{0}$ and $X\cap I$ is
unbounded in $I.$

Definition 5.2. 1. $PH_{2,r}^{2}$ asserts that for any $a$ , there exists a finite set $X$ such that
$\min X>a$ and for any coloring $P$ : $[X]^{2}arrow 2$ , there exists a $P$-homogeneous set
$Y\subseteq X$ which is $r$-large.
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2. $\overline{PH_{2,r}^{2}}$ asserts that for any infinite set $A$ , there exists a finite set $X$ such that $X\subseteq A$

and for any coloring $P:[X]^{2}arrow 2$ , there exists a $P$-homogeneous set $Y\subseteq X$ which
is $r$-large.

3. In general, $n\overline{PH_{2,r}^{2}}$ asserts that for any infinite set $A$ , there exists a finite set $X$ such
that $X\subseteq A$ and $X$ is $(n, r)$-dense, where the notion of $(n, r)$-density is defined as
follows:. $A$ finite set $X$ is said to be $(0, r)$ -dense if $X$ is $r$-large.. $A$ finite set $X$ is said to be $(n+1, r)$ -dense if for any coloring $P$ : $[X]^{2}arrow 2,$

there exists a $P$-homogeneous set $Y\subseteq X$ which is $(n, r)$-dense.

Proposition 5.2. $I\Sigma_{1}\vdash nPH_{2}^{2}arrow PH_{2,n}^{2}.$

Proof. Easy. $\square$

The strength of $PH_{2,r}^{2}$ is related to the strength of $nPH_{2}^{2}$ in the following meaning.

Proposition 5.3. Assume that $WKL_{0}\vdash\overline{PH_{2,r}^{2}}$ for all $r\in\omega$ , then we have $WKL_{0}\vdash n\overline{PH_{2}^{2}}$

for all $n\in\omega.$

Proof. Our assumption is $WKL_{0}\vdash 1\overline{PH_{2,r}^{2}}$ for any $r\in\omega$ . We will show by induction on $n$

that $WKL_{0}\vdash nPH_{2,r}^{2}$ for any $r\in\omega$ and for any $n\in\omega$ . Let $WKL_{0}\vdash nPH_{2,r}^{2}$ for any $r\in\omega.$

Assume for the sake of contradiction that $WKL_{0}\forall(n+1)PH_{2,r}^{2}$ for some $r\in\omega$ . Then,
there exists a model $(M, S)\models WKL_{0}$ and $A\in S$ such that $M\not\cong\omega,$ $A$ is unbounded in $M$

and any $(M-)$ finite subset of $A$ is not $(n+1, r)$-dense. By the assumption, there exists an
$(n, s)$ -dense subset of $A$ for any $s\in\omega$ . Thus, by overspill, for some $m\in M\backslash \omega$ , we can take
an $(n, m)$ -dense subset $X\subseteq A$ . We will show that this $X$ is in fact $(n+1, r)$ -dense, which
leads to a contradiction. By the definition of $(n, m)$ -density, for any coloring $P:[X]^{2}arrow 2,$

there exists a $P$-homogeneous set $Y_{1}\subseteq X$ which is $(n-1, m)$-dense, and we can repeat
this process $n$-times then the result set $Y_{n}$ is $m$-large. By Remark 5.1.3, there exists a
cut $I\subseteq_{e}M$ such that $(I, Cod(I/M)$ ) $\models WKL_{0}$ and $Y_{n}\cap I$ is unbounded in $I$ . Thus, there
exists a finite subset of $Y_{n}\cap I$ which is (1, r)-dense. This means that $Y_{n}$ is (1, r)-dense,
and hence $X$ is $(n+1, r)$ -dense. $\square$

Thus, if $WKL_{0}\vdash\overline{PH_{2,r}^{2}}$ , then $WKL_{0}+RT_{2}^{2}$ is a $\Pi_{2}^{0}$-conservative extension of $WKL_{0}$ . This
may give a new approach to study the proof-theoretic strength of $WKL_{0}+RT_{2}^{2}.$

Question 5.3. Is $I\Sigma_{1}\cup\{nPH_{2}^{2}|n\in\omega\}$ equivalent to $I\Sigma_{1}\cup\{PH_{2,r}^{2}|r\in\omega\}$ ?
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6 Other combinatorial principles

In this section, we give several density notions for $SRT_{2}^{2},$ $RT_{<\infty}^{2},$ $SRT_{<\infty}^{2},$ $EM$ and ADS.
(For the definitions of these combinatorial principles, see [2, 5, 1].) Using these notions,
we can characterize $\Pi_{2}^{0},$ $\Pi_{3}^{0}$ or $\Pi_{4}^{0}$ part of the target combinatorial principle as in Sections
2,3 and 4.

We reason within $I\Sigma_{1}.$

Proposition 6.1. The $\Pi_{2}^{0}$ -part, $\Pi_{3}^{0}$ -part and the $\Pi_{4}^{0}$ -part of $WKL_{0}+SRT_{2}^{2}$ is chamcterized
by the following density notion.

$A$ finite set $X$ is said to be. $0$ -dense if $|X|> \min X$ , and

$\bullet$ $m+1$ -dense if for any $P:[X]^{2}arrow 2,$

-there exists a $P$ -homogeneous subset $Y\subseteq X$ which is $m$-dense, $or,$

-there exists $Y=\{y_{0}<y_{1}<\cdots<y_{l\}}\subseteq X$ such that $P(y_{0}, y_{i})\neq P(y_{0}, y_{i+1})$ for
any $0<i<l$ and $Y$ is $m$ -dense.

For the strength of $SRT_{2}^{2}$ , see also Chong/Slaman/Yang [3].

Proposition 6.2. The $\Pi_{2}^{0}$ -part, $\Pi_{3}^{0}$ -part and the $\Pi_{4}^{0}$ -part of $WKL_{0}+RT_{<\infty}^{2}$ is chamcterized
by the following density notion.

$A$ finite set $X$ is said to be

$\bullet$ $0$ -dense if $|X|> \min X$ , and

$\bullet$ $m+1$ -dense if for any coloring $P:[X]^{2}arrow k$ such that $k< \min X$ , there exists a
$P$-homogeneous subset $Y\subseteq X$ which is $m$ -dense.

Proposition 6.3. The $\Pi_{2}^{0}$ -part, $\Pi_{3}^{0}$ -part and the $\Pi_{4}^{0}$ -part of $WKL_{0}+SRT_{<\infty}^{2}$ is chamcter-
ized by the following density notion.

$A$ finite set $X$ is said to be. $0$ -dense if $|X|> \min X$ , and

$\bullet$ $m+1$ -dense if for any coloring $P:[X]^{2}arrow k$ such that $k< \min X,$

-there exists a $P$ -homogeneous subset $Y\subseteq X$ which is $m$-dense, $or,$

-there exists $Y=\{y0<y_{1}<\cdots<y_{l\}}\subseteq X$ such that $P(y_{0}, y_{i})\neq P(y_{0}, y_{i+1})$ for
any $0<i<l$ and $Y$ is $m$-dense,

Proposition 6.4. The $\Pi_{2}^{0}$ -part, $\Pi_{3}^{0}$ -part and the $\Pi_{4}^{0}$ -part of $WKL_{0}+EM$ is chamcterized
by the following density notion.

$A$ finite set $X$ is said to be
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. $0$ -dense if $|X|> \min X$ , and

$\bullet$ $m+1$ -dense if

-for any coloring $P:[X]^{2}arrow 2$ , there exists $Y\subseteq X$ such that $P\dot{u}$ transitive on
$Y$ and $Y$ is $m$ -dense, and,

-there is a partition $X=u_{i\leq\min X}Y_{i}$ such that $\max Y_{i}<\min Y_{i+1}$ for any
$i< \min X$ and each $Y_{i}$ is $m$-dense.

Here, a coloring $P$ is said to be transitive if $P(a, b)=P(b, c)\Rightarrow P(a, b)=P(a, c)$ .

Proposition 6.5. The $\Pi_{2}^{0}$ -part, $\Pi_{3}^{0}$ -part and the $\Pi_{4}^{0}$ -part of $WKL_{0}+$ ADS is characterized
by the following density notion.

$A$ finite set $X$ is said to be

$\bullet$ $0$ -dense if $|X|> \min X$ , and

$\bullet$ $m+1$ -dense iffor any transitive coloring $P:[X]^{2}arrow 2$ , there exists a $P$ -homogeneous
subset $Y\subseteq X$ which is $m$ -dense.

In fact, Slaman/Chong/Yang[4] showed that $WKL_{0}+$ ADS is a $\Pi_{1}^{1}$-conservative exten-
sion of $B\Sigma_{2}^{0}$ . Thus, for any $n\in\omega,$ $WKL_{0}$ actually proves for any $a$ , there exists a finite set
$X$ such that $\min X>a$ and $X$ is $n$-dense for ADS.
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