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Notes on the first-order part of Ramsey’s theorem for pairs

Keita Yokoyama*
(Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology)

Abstract

We give the I13-part, the II3-part and the I19-part of RTZ and related combinatorial
principles.

1 Introduction

Determinating the first-order part of WKLo + RT% and other important combinatorial
principles is a one of the crucial topics in the study of Reverse Mathematics (see, e.g.,
[2, 4]). The usual approach for these questions is using forcing arguments to construct
a second-order part for the target combinatorial principle. On the other hand, there is
a traditional way to study the strength of combinatorial principles by using indicator
functions. (For the details of indicator functions, see [6].) In [1], Bovykin and Weiermann
gave the IT3-part of WKLo 4+ RT% by means of an indicator function defined by a density
notion, using the idea of Paris [7] and Paris/Kirby [8]. Using similar arguments, we can
show that the IJ-part of WKLY + RT% is equivalent to Elementary Function Arithmetic
(see [9]). In this paper, we give the II3-part and the I13-part of WKLo + RT?% based on [1].
We will also give several density notions to characterize the Hg-part, the Hg-pa,rt and the
I3-part of RT2 _, SRTZ, SRT2, and EM.

2 The j-part of WKL, + RT?2

This section is essentially due to Bovykin/Weiermann([1].

Definition 2.1 (within I¥;). For a finite set X, we define the notion of n-density as

follows.
o A finite set X is said to be 0-dense if | X| > min X.

o A finite set X is said to be n + 1-dense if for any (coloring) function P : [X]? — 2,
there exists a subset Y C X such that Y is n-dense and Y is P-homogeneous, i.e.,

P is constant on [Y]?.
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Note that “X is m-dense” can be expressed by a Yg-formula.

Definition 2.2. nPHZ asserts that for any a there exists an n-dense set X such that

min X > a.
Define Tp := {kPH2 | k € w} UIZ;.
Lemma 2.1. e WKLg + RT2 - nPH3 for any n € w.
e IS F mPH} — PHZ .
Proof. Easy. O

Lemma 2.2 (Bovykin/Weiermann[1]). Let M be a countable model of I¥;, and let X C M
is a (M-)finite set which is k-dense for any k € w. Then, there exists a cut I C M such
that min X € I < max X, X NI is unbounded in I and (I,Cod(I/M) = WKLy + RT2.

Proof. See [1]. O

Theorem 2.3 (Bovykin/Weiermann(1]). A II3 sentence v is provable in WKLo + RT3 if
and only if it is provable in Tp.

Proof. See [1]. O
In fact, we can generalize this theorem as follows.

Theorem 2.4. A I3 formulav (3 may contain set parameters) is provable in WKLo+RT?2
if and only if it is provable in 1L U {kPHZ | k € w}. (Here, IX? is a system of second-
order arithmetic which contains basic azioms and induction azioms for E?-formulas with

set parameters.)

3 The I}-part of WKLy + RT

Definition 3.1. Let 6(a, z,y) be a Xo-formula. We say that a finite set X = {a; | ¢ < I}
dominates 6(a, -, ) if Vi < I Vz < a; Jy < a;1+10(a, z,y) holds. We define several variations
of PHZ as follows:

e 0-nPH} := Va(Vz3y(a,z,y) — 3X (X is finite, n-dense, and dominates 6(a, -, -))),
. nfijg :=VX(Verdy >z y € X — 3Y (Y is finite, n-dense, and Y C X)).

Define T; := {6-kPH2 | k € w,8 € £} UIS; and Ty := {kPHZ | k € w} URCAo. Note
that T3 is a Hg-theory, i.e., T1 is a set of Hg-sentences.

Lemma 3.1. Let 0(a,z,y) be a Eo-formula, and letn € w. Then, WKLo+ RT% - §-nPHZ,
and WKLo + RT3 - nPH3.

Proof. Easy. O



Theorem 3.2. A I13 sentence v is provable in WKLg + RT% if and only if it is provable
in T1. Thus, T is the II3-part of WKLo + RT3.

Proof. We show that T} I/ 1 implies WKLo+ RT?% I 1 for any I1$-sentence 1. Assume that
Y = Va3xVyb(a, z,y) is not provable from T7. Then, there exists a nonstandard countable
model M |= Ty such that M |= Vz3y—6(a,z,y) for some a € M. By (—6)-kPHZ and
overspill, there exists an m-dense set X which dominates —(a, -, -) for some m € M\w. By
Lemma 2.2, there exists an initial segment I C. M such that (I, Cod(I/M)) = WKLo+RT?3
and /N X is unbounded in I. Since X dominates —, for any z € I there exists y € I such
that I |= —0(a, z,y). Thus, we have (I, Cod(I/M)) = =, which means that WKLo+RT3 I

Y. O
Theorem 3.3. A Hg formula v is provable in WKLo + RT3 if and only if it is provable
Proof. Similar to the proof of Theorem 3.2. O

Note that 7} is equivalent to IS9U{VAVa(Vz3yd(A, a,z,y) — 3X (X is finite, n-dense,
and dominates 6(4, a,-,-))) | n € w,0 € £J} with respect to IT}-sentences.

4 The I%-part of WKLy + RT2

Definition 4.1 (within IX;). Let 6(a, z,y, 2) be a ¥o-formula. Then, we define the notion
of weakly domination as follows.

® A O-dense set X weakly dominates 0(a,-,-,").

e An n + 1-dense set X weakly dominates 6(a,-,-,-) if for any coloring P : [X]? — 2,
there exists a P-homogeneous set Y C X such that Vz < min XJy < minYVz <
max Y6(a,z,y,2), Y is n-dense and weakly dominates 6(a, -, ", -).

Note that “X is m-dense and weakly dominates 6(a,-,,-)” can be expressed by a X

formula.

Definition 4.2. Let 6(a,z,y,2) be a Lo-formula. Then, the assertion 8*-nPH2 is the

following

Vavb(Yz3yVz0(a, z,y, z) — IX (X is n-dense, weakly dominates 6(a,,-,-) and min X > b).

Define T := {6*-nPH} | n € w, 8(a, z,y, 2) € To} UIT;. Note that T} is a I13-theory.

Lemma 4.1. Let 6(a,z,y,2) be a Tp-formula, and let n € w. Then, WKLy + RT% -
*-nPH3.

Proof. Easy. O
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Theorem 4.2. A Hg sentence ¢ is provable in WKLg + RT% if and only if it is provable
in Ty. Thus, Ty is the Hg-part of WKLg + RT%.

Proof. We show that Ty t# ¢ implies WKLo + RT3 I/ ¢ for any II$-sentence 1. Assume
that ¢ = Va3zVyVz6(a,z,y,2) is not provable from 7. Then, there exists a nonstan-
dard countable model M |= T, such that M |= Vz3y—6(a,z,y,z) for some a € M. By
(k,—0)PH2 and overspill, there exists an (m,6(a, -, -, -))-dense set X such that minX > a
for some m € M \ w. As the proof of Theorem 1 of [1], we can construct a descending
sequence X = Xy D X; D X3 D ... which satisfies the following:

o I =sup{minX;|i€w}Ce M,

o (I,Cod(I/M)) = WKLo + RTZ,

e I N X is unbounded in I,

e Vz < minX; 3y < min X;4; Vz < max X;y1-6(a, z,y, ) for any i € w.

Since min X; < min X;,; < I < max X;4; for any i € w, we have I |= Vz3yvz—0(a, z,y, 2),
i.e., (I,Cod(I/M)) = —p. This means that WKLg + RT% I/ 1. O

Remark 4.3. Adding set parameters, we can easily show the following: a II$ formula v
is provable in WKLg + RT% if and only if it is provable in

IZU{VAVaVb(VzIyV20(A, a,z,y, 2) — IX (X is n-dense, weakly dominates (4, a, -, -, -
and min X > b) | n € w,0 € £3}.

~—

5 PH2 with stronger largeness notion

In this section, we compare nPH% with PH% plus “stronger largeness”.
Definition 5.1 (within I¥;). e A finite set X is said to be 0-large if X # 0.
e A finite set X is said to be r + 1-large if there is a partition X = | |, s, x ¥i such
that maxY; < minY;; for any 7 < min X and each Y; is r-large.

Remark 5.1. 1. For any r € w, I¥; proves that for any a, there exists a finite set X
such that min X > a and X is r-large.

2. Q(a,b) := max{r | [a,b] is r-large} is an indicator function for WKL.

3. More generally, if M is a model of I3 é,nd X C M is r-large for some r € M \ w,
then there exists a cut I C. M such that (I,Cod(I/M)) = WKLo and X NI is

unbounded in I.

Definition 5.2. 1. PH%, asserts that for any a, there exists a finite set X such that
minX > a and for any coloring P : [X]? — 2, there exists a P-homogeneous set
Y C X which is r-large.



——

2. PH%,,. asserts that for any infinite set A, there exists a finite set X such that X C A
and for any coloring P : [X]? — 2, there exists a P-homogeneous set Y C X which
is r-large.

—

3. In general, nPHg,r asserts that for any infinite set A, there exists a finite set X such
that X € A and X is (n,r)-dense, where the notion of (n,r)-density is defined as
follows:

o A finite set X is said to be (0,r)-dense if X is r-large.
e A finite set X is said to be (n + 1,r)-dense if for any coloring P : [X]? — 2,
there exists a P-homogeneous set Y C X which is (n,7)-dense.
Proposition 5.2. IZ; - nPH3 — PH3 .
Proof. Easy. O

The strength of PH%’T is related to the strength of nPH2 in the following meaning.

Proposition 5.3. Assume that WKLg - PHg’T for allr € w, then we have WKLg nfijg
foralln e w.

——

Proof. Our assumption is WKLg - lPHg,r for any r € w. We will show by induction on n

———

that WKLo - nPH3 . for any r € w and for any n € w. Let WKLo - nPH3, for any r € w.

————

* Assume for the sake of contradiction that WKL t/ (n + 1)PH%,T for some r € w. Then,
there exists a model (M, S) = WKLy and A € S such that M % w, A is unbounded in M
and any (M-)finite subset of A is not (n + 1,7)-dense. By the assumption, there exists an
(n, s)-dense subset of A for any s € w. Thus, by overspill, for some m € M \w, we can take
an (n, m)-dense subset X C A. We will show that this X is in fact (n + 1,7)-dense, which
leads to a contradiction. By the definition of (n, m)-density, for any coloring P : [X]? — 2,
there exists a P-homogeneous set Y7 C X which is (n — 1,m)-dense, and we can repeat
this process n-times then the result set Y, is m-large. By Remark 5.1.3, there exists a
cut I C, M such that (I, Cod(I/M)) = WKLg and Y, N I is unbounded in I. Thus, there
exists a finite subset of Y, NI which is (1,r)-dense. This means that Y, is (1,r)-dense,
and hence X is (n + 1,r)-dense. a

———

Thus, if WKLg - PH'{;’,_, then WKLo + RT?% is a II3-conservative extension of WKLg. This
may give a new approach to study the proof-theoretic strength of WKLq + RT%.

Question 5.3. Is IZ; U {nPH3 | n € w} equivalent to IZ; U {PH%,T | r € w}?
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6 Other combinatorial principles

In this section, we give several density notions for SRT%, RT";OO, SRT2<OO, EM and ADS.
(For the definitions of these combinatorial principles, see [2, 5, 1].) Using these notions,
we can characterize IT9, Hg or IT) part of the target combinatorial principle as in Sections
2,3 and 4.

We reason within I3.

Proposition 6.1. The I13-part, I13-part and the I1$-part of WKLo+ SRT3 is characterized
by the following density notion.
A finite set X is said to be

e 0-dense if | X| > min X, and
e m + 1-dense if for any P : [X]? — 2,

— there exists a P-homogeneous subset Y C X which is m-dense, or,

— there ezists Y = {yo < y1 < --- <y € X such that P(yo,¥:) # P(vo,Yi+1) for
any 0<i <! andY is m-dense.

For the strength of SRT%, see also Chong/Slaman/Yang (3].

Proposition 6.2. The I13-part, I13-part and the I13-part of WKLo+RT?2 ., is characterized
by the following density notion.
A finite set X 1is said to be

e 0-dense if | X| > min X, and

e m + 1-dense if for any coloring P : [X]? — k such that k < min X, there ezists a
P-homogeneous subset Y C X which is m-dense.

Proposition 6.3. The I13-part, Hg-part and the T13-part of WKLo + SRT2<°o is character-
ized by the following density notion.
A finite set X is said to be

e 0-dense if | X| > min X, and
e m + 1-dense if for any coloring P : [X]? — k such that k < min X,

— there exists a P-homogeneous subset Y C X which is m-dense, or,

— there ezists Y = {yo < y1 < --- <y;3 C X such that P(yo,y:) # P(yo, yi+1) for
any0<i <!l andY is m-dense,

Proposition 6.4. The I13-part, I13-part and the I13-part of WKLo + EM is characterized
by the following density notion.
A finite set X is said to be



o O-dense if | X| > min X, and
e m + 1-dense if
— for any coloring P : [X]? — 2, there exists Y C X such that P is transitive on
Y andY is m-dense, and,
— there is a partition X = UiSmin x Y: such that maxY; < minY; ;1 for any
1 < min X and each Y; is m-dense.

Here, a coloring P is said to be transitive if P(a,b) = P(b,c) = P(a,b) = P(a,c).

Proposition 6.5. The IT3-part, I13-part and the I1$-part of WKLo + ADS is characterized
by the following density notion.
A finite set X is said to be

e 0-dense if | X| > min X, and

o m+1-dense if for any transitive coloring P : [X]?> — 2, there ezists a P-homogeneous
subset Y C X which is m-dense.

In fact, Slaman/Chong/Yang([4] showed that WKLq + ADS is a IT}-conservative exten-
sion of BEY. Thus, for any n € w, WKLg actually proves for any a, there exists a finite set
X such that min X > a and X is n-dense for ADS.
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