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Abstract

We report some results of our recent studies. Let I' be a set of (Turing) oracles.
A set Z is called I'-random if Z is ML-random relative to A for all A € I'. We use
L and G to denote the set of low sets and the set of 1-generic sets, respectively.
In [7], Yu proved that L-randomness is equivalent to ’-Schnorr randomness,
where (' denotes the halting problem. We show that (L N G)-randomness is still
equivalent to (-Schnorr randomness. We also proved that (LNMLR)-randomness
is equivalent to (’-Schnorr randomness. :

1 Introduction

For a definition of random sequences, many approaches have been made until a def-
inition was proposed by Martin-Lof [3] in 1966, which for the first time included all
standard statistical properties of random sequences. The relativized randomness was
first studied by Gaifman and Snir. We say that a set is n-random if it is ML-random
relative to (=Y. So it is 1-random if it is ML-random. 2-random if it is ML-random
relative to §'. 2-randomness was first studied by Kurtz [6]. He also considered weak
2-randomness, an interesting notion lying strictly between Martin-L6f randomness and
2-randomness. In this report, we will introduce other randomness notions which be-
tween Martin-Lof randomness and 2-randomness.

I'-randomness was first studied in [9], and is strongly connected with Yu’s research
[7]. The I'-randomess notion could sometimes produce alternative proofs of existing
results. For instance, some properties of ¢-Schnorr randomness are proved more easily
by the characterization due to L-randomness than the usual methods. In section 3,
we will report some new characterizations of L-randomness. The detail proof of these
results will be published in the future literature.

*This research was partially supported by RIMS. The author would like to thank Prof. Toshio
Suzuki for many helpful remarks. The full version of this paper will appear soon.



2 Preliminaries

The collection of binary strings is denoted by 2<N, i.e. the set of all functions from
{0,...,n} to {0,1} for some n € N. We use 0,7, to denote the elements of 2<N.
Let 2N denote the set of infinite binary sequences. Subsets of N can be identified with
element of 2N. These are also called reals. For sets A,B, Let A® B = {2z : z €
A}U{2z + 1: z € B}, namely the set which is A on the even bit positions and B on
the odd positions.

For o € 2<N, we write |o| for the length of 0. Equivalently, |o| = #dom(c). Here
the cardinality of a set A is denoted by #A. The empty string is denoted by A. For
strings o and 7, let 0 <X 7 denotes that o is a prefix of 7, i.e., dom(s) C dom(7) and
o(m) = 7(m) holds for each m € dom(c). The concatenation of two strings o and 7
is denoted by o7. For a set A, A [ n is.the prefix of A of length n. A topology of 2N
is induced by basic open sets [o] = {X € 2V : X > o} for all strings o € 2<N. So each
open set of 2V is generated by a subset of 2<V, that is [S]* = {X € 2¥: 30 € S ¢ < X}.
With this topology, 2N is called the Cantor space.

The Lebesgue measure on 2N is induced by giving each basic open set [o] measure
u(lo]) == 2711, for each string 0. If a class G C 2V is open then pu(G) = > ep 27V
where B is a prefix-free set of strings such that G = | J,g[0]. A class C C 2V is called
null if p(C) = 0. If 2N — C is null we say that C is conull.

3 I'-randomness

ML-randomness is a central notion of algorithmic randomness for subsets of N, which
defined in the following way.

Definition 1 (Martin-Lof [3]). (i) A Martin-Léf test, or ML-test for short, is a
uniformly c.e. sequence (Gp)men of open sets such that Vm € N u(G,,) < 2™™.

(ii) A set Z C N fails the test if Z € (,, Gy, otherwise Z passes the test.

(iii) Z is ML-random if Z passes each ML-test. Let MLR denote the class of ML-
random sets. Let non-MLR denote its complement in 2N.

Following Schnorr [10], we will look at other natural notion of randomness, which
refine the notion of Martin-Lof randomness.

Definition 2 (Schnorr [10]). A Schnorr test is a ML-test (Gy,)men such that uG,, is
computable uniformly in m. A set Z C N fails the test if Z € (,, G, otherwise Z
passes the test. Z is Schnorr random if Z passes each Schnorr test.

We recall some definitions in [9].

Definition 3. Let I' C w¥. A set Z is I'-random if Z is ML-random relative to f for
all f €. Any ML-test relative to f € I" is called a I'-test.
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For f € w*, we say f-random and f-test instead of {f}-random and {f}-test,
respectively. Recall that a set A is low if A’ <7 (. In particular, [-randomness is
called L-randomness if T is the set of low sets.

Since a ML-test is a uniformly c.e. sequence (G,,)men of open sets such that
Vm € N uG,, < 27™. Thus, we can define an L-test to be a sequence (Gy,)men of open
sets, which is uniformly c.e in some low set, such that Ym e N uG,, <2™™.

The randomness notions between ML-randomness and 2-randomness have been
extensively investigated in the literature by many researchers. In 2012, Yu [7] show
that L-randomness lying strictly between Martin-L6f randomness and 2-randomness.

Theorem 1 (Yu [7]). L-randomness is equivalent to O'-Schnorr randomness.

In [8], we also give another characterization of L-randomness. Let PA denote the
set of all functions of PA degrees.

Proposition 1 (Peng, Higuchi, Yamazaki and Tanaka [8]). L-randomness is equivalent
to L N PA-randomness. '

Let G denote the set of all 1-generic elements of 2. Here, recall that an element Z
of 2¥ is I-generic if for any c.e. subset W of 2<“| there exists ¢ < Z such that either
o€ Wor [o]NW = 0 holds. It is well-known that any 1-generic element Z of 2¥ is
generalized low, i.e., Z® @' computes Z’. Thus a 1-generic element of 2¥ is computable
relative to @ if and only if it is low.

Now we have the following theorem.

Theorem 2. (L N G)-randomness is equivalent to §'-Schnorr randomness.
The following answer a question in [8].
Theorem 3. (L N MLR)-randomness is equivalent to I -Schnorr randomness.

A natural of Turing reducibility from the point of view of ML-randomness is the
LR-reducibility which was introduced in [5].

Definition 4 (Nies [5]). For any A,B C N, we say that A is LR-reducible to B,
abbreviated A < ;g B, if

VX (X is B—random = X is A—random)

Intuitively this means that if oracle A can identify some patterns on some real z,
oracle B can also find patterns on z. In other words, B is at least as good as A for
this purpose.

In 2012, Diamondstone [2] show a surprising divergence between the LR degrees
and the Turing degrees.

Theorem 4 (David, [2]). For any low real X,Y, there exists a low c.e. real Z such
that X,Y SLR Z.
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We also show some similar results as follows.

Theorem 5. For any low real X,Y, there exists a low 1-generic real Z such that
X, Y <ir Z.

The above can be shown from theorem 2.

Theorem 6. For any low real X,Y, there exists a low Martin-Lof random real Z such
that X,Y <ir Z.

This follows from theorem 3.
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