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1. INTRODUCTION

This article is a continuation of study of topological properties of spaces of uniform
embeddings and groups of uniform homeomorphisms ([1, 4, 7]). Since the notion of uniform
continuity depends on the choice of metrics, it is essential to select reasonable classes of
metric spaces ($X$ , d) to obtain suitable conclusions on spaces of uniform embeddings. In
[1] (cf, [5, Section 5.6]) A. $V.$ $\check{C}ernavski\dot{1}$ considered the case where $X$ is the interior of a
compact manifold $N$ and the metric $d$ is a restriction of some metric on $N.$

On the other hand, in the previous paper [7] we considered metric covering spaces over
compact manifolds and obtained a local deformation theorem for uniform embeddings on
those spaces (Theorem 2.2). In term of covering transformation groups, the metric covering

spaces over compact spaces corresponds to the locally compact metric spaces with free
geometric group actions. Here a group action on a metric space is called geometric if it

is proper, cocompact and isometric. From our view point, it is natural to expect that

the same conclusion also holds for any metric space with a geometric group action. Our
key observation here is that a metric space with a geometric group action is locally a
trivial metric covering space. Thus the case for any geometric group action (Theorem

3.1) follows from the one for metric covering spaces, once we show the finite additivity
of deformation property for uniform embeddings. In Section 2 we recall basic definitions
on uniform embeddings and the results in metric covering spaces obtained in [7] and in

Section 3 we study the case of geometric group actions.

2. SPACES OF UNIFORM EMBEDDINGS IN METRIC COVERING SPACES

2.1. Spaces of uniform embeddings.
First we recall basic definitions on uniform embeddings/homeomorphisms. In this article,

maps between topological spaces are always assumed to be continuous.
Suppose $X=(X, d_{X})$ is a metric space. For $x\in X$ and $\epsilon>0$ let $O_{\epsilon}(x)(C_{\epsilon}(x))$ denote

the open (closed) $\epsilon$-ball in $X$ centered at the point $x$ . Suppose $A$ is a subset of $X$ . The
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open $\epsilon$-neighborhood $O_{\epsilon}(A)$ of $A$ in $X$ is defined by

$O_{\epsilon}(A)=\{x\in X|d(x, a)<\epsilon$ for some $a\in A\}.$

A neighborhood $U$ of $A$ in $X$ is called a uniform neighborhood of $A$ if $O_{\epsilon}(A)\subset U$ for some
$\epsilon>0$ . We say that $A$ is $\epsilon$-discrete if $d_{X}(x, y)\geq\epsilon$ for any distinct points $x,$ $y\in A$ and that
$A$ is uniformly discrete if it is $\epsilon$-discrete for some $\epsilon>0$ . More generally a family $\{F_{\lambda}\}_{\lambda\in\Lambda}$

of subsets of $X$ is said to be $\epsilon$-discrete if for any $\lambda,$ $\mu\in\Lambda$ either $d(F_{\lambda}, F_{\mu})\geq\epsilon$ or $F_{\lambda}=F_{\mu}.$

A map $f$ : $Xarrow Y$ between metric spaces is said to be uniformly continuous if for each
$\epsilon>0$ there is a $\delta>0$ such that if $x,$ $x’\in X$ and $d_{X}(x, x’)<\delta$ then $d_{Y}(f(x), f(x’))<\epsilon.$

The map $f$ is called a uniform homeomorphism if $f$ is bijective and both $f$ and $f^{-1}$ are
uniformly continuous. $A$ uniform embedding is a uniform homeomorphism $0$nto its image.

Let $C^{u}(X, Y)$ denote the space of uniformly continuous maps $f$ : $Xarrow Y$ . The metric
$d_{Y}$ on $Y$ induces the $\sup$-metric $d$ on $C^{u}(X, Y)$ defined by

$d(f, g)= \sup\{d_{Y}(f(x), g(x))|x\in X\}\in[0, \infty].$

The topology on $C^{u}(X, Y)$ induced by this $\sup$-metric $d$ is called the uniform topology.
Below the space $C^{u}(X, Y)$ and its subspaces are endowed with the $\sup$-metric $d$ and the
uniform topology, otherwise specified. The composition map

$C^{u}(X, Y)\cross C^{u}(Y, Z)arrow C^{u}(X, Z)$

is continuous.
For a subset $A$ of $X$ let $\mathcal{H}_{A}^{u}(X)$ denote the group of uniform homeomorphisms $h$ of $X$

$o$nt $0$ itself with $h|A=id_{A}$ (endowed with the $\sup$-metric and the uniform topology). By
$\mathcal{H}_{A}^{u}(X)_{0}$ we denote the connected component of the identity map $id_{X}$ of $X$ in $\mathcal{H}_{A}^{u}(X)$ and
define the subgroup

$\mathcal{H}_{A}^{u}(X)_{b}=\{h\in \mathcal{H}_{A}^{u}(X)|d(h, id_{X}) \infty\}.$

It follows that $\mathcal{H}_{A}^{u}(X)$ is a topological group and $\mathcal{H}_{A}^{u}(X)_{b}$ is a clopen subgroup of $\mathcal{H}_{A}^{u}(X)$ ,
so that $\mathcal{H}_{A}^{u}(X)_{0}\subset \mathcal{H}_{A}^{u}(X)_{b}$ . As usual, the symbol $A$ is suppressed when it is an empty set.

Similarly, let $\mathcal{E}_{A}^{u}(X, Y)$ denote the space uniform embeddings $f$ : $Xarrow Y$ with $f|_{A}=id_{A}$

(with the $\sup$-metric and the uniform topology). When $X\subset Y$ , for a subset $C$ of $Y$ we
use the symbol $\mathcal{E}^{u}(X, Y;C)$ to denote $\mathcal{E}_{X\cap C}^{u}(X, Y)$ . When $Y$ is a topological $n$-manifold
possibly with boundary and $X\subset Y$ , an embedding $f$ : $Xarrow Y$ is said to be proper if
$f^{-1}(\partial Y)=X\cap\partial Y$. Let $\mathcal{E}_{*}^{u}(X, Y;C)$ denote the subspace of $\mathcal{E}^{u}(X, Y;C)$ consisting of
proper embeddings.

2.2. Metric covering projections.
In [7] we introduced the notion of metric covering projections as the $C^{0}$-version of Rie-

mannian coverings in the smooth category. For the basics on covering spaces, we refer to
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[6, Chapter 2, Section 1]. Note that if $p:Marrow N$ is a covering projection and $N$ is a
topological $n$-manifold possibly with boundary, then so is $M$ and $\partial M=\pi^{-1}(\partial N)$ .

Definition 2.1. $A$ map $\pi$ : $Xarrow Y$ between metric spaces is called a metric covering

projection if it satisfies the following conditions:

$(*)_{1}$ There exists an open cover $\mathcal{U}$ of $Y$ such that for each $U\in \mathcal{U}$ the inverse $\pi^{-1}(U)$ is

the disjoint union of open subsets of $X$ each of which is mapped isometrically onto
$U$ by $\pi.$

$(*)_{2}$ For each $y\in Y$ the fiber $\pi^{-1}(y)$ is uniformly discrete in $X.$

$(*)_{3}d_{Y}(\pi(x), \pi(x’))\leq d_{X}(x, x’)$ for any $x,$ $x’\in X.$

2.3. Edwards - Kirby’s local deformation theorem for embeddings of compact

subsets.

In [3, Theorem 5.1] R. D. Edwards and R. C. Kirby obtained a fundamental local defor-

mation theorem for embeddings of a compact subspace in a manifold.

Theorem 2.1. Suppose $M$ is a topological $n$-manifold possibly with boundary, $C$ is a
compact subset of $M,$ $K\subset L$ are compact neighborhoods of $C$ in $M$ and $D\subset E$ are two

closed subsets of $M$ such that $D\subset$ Int$ME$ . Then there exists a neighborhood $\mathcal{U}$ of the

inclusion map $i_{L}$ : $Larrow M$ in $\mathcal{E}_{*}^{u}(L, M;E)$ and a homotopy $\varphi$ : $\mathcal{U}\cross[0,1]arrow \mathcal{E}_{*}^{u}(L, M;D)$

such that

(1) for each $f\in \mathcal{U},$

(i) $\varphi_{0}(f)=f$ , (ii) $\varphi_{1}(f)=$ id on $C$ , (iii) $\varphi_{t}(f)=f$ on $L-K(t\in[0,1])$ ,

(iv) if $f=$ id on $L\cap\partial M$ , then $\varphi_{t}(f)=$ id on $L\cap\partial M(t\in[0,1])$ ,

(2) $\varphi_{t}(i_{L})=i_{L}(t\in[0,1])$ .

2.4. Deformation theorem for uniform embeddings.

In [7, Theorem 1.1] from Edwards- Kirby’s deformation theorem we deduced a local

deformation theorem for uniform embeddings in any metric covering space over a compact

manifold. There, the Arzela-Ascoli theorem (cf. [2, Theorem 6.4]) played an essential role

in order to pass from the compact case to the uniform case.

Theorem 2.2. Suppose $\pi$ : $(M, d)arrow(N, \rho)$ is a metric covering projection, $N$ is a

compact $n$-manifold possibly with boundary, $X$ is a subset of $M,$ $W’\subset W$ are uniform

neighborhoods of $X$ in $(M, d)$ and $Z,$ $Y$ are subsets of $M$ such that $Y$ is a uniform neigh-

borhood of $Z$ . Then there exists a neighborhood $\mathcal{W}$ of the inclusion map $i_{W}$ : $W\subset M$ in

$\mathcal{E}_{*}^{u}(W, M;Y)$ and a homotopy $\varphi$ : $\mathcal{W}\cross[0,1]arrow \mathcal{E}_{*}^{u}(W, M;Z)$ such that
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(1) for each $h\in \mathcal{W}$

(i) $\varphi_{0}(h)=h$ , (ii) $\varphi_{1}(h)=$ id on $X,$

(iii) $\varphi_{t}(h)=h$ on $W-W’$ and $\varphi_{t}(h)(W)=h(W)$ $(t\in[0,1])$ ,

(iv) if $h=$ id on $W\cap\partial M$ , then $\varphi_{t}(h)=$ id on $W\cap\partial M(t\in[O, 1])$ ,
(2) $\varphi_{t}(i_{W})=i_{W}(t\in[0,1])$ .

In [1] it is shown that $\mathcal{H}^{u}(M, d)$ is locally contractible in the case where $M$ is the interior
of a compact manifold $N$ and the metric $d$ is a restriction of some metric on $N$ . The next
corollary is a direct consequence of Theorem 2.2.

Corollary 2.1. Suppose $\pi$ : $(M, d)arrow(N, \rho)$ is a metric covering projection onto a compact
$n$-manifold $N$ possibly with boundary. Then $\mathcal{H}^{u}(M, d)$ is locally contractible.

The Euclidean space $\mathbb{R}^{n}$ with the standard Euclidean metric admits the canonical Rie-
mannian covering projection $\pi$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}/\mathbb{Z}^{n}$ onto the flat torus. Therefore we can apply
Theorem 2.2 to uniform embeddings in $\mathbb{R}^{n}$ . The important feature of $\mathbb{R}^{n}$ is that it admits
similarity transformations

$k_{\gamma}:\mathbb{R}^{n}\approx \mathbb{R}^{n}$ : $k_{\gamma}(x)=\gamma x$ $(\gamma>0)$ .

This enables us to deduce a global deformation of uniform embeddings directly from a local
one. $A$ similar argument is also applied to the Euclidean end $\mathbb{R}_{r}^{n}=\mathbb{R}^{n}-O(r)(r>0)$ , where
$O(r)$ is the round open $r$-ball in $\mathbb{R}^{n}$ centered at the origin. Since the deformation property
for uniform embeddings is preserved by bi-Lipschitz homeomorphisms, we can pass from
the model space $\mathbb{R}^{n}$ to any metric spaces with finitely many bi-Lipschitz Euclidean ends.
For the precise statement, we refer to [7, Theorem 1.2]. For example, in the case of $\mathbb{R}^{n}$

itself we can construct a strong deformation retraction of $\mathcal{H}^{u}(\mathbb{R}^{n})_{b}$ onto $\mathcal{H}_{\mathbb{R}_{3}^{n}}^{u}(\mathbb{R}^{n})$ . Since
the latter is contractible by Alexander’s trick, we have the following conclusion.

Corollary 2.2. $\mathcal{H}^{u}(\mathbb{R}^{n})_{b}$ is contractible for every $n\geq 0.$

In [4] we studied the topological type of $\mathcal{H}^{u}(\mathbb{R})_{b}$ as an infinite-dimensional manifold and
showed that it is homeomorphic to $\ell_{\infty}.$

3. SPACES OF UNIFORM EMBEDDINGS IN METRIC SPACES WITH GEOMETRIC GROUP

ACTIONS

3.1. Locally geometric group actions.
First we fix some symbols and recall some related notions. When a group $G$ acts on a

set $S$ , for a subset $F\subset S$ let $GF=\{gx|g\in G, x\in F\}\subset S$ and $G_{F}=\{g\in G|gF=$

$F\}<G.$
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Suppose $X$ is a locally compact separable metric space. An action of a group $G$ on $X$ is

called a geometric group action if it is proper, cocompact and isometric. More generally,

we call it a locally geometric group action if it is proper, cocompact and “locally isometric”
in the following sense:

$(\natural)$ For any $x\in X$ there exists $\epsilon_{x}>0$ such that each $g\in G$ maps $O_{\epsilon_{x}}(x)$ isometrically

onto $O_{\epsilon_{x}}(gx)$ .

Definition 3.1. For $\epsilon>0$ we say that a point $x\in X$ satisfies the $(G, \epsilon)$-discrete condition
if the following holds:

(i) $C_{\epsilon}(x)$ is compact, (ii) each $g\in G$ induces an isometry $g:O_{\epsilon}(x)\cong O_{\epsilon}(gx)$ ,

(iii) the subset $Gx\subset M$ is $3\epsilon$-discrete, so that the family $\{O_{\epsilon}(gx)|g\in G\}$ is $\epsilon$-discrete.

As for the condition (iii) note that $O_{\epsilon}(gx)=O_{\epsilon}(hx)$ if $\overline{g}=\overline{h}$ in $G/G_{x}.$

Lemma 3.1. If a group $G$ acts on $X$ locally geometrically, then the following holds:

(1) $G$ is a countable group.
(2) The family $\{gC|g\in G\}$ is locally finite and $G_{C}$ is finite for any compact subset

$C$ of $M$ . In particular, $Gx$ is a discrete subset of $M.$

(3) $M=GK$ for some compact subset $K$ of $M.$

(4) Each point $x\in X$ satisfies the $(G, \epsilon)$-discrete condition for some $\epsilon>0.$

3.2. Additivity of deformation property for uniform embeddings.
Suppose $(M, d)$ is a topological $n$-manifold possibly with boundary with a fixed metric $d.$

Definition 3.2. We say that a subset $U$ of $M$ satisfies the condition ( $LD$ ) if the following
holds:

$(\#)$ Suppose $X$ is a subset of $U,$ $W’\subset W$ are uniform neighborhoods of $X$ in $M$ and
$Z,$ $Y$ are subsets of $M$ such that $Y$ is a uniform neighborhood of $Z$ . Then there
exists a neighborhood $\mathcal{W}$ of the inclusion map $i_{W}$ : $W\subset M$ in $\mathcal{E}_{*}^{u}(W, M;Y)$ and a
homotopy $\varphi$ : $\mathcal{W}\cross[0,1]arrow \mathcal{E}_{*}^{u}(W, M;Z)$ such that

(1) for each $h\in \mathcal{W}$

(i) $\varphi_{0}(h)=h$ , (ii) $\varphi_{1}(h)=$ id on $X,$

(iii) $\varphi_{t}(h)=h$ on $W-W’$ and $\varphi_{t}(h)(W)=h(W)$ $(t\in[0,1])$ ,

(iv) if $h=$ id on $W\cap\partial M$ , then $\varphi_{t}(h)=$ id on $W\cap\partial M(t\in[0,1])$ ,
(2) $\varphi_{t}(i_{W})=i_{W}(t\in[0,1])$ .

The condition ( $LD$ ) has the following properties:

Lemma 3.2. (1) If $U\subset V\subset M$ and $V$ satisfies the condition ($LD$ ), then so does $U.$
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(2) Suppose $K,$ $L\subset M$ and $\epsilon>0$ . If both $O_{\epsilon}(K)$ and $O_{\epsilon}(L)$ satisfy the condition
($LD$ ), then so does $O_{\delta}(K\cup L)$ for any $\delta\in(0, \epsilon)$ .

3.3. Deformation theorem for uniform embeddings.
Our goal is to show the following theorem.

Theorem 3.1. Suppose $(M, d)$ is a topological $n$-manifold possibly with boundary with a
fixed metric $d$ and it admits a locally geometric action of a group $G$ . Suppose $X$ is a subset
of $M,$ $W’\subset W$ are uniform neighborhoods of $X$ in $M$ and $Z,$ $Y$ are subsets of $M$ such that
$Y$ is a uniform neighborhood of $Z$ . Then there exists a neighborhood $\mathcal{W}$ of the inclusion
map $i_{W}$ : $W\subset M$ in $\mathcal{E}_{*}^{u}(W, M;Y)$ and a homotopy $\varphi$ : $\mathcal{W}\cross[0,1]arrow \mathcal{E}_{*}^{u}(W, M;Z)$ such
that

(1) for each $h\in \mathcal{W}$

(i) $\varphi_{0}(h)=h$ , (ii) $\varphi_{1}(h)=id$ on $X,$

(iii) $\varphi_{t}(h)=h$ on $W-W’$ and $\varphi_{t}(h)(W)=h(W)$ $(t\in[0,1])$ ,

(iv) if $h=$ id on $W\cap\partial M$ , then $\varphi_{t}(h)=$ id on $W\cap\partial M(t\in[0,1])$ ,

(2) $\varphi_{t}(i_{W})=i_{W}(t\in[0,1])$ .

Corollary 3.1. Suppose $(M, d)$ is a topological $n$-manifold possibly with boundary with
a fixed metric $d$ which admits a locally geometric action of a group $G$ . Then $\mathcal{H}^{u}(M, d)$ is
locally contractible.

Sketch of Proof of Theorem 3.1.
[1] First we show that each point $x\in M$ admits a $G$-invariant open neighborhood $U_{x}$ in

$M$ and $\delta_{x}>0$ such that $O_{\delta_{x}}(U_{x})$ satisfies the condition ( $LD$ ). For this purpose, take any
point $x\in M$ and let $\Lambda$ be a complete set of representatives of cosets in $G/G_{x}.$

(1) The point $x$ satisfies the $(G, 2\epsilon)$-discrete condition for some $\epsilon>0$ . Since $O_{\epsilon}(Gx)$

is the disjoint union of open subsets $O_{\epsilon}(gx)(g\in\Lambda)$ , we have the map

$\pi$ : $(O_{\epsilon}(Gx), d)arrow(O_{\epsilon}(x), d):\pi(y)=g^{-1}y(g\in\Lambda, y\inO_{\epsilon}(gx))$.

The map $\pi$ is shown to be a metric covering projection.
(2) Take a closed $n$-ball neighborhood $N$ of $x$ in $O_{\epsilon}(x)$ and let $F=\pi^{-1}(N)$ . Then $F$ is

an $n$-submanifold (with boundary) of $M$ which is closed in $M$ , and the restriction
$\pi$ : $(F, d)arrow(N, d)$ is also a metric covering projection. Therefore, by Theorem 2.2
$F$ satisfies the condition ($LD$ ) in $(F, d)$ itself.

(3) Take a $\delta=\delta_{x}\in(0, \epsilon)$ such that $O_{4\delta}(x)\subset N$ . Then $V=O_{2\delta}(Gx)$ is an open
subset of $M$ with $O_{2\delta}(V)\subset F$ , so that $V$ satisfies the condition ( $LD$ ) in $(M, d)$ .
Hence $U_{x}=O_{\delta}(Gx)$ is a $G$-invariant open neighborhood of $x$ in $M$ and $O_{\delta}(U_{x})$ also
satisfies the condition ($LD$ ).
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[2] There exists a compact subset $K$ of $M$ such that $GK=M$ . Then there exist finitely

many points $x_{1},$ $\cdots,$ $x_{m}\in K$ such that $\{U_{x_{i}}\}_{i=1}^{m}$ covers $K$ . Since each $U_{x_{i}}$ is $G$-invariant,

$\{U_{x_{i}}\}_{i=1}^{m}$ also covers $M$ . Since each $O_{\delta_{x_{i}}}(U_{x_{i}})$ satisfies the condition ($LD$ ), by Lemma 3.2

(2) so does $M= \bigcup_{i}U_{x_{i}}$ . This completes the proof. $\square$
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